World Journal of Cancer Research
Vol. 11  No. 03 ( 2021 ), Article ID: 43684 , 8 pages
10.12677/WJCR.2021.113011

γδ T细胞的生物学特征及在抗肿瘤免疫治疗中的研究进展

刘义,王慧,马春玲*

临沂市妇幼保健院,山东 临沂

收稿日期:2021年6月2日;录用日期:2021年6月28日;发布日期:2021年7月5日

摘要

本综述的目的是为了充分认识和理解γδ T细胞在肿瘤微环境中的作用机制以及在肿瘤免疫治疗中的临床研究意义。γδ T细胞是构成MHC非限制性的先天性T细胞群体,在先天免疫和适应性免疫之间架起桥梁,在抗肿瘤免疫反应中发挥作用。γδ T细胞可以分泌大量的细胞因子,对多种癌细胞发挥细胞毒性。γδ T细胞在肿瘤的免疫监视作用中表现突出,已经成为癌症免疫治疗非常有吸引力的效应细胞。γδ T细胞主要通过分泌促凋亡分子和炎性细胞因子或通过TCR依赖性途径介导抗肿瘤治疗。近些年,γδ T细胞的临床研究数据表明,γδ T细胞免疫治疗具有良好的耐受性和有效性。但是,γδ T细胞在免疫治疗研究中仍存在着一些不足,甚至还发现其有促肿瘤的免疫抑制作用。γδ T细胞的未来研究应集中在体外扩增方法的稳定性改善方面,同时,需要更多的研究来探索γδ T细胞在促进或阻止肿瘤生长之间的平衡,以及在肿瘤微环境中所发挥的作用。

关键词

γδ T细胞,肿瘤,免疫治疗,体外扩增

Research Progress of Biological Characteristics and Anti-Tumor Immunotherapy of γδ T Cells

Yi Liu, Hui Wang, Chunling Ma*

Linyi Women and Children Health Care Hospital, Linyi Shandong

Received: Jun. 2nd, 2021; accepted: Jun. 28th, 2021; published: Jul. 5th, 2021

ABSTRACT

The purpose of this review is to fully understand the role of γδ T cells in the microenvironment of tumor and its clinical significance in tumor immunotherapy. γδ T cells are MHC non-restrictive congenital T cell population and important effector cells, which play a role in anti-tumor immune response by building bridges between innate and adaptive immunity. γδ T cells can secrete a large number of cytokines and exert cytotoxicity to a variety of cancer cells. γδ T cells are prominent in the immune surveillance of tumors and have become very attractive effector cells for cancer immunotherapy. γδ T cells mediate antitumor therapy mainly by secreting pro-apoptotic molecules and inflammatory cytokines or through TCR dependent pathways. Some clinical data of γδ T cell therapy clinical trials in recent years show that γδ T cell immunotherapy has good tolerance and effectiveness. Although these advantages bring good news to patients, there are still some shortcomings in immunotherapy of γδ T cells, and there are reports of tumor-promoting studies. The future direction of γδ T cell immunotherapy should focus on the stability of γδ T in vitro amplification methods to help stimulate γδ T cells to expand in vitro. At the same time, more researches are needed to explore the role of tumor microenvironment and the balance between γδ T cell pro- and anti-tumor functions.

Keywords:γδ T Cells, Tumor, Immunotherapy, In Vitro Amplification

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. γδ T细胞生物学特征的概述

目前随着研究的不断深入,免疫疗法已成为继手术、化疗、放疗之后治疗肿瘤的第四类疗法。γδ T细胞免疫治疗技术作为一种新兴的肿瘤免疫疗法,以其独特的抗肿瘤优势,已成为新的研究热点。

T淋巴细胞主要分为两类:αβ T细胞和γδ T细胞。在外周血中,αβ T细胞约占95%,而γδ T细胞约占总CD3+细胞的5%。它们的区别在于表达不同的T细胞表面受体(TCR),大多数αβ T细胞识别具有主要组织相容性复合体(major histocompatibility complex, MHC)的I类或II类抗原肽。具有αβ TCR的细胞通常表达CD4或CD8谱系标记,大多数αβ T细胞属于辅助性T细胞和细胞毒性T细胞。相反,γδ T细胞通常不表达CD4或CD8谱系标记,不需要MHC分子呈递抗原 [1]。在健康人体中,γδ T细胞主要分布在黏膜和上皮组织,如皮肤、消化道、生殖道等器官,它们激活后可迅速分泌大量的细胞因子,对多种恶性肿瘤发挥有效的细胞毒性作用 [2]。因此,γδ T细胞已成为癌症免疫治疗的有吸引力的效应细胞。

