Bioprocess
Vol. 14  No. 02 ( 2024 ), Article ID: 87492 , 8 pages
10.12677/bp.2024.142008

m6A修饰在砷诱导毒效应中发挥的作用 研究进展

李仁杰

重庆医科大学公共卫生学院,重庆

收稿日期:2024年5月10日;录用日期:2024年5月18日;发布日期:2024年5月28日

摘要

在环境领域中,砷是一种有毒的重金属,主要通过饮用水途径对人类健康造成各种影响。如今,全球约2亿人正受到含砷的饮用水影响,是一个亟待解决的全球性公共卫生问题。N6-甲基腺苷(m6A)修饰是哺乳动物mRNA中最丰富的化学修饰,在越来越多的研究中发现m6A修饰参与了砷诱导毒效应,因此研究异常RNA修饰在重金属毒性中的作用和机制是一个非常有前景的领域。本研究通过参考国内外文献,综述了m6A修饰在砷诱导毒效应中发挥的作用,并为今后探索其它重金属的毒效应机制提供研究方向。

关键词

砷,m6A修饰,毒效应

Research Progress on the Role of m6A Modification in Arsenic-Induced Toxicity

Renjie Li

College of Public Health, Chongqing Medical University, Chongqing

Received: May 10th, 2024; accepted: May 18th, 2024; published: May 28th, 2024

ABSTRACT

In the environmental field, arsenic is a toxic heavy metal that causes various effects on human health mainly through the drinking water route. Today, about 200 million people are exposed to arsenic from drinking water, which is a global public health problem that needs to be addressed urgently. N6-methyladenosine (m6A) modification is the most abundant chemical modification in mammalian mRNA. More and more studies have found that m6A modification is involved in arsenic-induced toxicity, so studying the role and mechanism of abnormal RNA modification in heavy metal toxicity is a very promising field. This paper reviews the role of m6A modification in arsenic-induced toxicity by referring to domestic and foreign literature, and provides research directions for exploring the toxic mechanism of other heavy metals in the future.

Keywords:Arsenic, m6A Modification, Toxicity

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

砷以无机、有机和不同的氧化态等多种形式存在,并在自然界中分布广泛。全球人口依赖含水层作为饮用水,一些含水层受到重金属的污染,使暴露于砷的人口急剧增加,在开采稀有金属时,对深层地层挖掘增加了人类与重金属的接触,火山喷发也会影响重金属暴露 [1] 。这些原因大大增加了人类接触重金属的机会,远超过维持人类健康可接受的阈值。越来越多的研究发现,N6-甲基腺苷(m6A)修饰参与调控与各种疾病相关的各种重要生命活动 [2] [3] [4] 。近期的大量研究表明,m6A通过调节转录后基因表达,在环境暴露引起的健康损害中起着关键作用,本研究将重点讨论m6A修饰在砷引起的各种毒效应中的作用机制。

2. 砷的危害

砷以无机、有机和不同的氧化态等多种形式存在,并在自然界中分布广泛。全球人口依赖含水层作为饮用水砷在体内的分布相当稳定,广泛分布在皮肤、肺、肝和肾等器官中,约70%砷通过尿液排出,无机砷在体内的保留时间比有机砷更长,无机砷的排出过程所需的时间也更长 [5] 。水、空气、职业暴露和因进食受污染的食物而摄入无机砷会对人体健康造成严重影响,低剂量和长期接触砷会导致一系列称为“砷中毒”的医疗并发症 [6] 。砷中毒的来源包括含砷的杀虫剂、除草剂、灭鼠剂、受污染的饮用水、烹饪水、吸烟、受污染水灌溉的粮食作物、膳食食品和饲料添加剂等,长期接触砷会导致严重的健康问题,主要包括皮肤损伤、心血管疾病、糖尿病、神经功能障碍和多种类型的癌症 [7] [8] [9] 。

