﻿ 基于多层模糊优选的水资源开发利用措施综合效益评价 Study on Comprehensive Benefit Assessment Model for Water Resources Development and Utilization Based on Multilayer Fuzzy Optimization Theory

Journal of Water Resources Research
Vol.05 No.04(2016), Article ID:18277,8 pages
10.12677/JWRR.2016.54039

Study on Comprehensive Benefit Assessment Model for Water Resources Development and Utilization Based on Multilayer Fuzzy Optimization Theory

Wenchuan Wang*, Peipei Che, Guanjun Lei, Kuan Liu

College of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou Henan

Received: Jul. 24th, 2016; accepted: Aug. 5th, 2016; published: Aug. 16th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

ABSTRACT

In consideration of the complicated hierarchy, fuzziness and diversity of indexes in the comprehensive benefit assessment of city water resources development and utilization measures, combined with the method of dualistic factor contrast for indexes weight, an assessment model which covers the benefits of technical economy, ecological environment and social economy considering both quantitative and qualitative indexes is developed. Taking Tianjin city as an example, the model is applied to assess the comprehensive benefit of sewage water reuse, seawater desalination and the South-to-North Water Transfer Project. It is found that the optimal measure is sewage water reuse, followed by the South-to-North Water Transfer Project and seawater desalination, and the result is consistent with the analytic hierarchy process, explaining that the fuzzy optimization method is applicable to water resources development and utilization measures of comprehensive benefit assessment. Different from analytic hierarchy process, multilayer fuzzy optimization method can not only evaluate the merits of each scheme, but also select the preferable one.

Keywords:Water Resources, Development and Utilization Measures, Comprehensive Benefit, Multilayer Fuzzy Optimization

1. 引言

2. 多层次半结构性模糊优选评价模型

(1)

(2)

(3)

3. 水资源开发利用措施综合效益评价计算基本步骤

1) 确定定量指标的相对优属度矩阵，根据指标的类型，越大越优型指标用式(4)计算；越小越优型指标用式(5)计算。

(4)

(5)

2) 用二元比较法决策思维理论 [6] 来确定定性指标的相对优属度矩阵。

3) 根据重要性排序一致性标度矩阵对指标进行从大到小排序，查模糊语气算子与相对隶属度关系表确定非归一化指标权向量，然后再对其归一化求得指标权向量，同法确定子系统权向量。

4) 利用多级模糊优选理论公式(6)计算第一层各子系统相对优属度向量。

(6)

(7)

(8)

(9)

uhj表示第j个措施对应级别h的相对优属度向量；dhj、zj表示计算参数，wi为第i个指标权重；sh为等级h对应的标准值向量。本文采用优、良、中、可、劣等5级(c = 5)模糊优选模型来进行计算。对任一目标从1级到5级各个级别相对优属度标准值向量取为

5) 将措施j的m个相对优属度向量逐一与S进行比较，得到措施j的m个目标相对优属度分别介于相邻级别区间的级别上限值bj和级别下限值aj

(10)

6) 将第一层亚系统的各子系统相对优属度向量的输出结果当作第二层的输入，计算原理同上述第4)步，便可求得第二层亚系统的相对优属度向量。

7) 最后求出最高层输出相对优属度向量，用式(11)计算各措施的级别特征值。

(11)

4. 实例应用

4.1. 相对优属度矩阵

4.1.1. 定量指标相对优属度矩阵

Table 1. Comprehensive benefit evaluation system and index data of water resources utilization measures

4.1.2. 定性指标相对优属度矩阵

4.2. 指标权向量

4.2.1. 子系统的指标权向量

4.2.2. 子系统之间的权向量

4.3. 第一层子系统的相对优属度向量

1) 设污水回用为措施1，海水淡化为措施2，南水北调则为措施3。计算3项措施对各级别的相对优属度。以计算技术经济子系统的相对优属度为例，首先确定措施1的a1和b1，将措施1的3项指标相对优属度逐一与进行比较，得a11 = 3，b11 = 4；a21 = 4，b21 = 5；a31 = 1，b31 = 1；

,;

2) 先由式(8)和(9)计算出与zj，再由式(7)计算uhj。()