1.1. γδ T细胞的分型

γδ T细胞抗原受体TCR是由γ链和δ链组成的异二聚体,γ链和δ链分别由γ基因和δ基因编码,每条肽链结构上可分为可变区(V区)、恒定区(C区)、跨膜区和胞质区,由可变区(V区)和恒定区(C区)共同编码,其中V区决定抗原特异性。

人的γδ T细胞主要根据Vδ链来区分,根据γδ T细胞表面抗原的不同可分为3个主要亚群,即Vδ1,Vδ2和Vδ3。感染的患者中也发现了Vδ4+、vδ5+和Vδ6+的γδ T细胞亚群,但由于它们检出率很低且没有特异性的商业抗体上市 [3],因此对人类γδ T细胞的研究大多集中在Vδ1、Vδ2和Vδ3亚群上。Vδ2 T细胞是血液中的主要亚型,占CD3+ T淋巴细胞总数的2%~5% [4]。Vδ2 T细胞在TCR γδ重组过程中,几乎只和Vγ9共表达,这些细胞被命名Vγ9Vδ2 T细胞,只存在于人类和灵长类生物中,占γδ T细胞总数的50%至90%。Vγ9Vδ2 T细胞可通过穿孔蛋白和颗粒酶的细胞毒性或通过IFN-γ和TNF的产生直接或间接介导抗肿瘤免疫 [5]。Vδ1 T细胞在血液中占少数,普遍存在于在组织中,如真皮和肠上皮,具有防御上皮癌的功能。γδ3 T细胞主要分布在在肝脏,是数量最少的一种亚型。其通过表面表达的CD56、CD161、NKG2D和人白细胞HLA-DR抗原参与免疫反应。

1.2. 抗原识别和免疫反应

γδ T细胞通过多种途径对肿瘤细胞进行识别,达到杀伤肿瘤的目的。这种识别可以通过自身和非自身配体的细胞表面受体实现,包括对肿瘤抗原和应激配体受体的TCR识别,具体包括NKG2D、FCcIII (CD16)、FasL、TRAIL和DNAM-1 (CD226)。γδ T细胞可以通过表面表达的NKG2D受体识别上皮肿瘤细胞表达的应激诱导分子,如MICB、ULBP1-4、MICA等。γδ T细胞表面的FcγRIII (CD16)受体可以与免疫球蛋白G的Fc段结合,促进抗体对肿瘤细胞的抗体依赖细胞介导得毒性作用(ADCC)。γδ T细胞可表达膜蛋白DNAM-1,与肿瘤细胞的CD155分子和CD112分子结合,并通过向胞内传递活化信号,达到杀伤肿瘤细胞的目的。γδ T细胞可通过热休克蛋白(heat shock protein, HSP)识别和杀伤肿瘤细胞,热休克蛋白可与特定的肿瘤细胞识别,并将肿瘤抗原呈递给γδ T细胞。γδ T细胞还可识别表达在肿瘤细胞表面F1-ATPase,这种识别反应可选择性地激活Vγ9Vδ2 T细胞。Vγ9Vδ2 T细胞无需抗原加工和呈递以及MHC的限制即可识别磷酸抗原(PAg),并直接激活Vγ9Vδ2 T细胞,释放炎性细胞因子、γ-干扰素(Interferon γ, IFN-γ)和肿瘤坏死因子(Tumor necrosis factor, TNF)-α对肿瘤细胞进行杀伤。

γδ T细胞生理学功能复杂,它在免疫反应中扮演重要的角色。它可通过与其他免疫细胞相互作用来促进免疫反应,发挥对肿瘤细胞的杀伤作用,如图1所示。

1) 直接杀伤,γδ T细胞对肿瘤细胞的直接杀伤作用主要通过两种途径:a) 是γδ T细胞可通过经抗体依赖的细胞介导的细胞毒性作用(Antibody dependent cell mediated cytotoxicity,ADCC)和穿孔素–颗粒酶杀伤肿瘤细胞。b) 是FasL和TRAILR介导的肿瘤细胞凋亡。大多数γδ T细胞均可表达乙型跨膜糖蛋白(FasL)和肿瘤坏死因子相关凋亡诱导配体(TRAILR),并通过Fas-FasL、TRAIL-TRAILR结合,诱导肿瘤细胞程序性凋亡。

