International Journal of Ecology
Vol. 10  No. 04 ( 2021 ), Article ID: 45738 , 9 pages
10.12677/IJE.2021.104053

采伐和火烧对森林土壤微生物的影响研究进展

高宏林,王庆贵*

黑龙江大学现代农业与生态环境学院,黑龙江 哈尔滨

收稿日期:2021年9月4日;录用日期:2021年10月6日;发布日期:2021年10月14日

摘要

随着人类活动引起的一系列全球变化,如气候变暖的加剧,这可能会增加森林采伐和火烧干扰的频率和严重性,对土壤微生物及其驱动的生物地球化学循环产生不确定的后果。本文结合以往研究中采伐和火烧干扰对土壤理化性质,微生物群落结构,微生物生物量的影响的研究进展进行综述,充分探讨了微生物对采伐和火烧干扰的响应,进一步理解土壤微生物对陆地生态系统养分循环的调节作用,以期为后续关于森林土壤微生物动态的相关研究提供支持。

关键词

采伐,火烧,土壤理化性质,微生物群落,微生物生物量

Research Progress on the Effects of Logging and Burning on Forest Soil Microorganisms

Honglin Gao, Qinggui Wang*

College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin Heilongjiang

Received: Sep. 4th, 2021; accepted: Oct. 6th, 2021; published: Oct. 14th, 2021

ABSTRACT

With a series of global changes caused by human activities, such as the intensification of climate warming, this may increase the frequency and severity of forest logging and fire disturbances, and produce uncertain consequences for soil microorganisms and the biogeochemical cycles driven by them. This article summarizes the research progress of the effects of logging and fire disturbance on soil physical and chemical properties, microbial community structure, and microbial biomass in previous studies, fully discusses the response of microorganisms to logging and fire disturbance, to further understand the regulation of soil microbes on the nutrient cycle of terrestrial ecosystems, in order to provide support for subsequent studies on the dynamics of forest soil microbes.

Keywords:Logging, Fire, Soil Physical and Chemical Properties, Microbial Community, Microbial Biomass

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

森林生态系统是全球碳循环的重要组成部分。北方、温带和热带森林覆盖了全球陆地表面的30%,储存了1600 Pg的碳,占全球陆地碳的45% [1]。森林经常受到各种干扰,这将会改变森林中土壤的理化性质和微生物的动态。自工业化革命以来,人类对森林的改造活动(森林砍伐)已经成为全球森林资源面临的最大威胁之一。每年大约有50,000平方公里的北美森林被砍伐 [2]。同样,北美森林每年火灾平均燃烧40,000平方公里 [3],欧洲森林每年燃烧2000平方公里 [4]。作为对森林最严重的干扰之一,砍伐和火烧导致森林环境发生极端变化 [5],这些干扰方式同样也会对森林土壤造成不同程度的影响并间接影响土壤微生物 [6]。

土壤微生物与土壤物理和化学性质(土壤pH,含水量,土壤碳,土壤氮等)的关系非常紧密 [7],它们对生物地球化学循环起到重要作用。一旦土壤理化性质发生变化,土壤微生物就会受到一定的影响。目前为止,关于微生物影响的研究很多,主要集中于全球气候变暖、大气二氧化碳浓度升高、氮沉降、降水格局改变以及根系分泌物等对土壤微生物的影响。这些影响因素提供物质能量来源参与微生物的生长和代谢活动。本文的目的在于综合以往的研究成果,分析采伐和火烧对土壤微生物的影响机制,帮助更好地理解森林生态系统的整体功能,为未来的深入研究提供支持。

2. 采伐和火烧对土壤理化性质的影响研究进展

2.1. 采伐和火烧干扰对土壤ph的影响

满秀玲等 [8] 研究发现采伐会导致森林土壤的pH值升高。产生火干扰时,由于有机酸变性,土壤加热不可避免地增加了土壤的酸碱度。并且,在450℃高温以上时,燃料的完全燃烧和随之而来的碱的释放将导致碱饱和度的提高 [9]。Hamman等 [10] 指出,在针叶林中的火灾增加了土壤酸碱度。Certini [11] 研究发现由于有机物质的分解和灰烬中碱性化合物的沉积,野火后土壤的酸碱度会增加。野火后真菌比细菌需要更长时间才能恢复,火灾严重程度和酸碱度增加之间的相互作用会降低真菌的丰富度和多样性 [12]。以往的研究表明采伐和火烧会增加酸碱度对微生物群落结构产生深远、持久的影响。