3. m6A修饰的概述

在哺乳动物mRNA中,m6A修饰是最丰富的化学修饰,每一千个腺苷核苷酸中大约有1~4个m6A发生 [10] 。在1990年代发现了将m6A甲基化置于RNA分子中的甲基转移酶 [11] [12] 。2011年和2013年分别发现了FTO和ALKBH5这两种m6A去甲基酶 [13] [14] 。这些发现表明m6A修饰具有可调节性,从而极大地刺激了m6A修饰研究。m6A修饰水平和功能由三种关键的蛋白质调控:1) 甲基转移酶:促进mRNA发生m6A修饰的蛋白质;2) 去甲基化酶:从mRNA中抹去m6A修饰的蛋白质;3) 阅读蛋白:与发生m6A修饰的mRNA相互作用并决定m6A修饰功能蛋白质 [15] 。

4. m6A修饰参与砷诱导的毒效应

4.1. m6A参与砷诱导的细胞毒性

研究发现,砷暴露能提高人角质形成细胞(HaCaT)细胞的氧化应激并产生细胞毒性 [16] 。与对照组相比,暴露于0.5,1,2,6,12 μM浓度的亚砷酸盐会以剂量依赖性方式增加细胞内活性氧(ROS)水平 [16] 。为了探究亚砷酸盐暴露引起细胞毒性和氧化应激是否与RNA的m6A修饰水平变化有关,作者在HaCaT细胞的总RNA上检测了m6A修饰的水平 [16] 。结果显示,m6A水平在2 μM处理组达到峰值,在较高亚砷酸盐浓度处理组(6, 12 μM)下降,所有亚砷酸盐处理组的m6A修饰水平都明显高于对照组 [16] 。进一步研究结果显示,与对照组相比,低浓度(1, 2 μM)亚砷酸盐暴露后,m6A去甲基酶FTO的表达水平降低,而高浓度(6, 12 μM)亚砷酸盐暴露后,m6A去甲基酶FTO的表达水平升高 [16] 。与对照组相比,低浓度的亚砷酸盐暴露增加了m6A甲基转移酶METTL3、METTL14和WTAP的表达水平,而高浓度的亚砷酸盐暴露降低了METTL3、METTL14和WTAP的表达水平 [16] 。

有研究将HaCaT细胞暴露于不同浓(0.5, 1, 2, 5, 5, 10, 15 μM)亚砷酸盐中,发现ROS水平与m6A修饰之间具有相关性 [17] 。研究结果显示,用抗氧化剂N-乙酰半胱氨酸(NAC)处理降低了ROS水平,并增加了暴露于高浓度(5, 10, 15 μM)亚砷酸盐细胞的活力,表明ROS水平提高有助于亚砷酸盐暴露引起的细胞死亡 [17] 。15 μM的亚砷酸盐处理显着增加了HaCaT细胞中的m6A水平,而抗氧化剂NAC处理可以显着降低细胞中的m6A水平 [17] 。进一步的研究发现,NAC处理可以显著降低亚砷酸盐暴露引起的m6A甲基转移酶METTL14和WTAP上调,表明亚砷酸盐暴露可能通过ROS介导的METTL14和WTAP表达上调来增加RNA的m6A修饰水平 [17] 。这些发现表明,亚砷酸盐暴露引起的HaCaT细胞毒性与ROS过量产生和m6A修饰水平变化有关。

4.2. m6A修饰参与砷诱导的胎儿生长受限

胎儿生长受限(FGR)定义为胎儿未能达到其遗传生长潜力,临床表现为小于胎龄儿(SGA),越来越多的研究认为,胎儿宫内生长受限是成年期肥胖症、Ⅱ型糖尿病、高血压、冠心病及精神分裂症高发的重要危险因素 [18] [19] [20] 。胎盘在维持胎儿发育方面起着举足轻重的作用,在妊娠早期,人胎盘绒毛状细胞滋养层细胞分化为侵袭性绒毛外滋养细胞(EVT),伴有上皮特征丧失和间充质特征增加 [21] [22] [23] 。越来越多的证据表明,妊娠早期EVT侵袭不足会诱发FGR [24] [25] 。许多研究表明表观遗传修饰在胚胎和胎盘发育中起着重要作用 [26] [27] 。一项早期的体外实验发现,砷可以抑制人类EVT的迁移和侵袭 [28] 。几项研究表明,m6A修饰不适应可能导致胎盘滋养层功能障碍 [29] [30] 。

