﻿ 齿面喷丸强化后表面微观形貌仿真分析 Simulation Analysis on Micro-Morphology of Tooth Surface after Shot Peening

Modeling and Simulation
Vol. 08  No. 02 ( 2019 ), Article ID: 30473 , 7 pages
10.12677/MOS.2019.82008

Simulation Analysis on Micro-Morphology of Tooth Surface after Shot Peening

Mohan Yu1, Xinyou Li2, Guanhui Li2

1Iowa State University, Ames Iowa

2Tianjin HRG Lingsheng Robot Co., Ltd., Tianjin

Received: May 8th, 2019; accepted: May 21st, 2019; published: May 28th, 2019

ABSTRACT

ABAQUS software is used to simulate gear shot peening process, and finite element simulation is carried out. As a comparative analysis, the three-dimensional finite element models of shot peening strengthening of 25 and 49 pellets are constructed respectively. Secondly, according to the reason-able and effective finite element analysis of shot peening strengthening, the mathematical model of micro-surface after shot peening strengthening is established. The mathematical model is used to describe the micro-morphology of the tooth surface after shot peening. The analysis results provide theoretical support for lubrication analysis of gear teeth strengthened by shot peening. It has a strong guiding value and practical significance for improving the lubrication performance of gears.

Keywords:Shot Peening, Microscopic Morphology, Finite Element Simulation

1爱荷华州立大学，爱荷华 艾姆斯

2天津哈工领盛机器人有限公司，天津

1. 引言

2. 有限元分析

2.1. 喷丸强化有限元模型建立

2.2. 覆盖率对比

25丸粒模型喷丸强化时，喷丸形成的凹坑规则明显且独立，没有相互影响，因此可以单独研究凹坑对弹流润滑特性的影响。49丸粒模型喷丸强化时，齿轮表面原始形貌被完全破坏，其他影响喷丸效果的因素不再考虑，此时对喷丸齿轮弹性流体润滑的研究分析是最全面，最真实的(图2)。

Figure 1. Finite element model of 49 pellets bias

(a) (b)

Figure 2. Comparison of coverage rate of two models: (a) 25-pellet model; (b) 49-pellet model

2.3. 参数选取

2.4. 单元的选择和网格的划分

Figure 3. Meshing of shot peening finite element model

2.5. 载荷和边界条件

3. 表面形貌描述

3.1. 表面微观形貌参数及表征方法

3.2. 机加工表面形貌模拟

3.3. 喷丸有限元仿真后表面形貌

3.3.1. 25丸粒模型的表面形貌

25丸粒模型中ABAQUS分析结果如图5所示。靶材微观形貌如图6所示。可以看出弹丸和靶材表面发生了碰撞并全部反弹，在靶材表面留下了许多规则的弹坑，这是因为弹丸是规则排列的。一个弹丸形成一个弹坑，弹坑之间没有形成相互的影响，25丸粒模型并没有完全改变了齿轮表面的微观形貌，在弹坑与弹坑之间，还有许多“平面”区域。本文研究25丸粒模型的喷丸模型，可以更直观的观察出单个弹坑对喷丸齿轮弹流润滑特性的影响。

(a) RS = 3.2 μm (b) RS = 1.6 μm

Figure 4. Machining surface morphology

Figure 5. Finite element calculation of 25-pellet model

Figure 6. Surface result of 25-pellet model shot peening target

3.3.2. 49丸粒模型的表面形貌

49丸粒模型中ABAQUS分析结果如图7所示。金属摩擦表面形貌如图8所示。可以看出弹丸和靶材表面发生了碰撞并全部反弹，在靶材表面留下了许多规则的弹坑，这些弹坑相互叠加，相互影响，完全改变了齿轮表面的微观形貌。形成了喷丸强化微观表面标志性橘皮凹坑形貌。真实的喷丸强化覆盖率更高，喷丸强度更大，凹坑相互影响更多，且不规则，凹坑更加细密平滑。但总体形貌特点和此例中的表面形貌类似，此例中的表面形貌可以作为后续喷丸齿轮弹流润滑分析的喷丸强化后齿轮表面微观形貌研究依据。

Figure 7. Finite element calculation results of 49-pellet model

Figure 8. Surface results of 49-pellet model targets

4. 结论

Simulation Analysis on Micro-Morphology of Tooth Surface after Shot Peening[J]. 建模与仿真, 2019, 08(02): 53-59. https://doi.org/10.12677/MOS.2019.82008

1. 1. 岳彩文. 渗碳齿轮钢表面喷丸强化研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2018.

2. 2. 李龙. 喷丸强化数值仿真与试验研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2015.

3. 3. Nobre, J., Batista, A., Coelho, L., et al. (2010) Two Experimental Methods to Determining Stress-Strain Behavior of Work-Hardened Surface Layers of Metallic Components. Journal of Materials Processing Technology, 210, 2285-2291. https://doi.org/10.1016/j.jmatprotec.2010.08.019

4. 4. Coelho, L., Batista, A., Nobre, J., et al. (2011) Evaluation of Stress-Strain Behavior of Surface Treated Steels by X-Ray Diffraction. Central European Journal of Engineering, 2, 91-95. https://doi.org/10.2478/s13531-011-0051-4

5. 5. 张洪伟, 陈家庆, 张以都. 基于多丸粒模型的喷丸表面强化过程数值模拟[J]. 塑性工程学报, 2012, 19(6): 118-125.

6. 6. Gariepya, A., Laroses, S., Perronc, C., et al. (2011) Shot Peening and Peen Forming Finite Element Modelling—Towards a Quantitative Method. International Journal of Solids and Structures, 48, 2859-2877. https://doi.org/10.1016/j.ijsolstr.2011.06.003

7. 7. 卢国鑫, 宋颖刚, 王仁智, 等. 3M钢喷丸强化残余应力场的数值模拟[J]. 中国表面工程, 2013, 26(4): 72-76.

8. 8. 张洪伟. 基于Kriging模型的喷丸强化残余应力场数值分析[J]. 系统仿真学报, 2011, 23(4): 826-831.

9. 9. Miao, H.Y., Larose, S., Perron, C. and Levesque, M. (2009) On the Potential Applications of a 3D Random Finite Element Model for the Simulation of Shot Peening. Advances in Engineering Software, 40, 1023-1038. https://doi.org/10.1016/j.advengsoft.2009.03.013

10. 10. 董辉立. 油润滑渐开线斜齿轮摩擦动力学特性及疲劳寿命预估[D]: [博士学位论文]. 北京: 北京理工大学, 2013.

11. 11. Lee, S.-J., Matlock, D.K., Chester, J., et al. (2013) Comparison of Two Finite Element Simulation Codes Used to Model the Carburizing of Steel. Computational Materials Science, 68, 47-54. https://doi.org/10.1016/j.commatsci.2012.10.007