2.2. 采伐和火烧干扰对土壤含水量的影响

土壤含水量对微生物的生存发展有重要作用,Garduń等 [13] 研究发现与未受干扰的灌木林地区相比,移除森林植被增加了砍伐区土壤的含水量。事实上,在俄勒冈州喀斯喀特进行的一项研究中,道格拉斯冷杉林的砍伐导致该地的含水量增加了 [14]。此外,Ritter等 [15] 报告说,与森林地块相比,丹麦苏塞鲁普森林产生的空隙中的水分值更大。同样,Jehangir等 [16] 发现,与森林地区相比,砍伐地区的土壤含水量更高。这些地区的水分增加可归因于木材砍伐后森林冠层的截留和蒸腾能力下降。张亨宇等 [17] 研究火干扰对大兴安岭北方森林土壤性质的影响发现火烧后一年土壤含水量显著减少。吴博雨等 [18] 研究发现在火烧后土壤的含水量呈现先减少后增加的趋势,随着火烧严重程度的不同,含水量的恢复速度也不同,火烧严重程度与含水量恢复速度成正比。采伐和火烧对含水量的影响是不同的,采伐在一定程度上增加了含水量而火烧使土壤含水量降低。

2.3. 采伐和火烧干扰对土壤碳的影响

土壤碳与微生物有密切的关系,有研究表明在芬诺斯堪的亚针叶林采伐后,剩余的伐木残余物和死根可能使森林地面和土壤矿物碳储量增加50%~80% [19]。然而,实际的增加可能要小得多,甚至可以忽略不计,因为在研究中,伐木残余物要么被留下,要么在砍伐后被清除。小影响的原因可能是最细的伐木残余部分的快速分解 [20],以及粗木质碎片的缓慢分解 [21]。因此,森林地面碳储量将减少,因为在植被恢复之前没有补偿分解的损失。相比之下,矿物土壤中的碳储量可以在砍伐后通过从森林地面沥滤或从死根中吸收而增加 [22]。森林火灾在全球碳循环中也发挥重要作用,可能产生全球性后果 [23]。火灾会在短期内减少森林碳储量 [24],可以极大地影响生物量的碳储量 [25],以及土壤碳储量 [26]。火灾对土壤碳的影响分布在整个土壤剖面中,与森林采伐对土壤碳储存的影响非常相似,森林采伐减少了森林地面的碳储存,但没有减少矿物土壤中的碳储存 [27]。

2.4. 采伐和火烧干扰对土壤氮的影响

氮一直是人们关注的焦点,因为它与碳循环紧密相关 [28],并且是森林生长的限制性养分。人类的采伐活动,会扰乱自然的氮循环 [29],Lindroos等 [30] 研究发现,在瑞典和芬兰的土壤中,分别在砍伐后针叶树迹地桩下的土壤渗滤水中无机氮浓度增加。土壤有机氮对加热的直接反应是减少,因为挥发会造成一些损失 [31]。Weston等 [32] 清楚地证明了植物快速的恢复对保护火烧区土壤氮很重要。如果重新生长的植被包括固氮物种,那么有机氮的原始库的完全恢复可能会相对较快。通常,土壤有机氮在新的稳定状态下甚至可以超过火灾前的水平 [33]。Prieto-Fernandez等 [34] 研究了高强度野火对表层(0~5厘米)和亚表层(5~10厘米)土壤氮状况的影响。燃烧后一个月,无机氮总量增加,而硝态氮仅在地下层增加,这可能是淋溶的结果。土壤氮动态与微生物的关系紧密相连,微生物驱动氮循环各环节的完成,探讨采伐和火烧对土壤氮的影响对后续研究森林土壤微生物的动态变化具有重要意义。

3. 采伐和火烧对土壤微生物的影响研究进展

3.1. 采伐和火烧对微生物群落的影响

土壤微生物群落对森林生态系统保持长期可持续性至关重要。森林干扰的发生,可以改变土壤微生物群落,人类对森林的活动改变了森林植被,进而影响了土壤微生物群落结构 [35]。特别是,砍伐森林后,地下微生物群落不仅受到植物凋落物和根系分泌物输入减少的影响,还受到温度和湿度条件等相关环境参数变化的影响 [36]。采伐后森林养分水平和气候的变化会影响土壤微生物群落的演替模式 [37]。森林采伐通过改变微生物物种的组成导致微生物群落多样性发生变化 [38]。雷蕾等 [39] 研究发现采伐显著改变了微生物的群落结构。龙涛 [40] 研究发现采伐显著降低了森林土壤微生物的多样性。Hartmann等 [41] 通过将宏基因组分析应用于森林土壤,表明砍伐森林对细菌群落的组成、物种丰富度和群落同质性有显著影响,采伐时机器造成的土壤压实比采伐本身产生的影响更大。细菌群落相对来说受采伐干扰的影响较小,而特定的真菌群体(外生菌根共生体和自由生活的腐植体)在未采伐的对照和采伐迹地之间有很大的不同 [42] [43]。一些研究表明,群落差异在采伐后15年才出现 [41]。以往研究表明采伐和未采伐林地的土壤化学性质和微生物群落结构和功能是不同的;有一些迹象,随着时间的推移会出现变化,因为在对照和样地之间的取样年份之间存在一些差异。此外,一些微生物类群,相对罕见,也许低丰度指示物种的这些变化在短期内不会影响植物群落的建立,因为在微生物群落的大部分未受影响的部分中存在系统功能冗余的可能性。虽然微生物群落随着采伐而发生的变化似乎不是短期现象,但长期影响仍可能发生,这就需要对森林生态系统进行更多的长期研究。