有研究建立了砷诱导的FGR的体内模型和砷暴露的体外模型以探索关键分子m6A修饰在砷诱导的FGR中的作用 [31] 。这项研究将孕期小鼠暴露于不同浓度的NaAsO2 (0, 0.15 mg/L, 1.5 mg/L, 15 mg/L)中持续18天,成功建立了胎盘和胎鼠宫内生长发育影响的动物模型 [31] 。结果显示,孕期砷暴露会降低胎盘直径和重量,损害胎盘形态,滋养层糖原细胞增多,这些结果证明孕期砷暴露引起了FGR [31] 。机制研究结果表明,砷暴露耗竭细胞内S-腺苷甲硫氨酸含量从而降低甲基供体和m6A甲基转移酶IGF2BP2活性,导致CYR61的m6A修饰水平降低 [31] 。IGF2BP2活性降低引起与Cyr61 mRNA结合能力降低,从而降低了Cyr61 mRNA稳定性,引起Cyr61 mRNA和蛋白水平下降,导致胎盘滋养层细胞迁移侵袭受阻最终诱发FGR [31] 。这些结果证明m6A在孕期砷暴露导致胎鼠宫内FGR中具有重要作用。

4.3. m6A修饰参与砷诱导的肝胰岛素抵抗

有研究发现砷与Ⅱ型糖尿病(T2D)有密切联系 [32] ,胰岛素抵抗(IR)是导致T2D的主要病理变化 [33] 。肝脏在调节葡萄糖代谢方面起着主导作用,m6A修饰引起的RNA甲基化是影响肝功能和疾病的最广泛的基因调控机制 [34] 。有研究报道PGC-1α在肝脏代谢中起着促进肝糖异生及调节脂肪酸氧化的作用,并且与IR密切相关 [35] [36] [37] 。近期有研究揭示了m6A甲基化介导的PGC-1α在NaAsO2诱导的肝IR中的关键作用,该研究发现YTHDF2介导METT14与PGC-1αmRNA相互作用,促进m6A修饰从而加速了PGC-1αmRNA的降解,PGC-1α的减少会导致GSTK1的表达被抑制,从而导致ROS积累和铁死亡增加 [38] 。

有研究将6周龄的C57BL/6J雄性小鼠自饮水(4 mg/L的As2O3饮用水)6周,随后在小鼠模型中出现的葡萄糖耐量、胰岛素敏感性和胰岛素信号传导受损证实了肝脏胰岛素抵抗的早期发作 [39] 。研究确定,砷诱导的NOD样受体蛋白3 (NLRP3)炎症小体激活导致肝胰岛素抵抗,并且在砷诱导的肝胰岛素抵抗过程中,亚砷酸盐甲基转移酶(AS3MT)与NLRP3炎症小体相互作用并激活NLRP3炎症小体 [39] 。机制研究表明,砷暴露促进METTL14核易位,敲除AS3MT降低了砷处理的人胎儿肝细胞L-02细胞中的METL14核水平和总RNA m6A修饰水平。同样,砷暴露也显著增加了小鼠肝脏METL14水平和总RNA m6A水平 [39] 。进一步的机制研究表明,砷通过METTL14依赖性NLRP3 mRNA m6A修饰促进NLRP3表达和炎症小体激活 [39] 。敲除L-02细胞中的METTL14逆转了砷治疗引起的胰岛素信号损伤和葡萄糖摄取增加。这些发现表明,AS3MT加强了m6A甲基转移酶与NLRP3的结合,以稳定NLRP3的表达,NLRP3可以激活炎症小体,从而有助于砷诱导的肝IR [39] 。这些结果证明m6A在砷诱导的肝胰岛素抵抗中具有重要作用。