2) 细胞因子介导的杀伤作用。γδ T细胞通过产生IFN-γ、TNF-α、IL-2等细胞因子,促进CD8+ T细胞的增殖分化,增强细胞抗肿瘤的活性 [6]。例如,IFN-γ可直接抑制肿瘤生长,刺激巨噬细胞并阻断血管生成 [7]。

3) 辅助固有免疫的杀伤作用。γδ T细胞表达的CD137L可与NK细胞表面的CD13共刺激分子结合,共刺激信号可以提升NK细胞的抗肿瘤细胞毒性,具有更强的杀伤力。γδ T细胞也可以通过分泌TNF-α及IFN-γ等途径诱导其表面CD86和MHC类分子的表达,促进树突细胞成熟。

4) 产生IL-17。γδ T细胞源的IL-17的不同亚型在肿瘤免疫中的表现出抗肿瘤和促肿瘤的双重作用。IL-17可以促进血管生成,发挥促肿瘤生长的作用 [8],但是,大量体外和动物实验结果表明,IL-17可间接机制参与抗瘤免疫活动,抑制肿瘤的发生和生长 [9] [10]。

5) 作为抗原提呈细胞(antigen-presenting cells, APC)发挥提呈抗原作用 [11]。γδ T细胞可以对抗原进行加工和提呈,还可以提供共刺激信号来诱导免疫细胞进行增殖和分化,对靶细胞进行杀伤作用。

Figure 1. γδ T cells kill target cells through immune response

图1. γδ T细胞通过免疫反应对靶细胞进行杀伤

2. γδ T细胞在抗肿瘤免疫治疗中的研究和应用

由于γδ T细胞的复杂性,免疫治疗进展缓慢,但仍是目前治疗肿瘤有效的手段之一。γδ T细胞主要通过产生促凋亡因子和细胞因子或通过TCR依赖性等途径来调节抗肿瘤反应 [12]。在γδ T细胞抗肿瘤治疗中,面临的主要障碍是γδ T细胞在体外扩增数量少且没有成熟扩增方法。目前,最有效扩增γδ T细胞的方法是利用磷酸化抗原或抗γδ TCR抗体 [13]。目前在动物模型中对肿瘤进行治疗的方法主要有两种:一是过继免疫:将双膦酸盐(N-PBs)、IL-2等激活的γδ T细胞过继到严重联合免疫缺陷(SCID)的小鼠体内的治疗方法。二是,直接用N-PBs、IL-2等激活SCID小鼠体内的γδ T细胞。近几年来研究人员运用上述两种方法,对荷瘤小鼠进行了若干抗肿瘤免疫实验。初步研究发现,γδ T细胞可抑制肿瘤生长。在前列腺癌 [14]、结肠癌 [15]、乳腺癌 [16] 等治疗中,以γδ T细胞为基础的免疫治疗可以延长荷瘤小鼠的生存时间,并对肿瘤的生长具有抑制作用。

γδ T细胞作为免疫治疗剂已应用于临床研究。临床发现,γδ T细胞无论是治疗实体瘤还是血液肿瘤中,患者病情得到了一定程度的缓解,取得了很较好的效果。Nakajima [17] 等研究人员以γδ T细胞为基础,利用过继免疫的方法治疗晚期肺癌。结果显示效果明显,患者病情得到缓解和改善。Bialasiewicz [18] 等通过免疫组织化学对113例坏死性脉络膜黑色素瘤患者的肿瘤浸润淋巴细胞(TIL)样本对进行了研究,结果显示肿瘤中γδ T细胞的存在与患者的生存呈正相关,表明肿瘤浸润性γδ T细胞是预后良好的因素。Kuyama [19] 等的研究中表明γδ T细胞对实体瘤,如乳腺癌细胞,具有明显的抗肿瘤活性,更重要是的对血液系统肿瘤,如淋巴瘤,也具有明显的杀伤作用。并且发现γδ T细胞表面的CD-16的表达水平与细胞毒活性有直接关系。然而,另外一些研究表明,γδ T细胞产生的IL-17具有促进肿瘤生长的作用 [20]。在卵巢癌 [21]、胰腺癌 [22] 和肺癌 [23] 的小鼠模型中,肿瘤中γδ T细胞产生的IL-17高度增殖,并表现出激活的表型,可以诱导血管的生成以及中性粒细胞的募集,与患者癌症的不良预后密切相关 [24] [25]。Wakita [26] 等使用可移植的肿瘤小鼠模型发现 IL-17的缺乏会导致肿瘤生长受到抑制。Wu等人 [27] 在结直肠癌(CRC)患者中首次报道了产生IL-17的γδ T细胞具有致瘤作用。研究发现,肿瘤微环境为产生IL-17的γδ T细胞的富集提供良好的条件,并且在促进IL-17表达方面发挥重要的作用 [28]。随着近年来免疫治疗的成功,如免疫检查点阻断和嵌合抗原受体细胞(CAR-T),使γδ T细胞成了争论的热点。然而,肿瘤微环境对促进或抑制肿瘤免疫细胞的机理尚不清晰,如何在肿瘤微环境中控制免疫细胞的表型及表达,必须科研人员进一步的探索和研究。