火烧是全球气候变化的一个方面,可能会影响土壤微生物群落,进而影响生态系统碳动态。火烧会改变土壤的物理和化学性质,如疏水性、营养浓度和碳质量,这些变化反过来会对微生物产生负面影响 [44]。火灾期间热量直接传递到土壤中可能会导致热诱导的微生物死亡 [45]。实验室和野外研究都表明,微生物的致死温度可能低于100℃ [46],低于许多火灾期间达到的地表和地下温度 [47]。火烧也改变了土壤微生物群落的特定组成。Baath等 [48] 通过磷脂脂肪酸(PLFA)分析得出,在烧过的针叶林中,真菌比细菌减少得更多。微生物对火引起的热的敏感性不同:细菌比真菌更耐热,而且在火灾后相对丰度通常会增加 [49]。在松树下的土壤中,Torres等 [50] 研究发现,火烧导致担子菌门特别明显的减少。总的来说,火烧对环境的影响通过限制微生物活动减缓了土壤生态系统的恢复。细菌和真菌的功能多样性很高,通常分布在系统发育不同的群体中,我们对大多数分类群的生态作用知之甚少。因此,总结火烧对微生物群落的潜在影响具有重要意义。

3.2. 采伐和火烧对微生物生物量的影响

土壤微生物生物量是指土壤中体积小于5 × 103 μm3的生物总量,它是活的土壤有机质部分,但它不包括活的植物根系等。

森林采伐过程中出现的大量总有机物质的减少。有机质的减少往往导致土壤微生物生长的碳限制,从而降低土壤微生物生物量 [51]。郝建如等 [52] 研究发现林地进行采伐后,短期内在0~10 cm和10~20 cm土层土壤微生物生物量显著增多,但随后生物量会减少。邱雷等 [53] 研究表明,不同间伐强度下,微生物生物量均随着土层加深而减少。Holden等 [54] 经过meta分析得出采伐干扰导致微生物生物量显著减少,森林采伐引起土壤微生物的显著负反应。他们还得出在北方森林火灾采伐之后,自干扰以来的时间与微生物生物量呈显著正相关。自北方森林火灾和采伐以来,响应率随着时间的延长而显著增加,并且这种关系是线性的。

火烧可以通过改变土壤微生物群落的组成、碳和养分的可用性以及微生物活性来影响土壤微生物生物量 [55]。火烧对土壤微生物的直接影响是减少它们的生物量。事实上,峰值温度往往大大超过杀死大多数生物所需的温度 [56]。Prieto-Fernandez等 [57] 发现,野火发生后,微生物生物量在表层(0~5厘米)几乎消失,在紧邻的地下区域(5~10厘米)减少了50%。4年后,分别在表层和地下记录到微生物碳/有机碳比率相对于火灾前水平降低60%和40%,微生物氮/总氮比率相对于火灾前水平降低70%和30%。在烧过的土壤中添加纤维素有利于真菌菌丝体的发育和微生物碳的增加,但燃烧的负面影响并没有完全抵消。Yeager等 [58] 研究发现火灾会降低针叶林中的土壤微生物生物量在针叶林中,微生物生物量需要长达12年才能恢复到火灾前的水平 [59]。Dooley和Treseder [60] 研究得出火灾后微生物生物量的恢复作为一个整体可能需要15年。

土壤微生物生物量在土壤碳的矿化和螯合中起着至关重要的作用。土壤微生物生物量是土壤微生物群落和植物可利用的不稳定的能量和营养物的来源 [61],并且具有极高的灵敏性,是反映土壤质量、人类干扰以及土地利用变化最为敏感的指标之一 [62]。微生物生物量,被用作监测土壤质量和健康的生物指标 [63] [64]。然而,以往的研究没有显示采伐和火烧对土壤微生物生物量的一致影响,因此需要对其进行更深入的研究。