4.4. m6A修饰参与砷诱导的肺纤维化

慢性肺部疾病造成社会和经济负担,是全球死亡的主要原因 [40] 。特发性肺纤维化(IPF)是一种进行性间质性肺疾病,以瘢痕化、气体交换减少和肺功能受损为特征,与年龄和重金属暴露相关 [41] [42] [43] 。有研究发现砷是IPF的致病因子 [44] [45] 。一项排除恶性肺疾病的慢性砷中毒研究显示,29名参与者中有9人(31%)被诊断为间质性肺疾病,其中包括IPF [46] 。有研究发现长期暴露于亚砷酸盐会引起乳酸积累从而导致H3K18la的升高,H3K18la调控的YTHDF1/m6A/NREP升高与砷引起的IPF进展有关 [47] 。这项研究使用C57BL/6J小鼠,6~8周龄,给予含0或20 ppm NaAsO2的饮用水6个月,在第五个月通过静脉注射AAV-shYTHDF1/AAV-Contol使小鼠肺组织中的YTHDF1被敲除 [47] 。与对照组相比,敲低YTHDF1可恢复Ashcroft评分(IPF指标)和胶原沉积,YTHDF1的缺失抑制了NREP和TGF-β1的表达,从而抑制了COL1A2和α-SMA水平的升高 [47] 。机制研究结果表明,在亚砷酸盐引起IPF的微环境中乳酸水平升高,肌成纤维细胞分泌的细胞外乳酸被吸收并转化为乳辅酶A从而提高Kla和H3K18la的水平,促进m6A阅读蛋白YTHDF1的mRNA上调 [47] 。上调的YTHDF1通过识别Nrep mRNA上的m6A位点,促进了Nrep mRNA的翻译,激活了TGF-β1的分泌,从而进一步促进了成纤维细胞向肌成纤维细胞的转变,肌成纤维细胞的细胞外乳酸通过乳酸单羧酸转运蛋白1 (MCT1)提高了整体乳酸化(Kla)和H3K18la的水平,并且在肺泡上皮细胞中,H3K18la促进了YTHDF1的转录 [47] 。这些结果证明m6A在促进砷引起的IPF进展中具有重要作用。

4.5. m6A修饰参与砷诱导的癌症

砷的致癌机制研究通常使用细胞转化模型。有研究将人支气管上皮细胞暴露在2.5 μM亚砷酸钠下,持续13周以诱导细胞转化,结果显示细胞的增殖水平增加、平板集落形成能力增强、细胞凋亡的抵抗力提高,这些数据表示亚砷酸钠成功诱导细胞转化 [48] 。在接下来的研究发现,亚砷酸盐成功转化细胞中总RNA的m6A修饰水平显著升高,m6A甲基转移酶METTL3、METTL14和WTAP的蛋白水平升高,m6A去甲基酶FTO和ALKBH5的蛋白水平降低 [48] 。在亚砷酸盐转化细胞中敲低METTL3后总RNA的m6A水平显著降低,并逆转了转化后的表型 [48] 。有研究将HaCaT细胞暴露于1 μM亚砷酸盐5个月后成功转化,实验结果和上述研究类似,发现总RNA m6A修饰水平也显著增加,同时m6A甲基转移酶METTL3和METTL14蛋白水平升高,m6A去甲基酶FTO水平降低 [49] 。亚砷酸盐转化的HaCaT细胞敲低METTL3后,显著降低了其总RNA的m6A水平和转化后的表型 [49] 。这些证据表明,m6A修饰水平的上调可能在维持慢性砷暴露转化细胞的转化表型中发挥关键作用。

与上述结果相反,有研究将HaCaT细胞暴露在0.1 μM亚砷酸盐中持续28周,发现细胞总RNA的m6A修饰水平显著降低,m6A甲基转移酶METTL3、METTL14和去甲基酶ALKBH5几乎没有变化,去甲基酶FTO显著升高 [50] 。该研究发现,FTO敲除会显著减少亚砷酸盐转化的HaCaT细胞产生的异种移植肿瘤生长 [50] 。机制研究结果表明,砷暴露通过抑制P62介导的选择性自噬以减少FTO蛋白的降解,从而上调FTO蛋白表达水平,而FTO上调导致自噬抑制从而形成正反馈回路以维持FTO蛋白积累 [50] 。这些结果表明,FTO上调导致mRNA的m6A修饰下调在砷诱发的癌症中起着重要作用。

另一项研究也报道了FTO上调在砷诱变中的重要作用。有研究发现,通过2 μM砷短期暴露转化的肺癌细胞中APOBEC3B(A3B)的表达发生上调,A3B是导致染色体不稳定的体细胞突变的内源诱导剂,砷诱导的DNA损伤和诱变都需要A3B的上调 [51] 。机制研究表明,砷处理降低了A3B mRNA终止密码子附近的m6A修饰水平,从而提高了A3B mRNA的稳定性 [51] 。还发现去m6A甲基转移酶FTO的蛋白水平上调,去甲基酶ALKBH5和甲基转移酶METTL3、METTL1、METTL16和ALKBH5则没有上调 [51] 。机制研究表明,在YTHDF2介导下,FTO以m6A修饰依赖的方式降低了A3B的mRNA稳定性,从而降低其mRNA的表达量 [51] 。这些发现表明m6A修饰在砷诱导的肺癌中起着重要作用。