免疫治疗是临床肿瘤学发展迅速并具有很大潜能的领域。免疫检查点抑制剂和CAR-T细胞技术的出现,给恶性肿瘤的治疗带来了革命性的影响。然而,基于T细胞的免疫治疗虽然在临床上取得了一定的成功,但在治疗过程中仍然存在着一些缺陷,如检查点抑制剂仅对少数患者有效,同时存在获得性耐药和肿瘤复发等现象。同时免疫检查点疗法和CAR T细胞技术在实体肿瘤中的临床应用也不尽人意,有些患者会出现有害的副作用,如自身免疫性结肠炎和细胞因子释放综合征,这些副作用甚至会导致发病率和死亡率的增加 [29]。因此,非特异性的γδ T免疫细胞在免疫治疗过程中具有很大优势,虽然γδ T细胞在临床治疗中还存在一些局限性,但它更高的安全性、脱靶率低、不受MHC限制性、不需共同刺激、识别多种肿瘤并可以迅速做出反应的能力 [30],使它成为细胞治疗潜在的最佳选择。在一些临床试验中,γδ T细胞在多种肿瘤中表现出良好的效果,包括肾细胞癌 [31],肺癌 [32],黑素瘤 [33],乳腺癌 [34]。在体外 [35] [36] 和体内异种移植模型中 [37] [38] 均显示出强大的细胞毒性和抗肿瘤活性。此外,γδ T细胞可被磷酸抗原或双膦酸盐有效激活。其他化合物,如唑来膦酸盐、帕米膦酸盐和烷基胺可以间接激活γδ T淋巴细胞 [39],这进一步增强了该群细胞在体内应用于抗肿瘤治疗的可能性。

目前γδ T细胞免疫治疗研究的重点之一是Vγ9Vδ2 T细胞的离体激活和扩增后的γδ T细胞的过继转移 [40]。Vγ9Vδ2 T细胞具有明显的抗肿瘤活性,对多种肿瘤细胞具有广泛的反应性。Vγ9Vδ2 T细胞除了与抗原分子反应性TCR的结合外,还表达NK细胞激活受体,例如NKG2D,该受体识别表达MICA,MICB和ULBP的靶细胞 [41] [42]。通过TCR或NKG2D或两者识别靶细胞后,Vγ9Vδ2 T细胞优先使用穿孔素、颗粒酶 [43] 或TRAIL途径 [44],以及Fas/FasL杀伤信号 [45] 对肿瘤细胞等靶细胞具有细胞毒性。此外,活化的Vγ9Vδ2 T细胞分泌IFN-γ和TNF-α,它们通过刺激巨噬细胞和DC直接或间接对肿瘤细胞具有细胞毒活性 [46]。研究表明,Vγ9Vδ2 T细胞已在30多种实体及血液学恶性肿瘤中检出 [47]。最近一项基于来自13个临床试验的数据的荟萃分析(包括204位患者)证明基于Vγ9Vδ2 T细胞的免疫疗法可提高总体生存率 [48]。