3) 同理可确定措施2和措施3的各级相对优属度。将计算出的子系统技术经济措施1对5个级别的相对优属度向量列入表2

4) 计算子系统技术经济效益的各措施级别特征值。由式(9)计算出子系统技术经济3项措施的级别特征值，由于H等于1级和2级所对应的相对优属度标准值分别为1和0.8，按线性内插求得子系统技术经济的措施相对优属度向量：

4.4. 第二层各措施相对优属度向量

Table 2. The relative optimal membership degree vector of 5 levels of technology and economy in 3 levels

Table 3. Second layer 3 measures on the 5 levels of relative membership degree vector

4.5. 输出层相对优属度向量

5. 结语

Study on Comprehensive Benefit Assessment Model for Water Resources Development and Utilization Based on Multilayer Fuzzy Optimization Theory[J]. 水资源研究, 2016, 05(04): 326-333. http://dx.doi.org/10.12677/JWRR.2016.54039

1. 1. 冯峰, 许士国. 灌区水资源综合效益的改进多级模糊优选评价[J]. 农业工程学报, 2009, 25(7): 56-61. FENG Feng, XU Shiguo. Improved fuzzy-optimized multi-level evaluation for comprehensive benefit of water resources in ir-rigation area. Transactions of the CSAE, 2009, 25(7): 56-61. (in Chinese)

2. 2. 王效琴, 王启山, 王志文, 胡晓亮. 城市水资源开发利用措施综合效益评价模型研究[J]. 水利学报, 2008, 39(4): 466-471. WANG Xiaoqin, WANG Qishan, WANG Zhiwen and HU Xiaoliang. Comprehensive benefit assessment model for water re-sources development and utilization in urban area. Journal of Hydraulic Engineering, 2008, 39(4): 466-471. (in Chinese)

3. 3. 金菊良, 魏一鸣, 付强, 丁晶. 城市防洪规划方案的综合评价模型[J]. 水利学报, 2002(11): 20-26. JIN Juliang, WEI Yiming, FU Qiang and DING Jing. Comprehensive evaluation model for municipal flood control programming schemes. Journal of Hydraulic Engineering, 2002(11): 20-26. (in Chinese)

4. 4. 吕素冰, 许士国, 陈守煜. 水资源效益综合评价的可变模糊决策理论及应用[J]. 大连理工大学学报, 2011, 51(2): 270-273. LV Subing, XU Shiguo and CHEN Shouyu. Variable fuzzy decision-making theory and its application to comprehensive benefits evaluation of water resources. Journal of Dalian University of Technology, 2011, 51(2): 270-273. (in Chinese)

5. 5. 陈守煜. 复杂水资源系统优化模糊识别理论与应用[M]. 长春: 吉林大学出版社, 2002: 50-55. CHEN Shouyu. Fuzzy recognition technology of optimization for complex water resources systems with applications. Changchun: Jinlin University Press, 2002: 50-55. (in Chinese)

6. 6. 陈守煜. 可变模糊集理论与模型及其应用[M]. 大连: 大连理工大学出版社, 2009: 40-45. CHEN Shouyu. Variable fuzzy set theory and its application. Dalian: Dalian University of Technology Press, 2009: 40-45. (in Chinese)

7. 7. 何力, 黄薇, 刘丹. 天津市供用水情势及对策研究[J]. 水利科技与经济, 2009, 15(11): 956-958, 966. HE Li, HUANG Wei and LIU Dan. Situation and countermeasures study of Tianjin water supplies and water use. Water Con-servancy Science and Technology and Economy, 2009, 15(11): 956-958, 966. (in Chinese)

8. 8. 陈守煜. 水资源与防洪系统可变模糊集理论与方法[M]. 大连: 大连理工大学出版社, 2005: 53-57, 65-77. CHEN Shouyu. Theory and method of variable fuzzy set for water resources and flood control system. Dalian: Dalian University of Technology Press, 2005: 53-57, 65-77. (in Chinese)

9. 9. 王效琴, 王启山, 胡晓亮. 节流开源措施综合效益评价分析[J]. 水资源与水工程学报, 2007, 18(1): 12-14. WANG Xiaoqin, WANG Qishan and HU Xiaoliang. Integrated benefit assessment and analysis on measures of saving water and increasing the sources. Journal of Water Resources and Water Engineering, 2007, 18(1): 12-14. (in Chinese)