5. 总结与展望

综上所述,砷作为一种重金属主要通过饮用水途径对人类健康造成各种影响,许多研究发现砷暴露引起的健康损害与m6A修饰异常有关。m6A修饰作为哺乳动物mRNA中最丰富的化学修饰,在砷引起的各种健康损害中发挥重要作用,因此未来的研究可以围绕异常RNA修饰在金属毒性中的作用和机制展开。

根据上述研究提出了以下几个方向供未来研究。第一,RNA修饰中除了m6A可能还有其它RNA修饰在砷引起的毒效应中发挥作用,可以作为未来重金属研究的一个方向。第二,虽然许多研究证明砷导致了m6A修饰的异常,但潜在的机制在很大程度上仍未被探索。第三,现阶段对于重金属的研究主要集中在砷、镉和六价铬,研究m6A在重金属毒性中的表观转录组效应可以拓展到其它重金属。第四,接触重金属会造成严重的健康损害,RNA修饰是否可以作为重金属造成健康损害的一个治疗靶点是一个非常有意义的研究方向。

6. 致谢

感谢本文涉及到的所有研究内容的作者,感谢重庆医科大学及PubMed网站文献查阅及下载的支持。

文章引用

李仁杰. m6A修饰在砷诱导毒效应中发挥的作用研究进展
Research Progress on the Role of m6A Modification in Arsenic-Induced Toxicity[J]. 生物过程, 2024, 14(02): 56-63. https://doi.org/10.12677/bp.2024.142008

参考文献

  1. 1. Singh, R., Singh, S., Parihar, P., et al. (2015) Arsenic Contamination, Consequences and Remediation Techniques: A Review. Ecotoxicology and Environmental Safety, 112, 247-270. https://doi.org/10.1016/j.ecoenv.2014.10.009

  2. 2. Li, T.F., Xu, Z., Zhang, K., et al. (2024) Effects and Mechanisms of N6-Methyladenosine RNA Methylation in Environmental Pollutant-Induced Carcinogenesis. Ecotoxicology and Environmental Safety, 277, Article 116372. https://doi.org/10.1016/j.ecoenv.2024.116372

  3. 3. Qin, Y., Li, L., Luo, E., et al. (2020) Role of m6A RNA Methylation in Cardiovascular Disease (Review). International Journal of Molecular Medicine, 46, 1958-1972. https://doi.org/10.3892/ijmm.2020.4746

  4. 4. Jiang, X., Liu, B., Nie, Z., et al. (2021) The Role of m6A Modification in the Biological Functions and Diseases. Signal Transduction and Targeted Therapy, 6, 74. https://doi.org/10.1038/s41392-020-00450-x

  5. 5. Thibaut, P., Renaud, S., Francis, R., et al. (2022) Effects of Chronic Exposure to Toxic Metals on Haematological Parameters in Free-Ranging Small Mammals. Environmental Pollution, 317, Article 120675. https://doi.org/10.1016/j.envpol.2022.120675

  6. 6. Kim, K.W., Chanpiwat, P., Hanh, H.T., et al. (2011) Arsenic Geochemistry of Groundwater in Southeast Asia. Frontiers in Medicine, 5, 420-433. https://doi.org/10.1007/s11684-011-0158-2

  7. 7. Martínez-Castillo, M., García-Montalvo, E.A., Arellano-Mendoza, M.G., et al. (2021) Arsenic Exposure and Non-Carcinogenic Health Effects. Human & Experimental Toxicology, 40, S826-S850. https://doi.org/10.1177/09603271211045955

  8. 8. Escudero-Lourdes, C. (2016) Toxicity Mechanisms of Arsenic That Are Shared with Neurodegenerative Diseases and Cognitive Impairment: Role of Oxidative Stress and Inflammatory Responses. Neurotoxicology, 53, 223-235. https://doi.org/10.1016/j.neuro.2016.02.002