3. 结语与未来展望

随着CAR-T细胞工程的进展,细胞免疫治疗的热度急剧增加。虽然γδ T细胞的安全性和非MHC限制性,以及大量实验证明在治疗癌症过程中可以提供良好的预后和治疗价值,使它成为目前细胞免疫治疗的有力竞争者,但它仍然存在一些不足和争议。首先研究人员需进一步的基础研究来探索γδ T细胞在癌症中的功能作用,需要更多和更高级别的临床实验来确定基于γδ T细胞疗法的有效性。其次,在Vγ9Vδ2 T细胞抗肿瘤免疫治疗中,面临的主要问题是体外扩增的γδ T细胞产量少以及没有安全稳定的扩增方法,这是导致γδ T细胞不能广泛应用的一大障碍,还需要研究人员对目前的免疫疗法继续优化和不断的探索。此外,γδ T细胞在人类多种恶性肿瘤中具有促进肿瘤作用的报道,这可能是与它们在微环境中功能的可塑性有关,但仍需要更多的研究来探究在微环境中促进和杀伤肿瘤作用之间的平衡关系以及调节机制。

基金项目

山东省自然基金资助项目,编号:ZR17MH059;临沂市科技发展计划项目,编号:201919044。

文章引用

刘 义,王 慧,马春玲. γδ T细胞的生物学特征及在抗肿瘤免疫治疗中的研究进展
Research Progress of Biological Characteristics and Anti-Tumor Immunotherapy of γδ T Cells[J]. 世界肿瘤研究, 2021, 11(03): 83-90. https://doi.org/10.12677/WJCR.2021.113011

参考文献

  1. 1. Wu, P., Wu, D., Ni, C., et al. (2014) γδT17 Cells Promote the Accumulation and Expansion of Myeloid-Derived Suppressor Cells in Human Colorectal Cancer. Immunity, 40, 785-800.
    https://doi.org/10.1016/j.immuni.2014.03.013

  2. 2. Coffelt, S.B., Kersten, K., Doornebal, C.W., et al. (2015) IL-17 Producing γδ T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature, 522, 345-348.
    https://doi.org/10.1038/nature14282

  3. 3. Shah, N.N. and Fry, T.J. (2019) Mechanisms of Resistance to CAR T Cell Therapy. Nature Reviews Clinical Oncology, 16, 372-385.
    https://doi.org/10.1038/s41571-019-0184-6

  4. 4. Kabelitz, D., Hinz, T., Dobmeyer, T., Mentzel, U., Marx, S., Böhme, A., Arden, B., Rossol, R. and Hoelzer, D. (1997) Clonal Expansion of Vgamma3/Vdelta3-Expressing Gammadelta T Cells in an HIV-1/2-Negative Patient with CD4 T-Cell Deficiency. British Journal of Haematology, 96, 266-271.
    https://doi.org/10.1046/j.1365-2141.1997.d01-2027.x

  5. 5. Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. and Tanabe, K. (2011) Phase I/II Study of Adoptive Transfer of γδ T Cells in Combination with Zoledronic Acid and IL-2 to Patients with Advanced Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 60, 1075-1084.
    https://doi.org/10.1007/s00262-011-1021-7

  6. 6. Johnson, J.R., Williams, G. and Pazdur, R. (2003) End Points and United States Food and Drug Administration Approval of Oncology Drugs. Journal of Clinical Oncology, 21, 1404-1411.
    https://doi.org/10.1200/JCO.2003.08.072

  7. 7. Body, J.J. (2006) Bisphosphonates for Malignancy-Related Bone Disease: Current Status, Future Developments. Supportive Care in Cancer, 14, 408-418.
    https://doi.org/10.1007/s00520-005-0913-5

  8. 8. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J. and Thun, M.J. (2005) Cancer Statistics, 2005. CA: A Cancer Journal for Clinicians, 55, 10-30.
    https://doi.org/10.3322/canjclin.55.1.10

  9. 9. Liu, Z., Guo, B.L., Gehrs, B.C., Nan, L. and Lopez, R.D. (2005) Ex Vivo Expanded Human Vγ9Vδ2 γδ +T Cells Mediate Innate Antitumor Activity against Human Prostate Cancer Cells in Vitro. The Journal of Urology, 173, 1552-1556.
    https://doi.org/10.1097/01.ju.0000154355.45816.0b

  10. 10. Viey, E., Fromont, G., Escudier, B., Morel, Y., Da Rocha, S., Chouaib, S., et al. (2005) Phosphostim Activated γδ T Cells Kill Autologous Metastatic Renal Cell Carcinoma. Journal of Immunology, 174, 1338-1347.
    https://doi.org/10.4049/jimmunol.174.3.1338

  11. 11. Kabelitz, D., Wesch, D., Pitters, E. and Zoller, M. (2004) Characterization of Tumor Reactivity of Human Vγ9Vδ2 γδT Cells in Vitro and in SCID Mice in Vivo. Journal of Immunology, 173, 6767-6776.
    https://doi.org/10.4049/jimmunol.173.11.6767