  9. 9. Danes, J.M., Palma, F.R. and Bonini, M.G. (2021) Arsenic and Other Metals as Phenotype Driving Electrophiles in Carcinogenesis. Seminars in Cancer Biology, 76, 287-291. https://doi.org/10.1016/j.semcancer.2021.09.012

  10. 10. Zhao, B.S., Roundtree, I.A. and He, C. (2017) Post-Transcriptional Gene Regulation by mRNA Modifications. Nature Reviews Molecular Cell Biology, 18, 31-42. https://doi.org/10.1038/nrm.2016.132

  11. 11. Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R. et al. (1994) Characterization and Partial Purification of mRNA N6-Adenosine Methyltransferase from HeLa Cell Nuclei. Internal mRNA Methylation Requires a Multisubunit Complex. Journal of Biological Chemistry, 269, 17697-17704. https://doi.org/10.1016/S0021-9258(17)32497-3

  12. 12. Bokar, J.A., Shambaugh, M.E., Polayes, D., et al. (1997) Purification and cDNA Cloning of the AdoMet-Binding Subunit of the Human mRNA (N6-Adenosine)-Methyltransferase. RNA, 3, 1233-1247.

  13. 13. Guifang, J., Ye, F., Xu, Z., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887. https://doi.org/10.1038/nchembio.687

  14. 14. Guanqun, Z., John Arne, D., Yamei, N., et al. (2012) ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Molecular Cell, 49, 18-29. https://doi.org/10.1016/j.molcel.2012.10.015

  15. 15. Hailing, S., Jiangbo, W. and Chuan, H. (2019) Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 74, 640-650. https://doi.org/10.1016/j.molcel.2019.04.025

  16. 16. Hongyu, C., Tianhe, Z., Donglei, S., et al. (2019) Changes of RNA N6-Methyladenosine in the Hormesis Effect Induced by Arsenite on Human Keratinocyte Cells. Toxicology in Vitro, 56, 84-92. https://doi.org/10.1016/j.tiv.2019.01.010

  17. 17. Tianhe, Z., Xinyang, L., Donglei, S., et al. (2019) Oxidative Stress: One Potential Factor for Arsenite-Induced Increase of N6-Methyladenosine in Human Keratinocytes. Environmental Toxicology and Pharmacology, 69, 95-103. https://doi.org/10.1016/j.etap.2019.04.005

  18. 18. Sarah, S., Rong, C., Lyvianne, D., et al. (2020) Changes in Circulating miRNA19a-3p Precede Insulin Resistance Programmed by Intra-Uterine Growth Retardation in Mice. Molecular Metabolism, 42, Article 101083. https://doi.org/10.1016/j.molmet.2020.101083

  19. 19. Cnattingius, S., Kramer, M.S., Norman, M., et al. (2018) Investigating Fetal Growth Restriction and Perinatal Risks in Appropriate for Gestational Age Infants: Using Cohort and within-Sibling Analyses. BJOG: An International Journal of Obstetrics & Gynaecology, 126, 842-850. https://doi.org/10.1111/1471-0528.15563

  20. 20. Sacchi, C., O’muircheartaigh, J., Batalle, D., et al. (2021) Neurodevelopmental Outcomes Following Intrauterine Growth Restriction and Very Preterm Birth. The Journal of Pediatrics, 238, 135-144.e10. https://doi.org/10.1016/j.jpeds.2021.07.002

  21. 21. Caniggia, I., Winter, J., Lye, S.J., et al. (2000) Oxygen and Placental Development during the First Trimester: Implications for the Pathophysiology of Pre-Eclampsia. Placenta, 21, S25-S30. https://doi.org/10.1053/plac.1999.0522

  22. 22. James, J.L., Stone, P.R., Chamley, L.W. (2005) Cytotrophoblast Differentiation in the First Trimester of Pregnancy: Evidence for Separate Progenitors of Extravillous Trophoblasts and Syncytiotrophoblast. Reproduction, 130, 95-103. https://doi.org/10.1530/rep.1.00723

  23. 23. Li, Y., Yan, J., Chang, H.M., et al. (2021) Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion. Trends in Endocrinology & Metabolism, 32, 170-189. https://doi.org/10.1016/j.tem.2020.12.005