  12. 12. D’Asaro, M., La Mendola, C., Di Liberto, D., Orlando, V., Todaro, M., Spina, M., et al. (2010) Vγ9Vδ2 T Lymphocytes Efficiently Recognize and Kill Zoledronate-Sensitized, Imatinib-Sensitive, and Imatinib-Resistant Chronic Myelogenous Leukemia Cells. Journal of Immunology, 184, 3260-3268.
    https://doi.org/10.4049/jimmunol.0903454

  13. 13. Lang, J.M., Kaikobad, M.R., Wallace, M., Staab, M.J., Horvath, D.L., Wilding, G., Liu, G., Eickhoff, J.C., McNeel, D.G. and Malkovsky (2011) Pilot Trial of Interleukin-2 and Zoledronic Acid to Augment γδ T Cells as Treatment for Patients with Refractory Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 60, 1447-1460.
    https://doi.org/10.1007/s00262-011-1049-8

  14. 14. Van Acker, H.H., Anguille, S., Van Tendeloo, V.F. and Lion, E. (2015) Empowering Gamma Delta T Cells with Antitumor Immunity by Dendritic Cell-Based Immunotherapy. Oncolimmunology, 4, e1021538.
    https://doi.org/10.1080/2162402X.2015.1021538

  15. 15. Das, H., Groh, V., Kuijl, C., Sugita, M., Morita, C.T., Spies, T., et al. (2001) MICA Engagement by Human Vγ9Vδ2 T Cells Enhances Their Antigen Dependent Effector Function. Immunity, 15, 83-93.
    https://doi.org/10.1016/S1074-7613(01)00168-6

  16. 16. Rincon-Orozco, B., Kunzmann, V., Wrobel, P., Kabelitz, D., Steinle, A. and Herrmann, T. (2005) Activation of Vγ9Vδ2 T Cells by NKG2D. Journal of Immunology, 175, 2144-2151.
    https://doi.org/10.4049/jimmunol.175.4.2144

  17. 17. Dieli, F., Troye-Blomberg, M., Ivanyi, J., Fournie, M., Bonneville, M.A., Peyrat, G., et al. (2001) Granulysin Dependent Killing of Intracellular and Extracellular Mycobacterium tuberculosis by Vγ9Vδ2 T Lymphocytes. The Journal of Infectious Diseases, 184, 1082-1085.
    https://doi.org/10.1086/323600

  18. 18. Vermijlen, D., Ellis, P., Langford, C., Klein, A., Engel, R., Willimann, K., et al. (2007) Distinct Cytokine Driven Responses of Activated Blood γδ T Cells: Insights into Unconventional T Cell Pleiotropy. Journal of Immunology, 178, 4304-4314.
    https://doi.org/10.4049/jimmunol.178.7.4304

  19. 19. Tanaka, Y., Morita, C.T., Nieves, E., Brenner, M.B. and Bloom, B.R. (1995) Natural and Synthetic Non-Peptide Antigens Recognized by Human γδ T Cells. Letter to Nature, 375, 155-158.
    https://doi.org/10.1038/375155a0

  20. 20. Davey, M.S., Willcox, C.R., Hunter, S., et al. (2018) The Human Vdelta2(+) T-Cell Compartment Comprises Distinct Innate-Like Vgamma9(+) and Adaptive Vgamma9(-) Subsets. Nature Communications, 9, 1760.
    https://doi.org/10.1038/s41467-018-04076-0

  21. 21. Christopoulos, P., Bukatz, D., Kock, S., et al. (2016) Improved Analysis of TCRgd Variable Region Expression in Humans. The Journal of Immunological Methods, 434, 66-72.
    https://doi.org/10.1016/j.jim.2016.04.009

  22. 22. Fisher, J.P., Yan, M., Heuijerjans, J., et al. (2014) Neuroblastoma Killing Properties of Vd2 and Vd2-Negative CDT Cells Following Expansion by Artificial Antigen-Presenting Cells. Clinical Cancer Research, 20, 5720-5732.
    https://doi.org/10.1158/1078-0432.CCR-13-3464

  23. 23. Silva-Santos, B., Serre, K. and Norell, H. (2015) γδ T Cells in Cancer. Nature Reviews Immunology, 15, 683-691.
    https://doi.org/10.1038/nri3904

  24. 24. McCarthy, N.E., Bashir, Z., Vossenkamper, A., et al. (2013) Proinflammatory Vdelta2+T Cells Populate the Human Intestinal Mucosa and Enhance IFN Gamma Production by Colonic Alphabeta T Cells. Journal of Immunology, 191, 2752-2763.
    https://doi.org/10.4049/jimmunol.1202959

  25. 25. Wu, Y.L., Ding, Y.P., Tanaka, Y., Shen, L.W., Wei, C.H., Minato, N. and Zhang, W. (2014) Gammadelta T Cells and Their Potential for Immunotherapy. International Journal of Biological Sciences, 10, 119-135.
    https://doi.org/10.7150/ijbs.7823

  26. 26. Coffelt, S.B., Kersten, K., Doornebal, C.W., et al. (2015) IL-17-Producing Gammadelta T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature, 522, 345-348.
    https://doi.org/10.1038/nature14282

  27. 27. Castro, F., Cardoso, A.P., Goncalves, R.M., et al. (2018) Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Immunology, 9, 847.
    https://doi.org/10.3389/fimmu.2018.00847

  28. 28. Medina, B.D., Liu, M., Vitiello, G.A., et al. (2019) Oncogenic Kinase Inhibition Limits Batf3-Dependent Dendritic Cell Development and Antitumor Immunity. Journal of Experimental Medicine, 216, 1359-1376.
    https://doi.org/10.1084/jem.20180660

  29. 29. Tyler, C.J., Doherty, D.G., Moser, B. and Eberl, M. (2015) Human Vγ9/Vδ2 T Cells: Innate Adaptors of the Immune System. Cellular Immunology, 296, 10-21.
    https://doi.org/10.1016/j.cellimm.2015.01.008

  30. 30. Cabillic, F., Toutirais, O., Lavoué, V., de La Pintière, C.T., Daniel, P., Rioux-Leclerc, N., Turlin, B., Mönkkönen, H., Mönkkönen, J., Boudjema, K., Catros, V. and Bouet-Toussaint, F. (2010) Aminobisphosphonate-Pretreated Dendritic Cells Trigger Successful Vγ9Vδ2 T Cell Amplification for Immunotherapy in Advanced Cancer Patients. Cancer Immunology, Immunotherapy, 59, 1611-1619.
    https://doi.org/10.1007/s00262-010-0887-0

  31. 31. Bennouna, J., Bompas, E., Neidhardt, E.M., Rolland, F., Philip, I., Galéa, C., Salot, S., Saiagh, S., Audrain, M., Rimbert, M., Lafaye-de Micheaux, S., Tiollier, J. and Négrier, S. (2008) Phase-I Study of Innacell γδ™, an Autologous Cell-Therapy Product Highly Enriched in γ9δ2 T Lymphocytes, in Combination with IL-2, in Patients with Metastatic Renal Cell Carcinoma. Cancer Immunology, Immunotherapy, 57, 1599-1609.
    https://doi.org/10.1007/s00262-008-0491-8

  32. 32. Liu, Z.Y., Guo, B. and Lopez, R.D. (2009) Expression of Intercellular Adhesion Molecule (ICAM)-1 or ICAM-2 Is Critical in Determining Sensitivity of Pancreatic Cancer Cells to Cytolysis by Human Gamma Delta-T Cells: Implications in the Design of Gamma Delta-T-Cell-Based Immunotherapies for Pancreatic Cancer. Journal of Gastroenterology and Hepatology, 24, 900-911.
    https://doi.org/10.1111/j.1440-1746.2008.05668.x

  33. 33. Devaud, C., Bilhere, E., Loizon, S., et al. (2009) Antitumor Activity of Gammadelta T Cells Reactive against Cytomegalovirus-Infected Cells in a Mouse Xenograft Tumor Model. Cancer Research, 69, 3971-3978.
    https://doi.org/10.1158/0008-5472.CAN-08-3037

  34. 34. Dalton, J.E., Howell, G., Pearson, J., Scott, P. and Carding, S.R. (2004) Fas-Fas Ligand Interactions Are Essential for the Binding to and Killing of Activated Macrophages by γδ. Journal of Immunology, 173, 3660-3667.
    https://doi.org/10.4049/jimmunol.173.6.3660