  24. 24. Ji, L., Brkić, J., Liu, M., et al. (2013) Placental Trophoblast Cell Differentiation: Physiological Regulation and Pathological Relevance to Preeclampsia. Molecular Aspects of Medicine, 34, 981-1023. https://doi.org/10.1016/j.mam.2012.12.008

  25. 25. Tang, L., He, G., Liu, X., et al. (2017) Progress in the Understanding of the Etiology and Predictability of Fetal Growth Restriction. Reproduction, 153, R227-R240. https://doi.org/10.1530/REP-16-0287

  26. 26. Vasconcelos, S., Ramalho, C., Marques, C.J., et al. (2019) Altered Expression of Epigenetic Regulators and Imprinted Genes in Human Placenta and Fetal Tissues from Second Trimester Spontaneous Pregnancy Losses. Epigenetics, 14, 1234-1244. https://doi.org/10.1080/15592294.2019.1634988

  27. 27. Rumbajan, J.M., Yamaguchi, Y., Nakabayashi, K., et al. (2016) The HUS1B Promoter Is Hypomethylated in the Placentas of Low-Birth-Weight Infants. Gene, 583, 141-146. https://doi.org/10.1016/j.gene.2016.02.025

  28. 28. Li, C.S. and Loch-Caruso, R. (2007) Sodium Arsenite Inhibits Migration of Extravillous Trophoblast Cells in vitro. Reproductive Toxicology, 24, 296-302. https://doi.org/10.1016/j.reprotox.2007.06.002

  29. 29. Bian, Y., Li, J., Shen, H., et al. (2022) WTAP Dysregulation-Mediated HMGN3-m6A Modification Inhibited Trophoblast Invasion in Early-Onset Preeclampsia. The FASEB Journal, 36, e22617. https://doi.org/10.1096/fj.202200700RR

  30. 30. Zhang, Y., Yang, H., Long, Y., et al. (2021) circRNA N6-Methyladenosine Methylation in Preeclampsia and the Potential Role of N6-Methyladenosine-Modified circPAPPA2 in Trophoblast Invasion. Scientific Reports, 11, Article No. 24357. https://doi.org/10.1038/s41598-021-03662-5

  31. 31. 宋亚平. S-腺苷蛋氨酸耗竭介导CYR61 m6A下调所致滋养细胞侵袭受抑在孕期砷暴露诱发胎儿生长受限中的作用[D]: [博士学位论文]. 合肥: 安徽医科大学, 2023.

  32. 32. Grau-Perez, M., Kuo, C.C., Gribble, M.O., et al. (2017) Association of Low-Moderate Arsenic Exposure and Arsenic Metabolism with Incident Diabetes and Insulin Resistance in the Strong Heart Family Study. Environmental Health Perspectives, 125, Article ID: 127004. https://doi.org/10.1289/EHP2566

  33. 33. Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., et al. (2023) Insulin Resistance and Cardiovascular Disease. Journal of International Medical Research, 51. https://doi.org/10.1177/03000605231164548

  34. 34. Santoleri, D. and Titchenell, P.M. (2019) Resolving the Paradox of Hepatic Insulin Resistance. Cellular and Molecular Gastroenterology and Hepatology, 7, 447-456. https://doi.org/10.1016/j.jcmgh.2018.10.016

  35. 35. Boström, P., Wu, J., Jedrychowski, M.P., et al. (2012) A PGC1-α-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. https://doi.org/10.1038/nature10777

  36. 36. Drue, B., Abdelmageed, Y., Fowler, J., et al. (2023) Adult Skeletal Muscle Peroxisome Proliferator-Activated Receptor γ-Related Coactivator 1 Is Involved in Maintaining Mitochondrial Content. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 324, R470-R479. https://doi.org/10.1152/ajpregu.00241.2022

  37. 37. Yang, Y., Qiu, W., Xiao, J., et al. (2024) Dihydromyricetin Ameliorates Hepatic Steatosis and Insulin Resistance via AMPK/PGC-1α and PPARα-Mediated Autophagy Pathway. Journal of Translational Medicine, 22, Article No. 309. https://doi.org/10.1186/s12967-024-05060-7

  38. 38. Zhang, J., Song, J., Liu, S., et al. (2023) m6A Methylation-Mediated PGC-1α Contributes to Ferroptosis via Regulating GSTK1 in Arsenic-Induced Hepatic Insulin Resistance. Science of the Total Environment, 905, Article 167202. https://doi.org/10.1016/j.scitotenv.2023.167202

  39. 39. 邱天明. 砷甲基转移酶介导的m6A甲基化调控NLRP3炎症小体激活在砷致肝脏胰岛素抵抗中的作用研究[D]: [博士学位论文]. 大连: 大连医科大学, 2023.