  35. 35. Ismaili, J., Olislagers, V., Poupot, R., Fournie, J.J. and Goldman, M. (2002) Human γδ T Cells Induce Dendritic Cell Maturation. Clinical Immunology, 103, 296-302.
    https://doi.org/10.1006/clim.2002.5218

  36. 36. Tosolini, M., Pont, F., Poupot, M., et al. (2017) Assessment of Tumor-Infiltrating TCR Vγ9Vδ2 γδ Lymphocyte Abundance by Deconvolution of Human Cancers Microarrays. Oncoimmunology, 6, e1284723.
    https://doi.org/10.1080/2162402X.2017.1284723

  37. 37. Benzaid, I., Monkkonen, H. and Clezardin, P. (2011) Effects of Zoledronic Acid and Denosumab on Human V Gamma 9V Delta 2 T-Cell-Mediated Cell Death of RANK-Expressing Breast Cancer Cells. European Journal of Cancer, 47, S117.
    https://doi.org/10.1016/S0959-8049(11)70717-1

  38. 38. Nakajima, J., Murakawa, T., Fukami, T., et al. (2010) A Phase I Study of Adoptive Immunotherapy for Recurrent Non-Small-Cell Lung Cancer Patients with Autologous Gammadelta T Cells. European Journal of Cardio-Thoracic Surgery, 37, 1191-1197.
    https://doi.org/10.1016/j.ejcts.2009.11.051

  39. 39. Bialasiewicz, A.A., Ma, J.X. and Richard, G. (1999) αβ- and γδ TCR+ Lymphocyte Infiltration in Necrotising Choroidal Melanomas. British Journal of Ophthalmology, 83, 1069-1073.
    https://doi.org/10.1136/bjo.83.9.1069

  40. 40. Kuyama, H., Hagi, T., Mattarollo, S., et al. (2008) Vgamma9Vdelta2 T Cell Cytotoxicity against Tumor Cells Is Enhanced by Monoclonal Antibody Drugs Rituximab and Trastuzumab. International Journal of Cancer, 122, 2526-2534.
    https://doi.org/10.1002/ijc.23365

  41. 41. Fabre, J., Giustiniani, J., Garbar, C., et al. (2016) Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. International Journal of Molecular Sciences, 17, 1433.
    https://doi.org/10.3390/ijms17091433

  42. 42. Rei, M., Goncalves-Sousa, N., Lanca, T., et al. (2014) Murine CD27-Vc6+ γδ T Cells Producing IL-17A Promote Ovarian Cancer Growth via Mobilization of Protumor Small Peritoneal Macrophages. Proceedings of the National Academy of Sciences of the United States of America, 111, E3562-E3570.
    https://doi.org/10.1073/pnas.1403424111

  43. 43. Daley, D., Zambirinis, C.P., Seifert, L., et al. (2016) γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation. Cell, 166, 1485-1499e1415.
    https://doi.org/10.1016/j.cell.2016.07.046

  44. 44. Jin, C., Lagoudas, G.K., Zhao, C., et al. (2019) Commensalmicrobiota Promote Lung Cancer Development via γδ T Cells. Cell, 176, 998-1013e1016.
    https://doi.org/10.1016/j.cell.2018.12.040

  45. 45. Ma, C.L., Zhang, Q.Y., Ye, J., et al. (2012) Tumor-Infiltrating Gamma Delta T Lymphocytes Predict Clinical Outcome in Human Breast Cancer. Journal of Immunology, 12, 1451-1456.

  46. 46. Lafont, V., Sanchez, F., Laprevotte, E., et al. (2014) Plasticity of Gammadelta T Cells: Impact on the Antitumor Response. Frontiers in Immunology, 5, 622.
    https://doi.org/10.3389/fimmu.2014.00622

  47. 47. Buccheri, S., Guggino, G., Caccamo, N., Li Donni, P. and Dieli, F. (2014) Efficacy and Safety of γδ T Cell-Based Tumor Immunotherapy: A Meta-Analysis. Journal of Biological Regulators and Homeostatic Agents, 28, 81-90.

  48. 48. Wakita, D., Sumida, K., Iwakura, Y., Nishikawa, H., Ohkuri, T., Chamoto, K., et al. (2010) Tumor-Infiltrating IL-17-Producing γδ T Cells Support the Progression of Tumor by Promoting Angiogenesis. European Journal of Immunology, 40, 1927-1937.
    https://doi.org/10.1002/eji.200940157

  49. NOTES

    *通讯作者。

期刊菜单