  40. 40. Spagnolo, P., Kropski, J.A., Jones, M.G., et al. (2021) Idiopathic Pulmonary Fibrosis: Disease Mechanisms and Drug Development. Pharmacology & Therapeutics, 222, Article 107798. https://doi.org/10.1016/j.pharmthera.2020.107798

  41. 41. Chanda, D., Otoupalova, E., Smith, S.R., et al. (2019) Developmental Pathways in the Pathogenesis of Lung Fibrosis. Molecular Aspects of Medicine, 65, 56-69. https://doi.org/10.1016/j.mam.2018.08.004

  42. 42. Moss, B.J., Ryter, S.W. and Rosas, I.O. (2022) Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. Annual Review of Pathology, 17, 515-546. https://doi.org/10.1146/annurev-pathol-042320-030240

  43. 43. Pauchet, A., Chaussavoine, A., Pairon, J., et al. (2022) Idiopathic Pulmonary Fibrosis: What Do We Know About the Role of Occupational and Environmental Determinants? A Systematic Literature Review and Meta-Analysis. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 25, 372-392. https://doi.org/10.1080/10937404.2022.2131663

  44. 44. Xiao, T., Zou, Z., Xue, J., et al. (2021) LncRNA H19-Mediated M2 Polarization of Macrophages Promotes Myofibroblast Differentiation in Pulmonary Fibrosis Induced by Arsenic Exposure. Environmental Pollution, 268, Article 115810. https://doi.org/10.1016/j.envpol.2020.115810

  45. 45. Wang, P., Xiao, T., Li, J., et al. (2021) miR-21 in EVs from Pulmonary Epithelial Cells Promotes Myofibroblast Differentiation via Glycolysis in Arsenic-Induced Pulmonary Fibrosis. Environmental Pollution, 286, Article 117259. https://doi.org/10.1016/j.envpol.2021.117259

  46. 46. Kundu, S., Majumdar, D., Sen, S., et al. (2004) Pulmonary Involvement in Chronic Arsenic Poisoning from Drinking Contaminated Ground-Water. The Journal of the Association of Physicians of India, 52, 395-400.

  47. 47. Wang, P., Xie, D., Xiao, T., et al. (2024) H3K18 Lactylation Promotes the Progression of Arsenite-Related Idiopathic Pulmonary Fibrosis via YTHDF1/m6A/NREP. Journal of Hazardous Materials, 461, Article 132582. https://doi.org/10.1016/j.jhazmat.2023.132582

  48. 48. Gu, S., Sun, D., Dai, H., et al. (2018) N6-Methyladenosine Mediates the Cellular Proliferation and Apoptosis via microRNAs in Arsenite-Transformed Cells. Toxicology Letters, 292, 1-11. https://doi.org/10.1016/j.toxlet.2018.04.018

  49. 49. Zhao, T., Sun, D., Zhao, M., et al. (2020) N6-Methyladenosine Mediates Arsenite-Induced Human Keratinocyte Transformation by Suppressing p53 Activation. Environmental Pollution, 259, Article 113908. https://doi.org/10.1016/j.envpol.2019.113908

  50. 50. Cui, Y.-H., Yang, S., Wei, J., et al. (2021) Autophagy of the m6A mRNA Demethylase FTO Is Impaired by Low-Level Arsenic Exposure to Promote Tumorigenesis. Nature Communications, 12, Article No. 2183. https://doi.org/10.1038/s41467-021-22469-6

  51. 51. Gao, M., Qi, Z., Feng, W., et al. (2022) m6A Demethylation of Cytidine Deaminase APOBEC3B mRNA Orchestrates Arsenic-Induced Mutagenesis. The Journal of Biological Chemistry, 298, Article 101563. https://doi.org/10.1016/j.jbc.2022.101563

期刊菜单