4. 森林土壤微生物对采伐和火烧的响应

森林土壤微生物是森林生态系统的重要组成部分,它在促进土壤中有机物的分解和养分循环中起到重要作用。对土壤的理化性质变化特别敏感 [65]。尽管土壤微生物在不同的土壤层和生物气候区有很大的差异,但它们对不同的干扰有明显的响应,采伐和火烧干扰通常会在干扰事件中造成更高程度的土壤破坏。例如,森林采伐涉及使用伐木设备,这会导致土壤严重压实。土壤压实改变了土壤孔隙空间,可能导致气体交换受损,土壤排水减少,抑制土壤微生物生长 [66] [67]。森林火灾以土壤燃烧和加热土壤表面的形式造成土壤破坏。森林火灾期间的土壤表面温度可达600摄氏度 [68],远高于大多数微生物类群的上限。这两种干扰对土壤性质的这些直接影响可以解释干扰后观察到的微生物生物量的减少和群落结构的破坏。土壤微生物对森林干扰的反应可能因干扰时间的不同而不同。扰动对土壤微生物群落的影响可能只会持续到地上植被重新生长,因为地上植被的恢复可能会逆转扰动引起的土壤性质的变化 [69]。如果土壤微生物和植物能够很容易地吸收有效养分,土壤养分的有效性可能会很快恢复到扰动前的水平。此外,如果附近未受干扰的森林或矿物土壤作为微生物接种源,土壤微生物群落可能有能力从干扰中迅速恢复 [70] [71]。

5. 结论

本文结合以往的研究发现,随着人类活动的进行各种干扰也相继发生,在采伐或火烧干扰的条件下,土壤的理化性质(土壤pH、土壤含水量、土壤碳、土壤氮等)和土壤微生物都受到了影响。在森林发生采伐和火烧干扰后它们可以通过改变土壤微生物群落的组成、碳和养分的可用性以及微生物活性来影响土壤微生物生物量,使土壤的微生物生物量在很长一段时间内下降。在干扰发生时土壤的理化性质受到了影响,土壤含水量,pH,碳,氮等出现失衡,微生物做为养分循环的参与者,接收到养分条件与环境变化的信息及时做出反馈,群落结构和生物量也因此发生了改变。土壤微生物直接与土壤环境相互作用。它们通过组成、多样性或功能性的变化,对采伐和火烧干扰所造成的土壤条件变化做出反应,并反馈给土壤条件进而使整个森林生态系统发生变化。

6. 展望

土壤微生物在森林生态系统中起着重要作用,尽管微生物应对资源环境变化的调节机制已经被提出,但一系列的干扰对微生物及其资源的直接或间接效应会影响微生物的适应对策。土壤微生物是研究森林土壤生态系统生物化学循环的重要手段,但目前来看有关土壤微生物的研究还存在一些问题与不足:1) 单独的采伐干扰背景下,伐后森林恢复过程中土壤微生物动态变化相关的研究较少,有待增加;2) 土壤微生物如何在环境变化下调控土壤C、N的相关原因还不明晰,需要进一步去深入研究;3) 环境因素对土壤微生物的交互影响机制还有待深入挖掘。对此,在以后的研究中,我们应更多的考虑多干扰因素、多土壤层次的影响,以及土壤微生物与森林生态系统功能更深层的联系;4) 建议今后在森林经营中注意控制采伐和火烧的强度,尽量减少土壤微生物多样性和数量的损失,实现科学可持续的发展。

文章引用

高宏林,王庆贵. 采伐和火烧对森林土壤微生物的影响研究进展
Research Progress on the Effects of Logging and Burning on Forest Soil Microorganisms[J]. 世界生态学, 2021, 10(04): 472-480. https://doi.org/10.12677/IJE.2021.104053

参考文献

  1. 1. Bonan, G.B. (2008) Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320, 1444-1449. https://doi.org/10.1126/science.1155121

  2. 2. Birdsey, R., Pregitzer, K. and Lucier, A. (2006) Forest Carbon Management in the United States: 1600-2100. Journal of Environmental Quality, 35, 1461-1469. https://doi.org/10.2134/jeq2005.0162

  3. 3. Giglio, L., et al. (2006) Global Estimation of Burned Area Using MODIS Active Fire Observations. Atmospheric Chemistry and Physics, 6, 957-974. https://doi.org/10.5194/acp-6-957-2006

  4. 4. Schelhaas, M.-J., Nabuurs, G.-J. and Schuck, A. (2003) Natural Disturbances in the European Forests in the 19th and 20th Centuries. Global Change Biology, 9, 1620-1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x

  5. 5. Ding, Y., Zang, R., Lu, X. and Huang, J. (2017) The Im-pacts of Selective Logging and Clear-Cutting on Woody Plant Diversity after 40 Years of Natural Recovery in a Tropical Montane Rain Forest, South China. Science of the Total Environment, 579, 1683-1691. https://doi.org/10.1016/j.scitotenv.2016.11.185

  6. 6. Pei, Z., Eichenberg, D., Bruelheide, H., Kröber, W., Kühn, P., Li, Y., Von Oheimb, G., Purschke, O., Scholten, T., Buscot, F. and Gutknecht, J.L.M. (2016) Soil and Tree Species Traits both Shape Soil Microbial Communities during Early Growth of Chinese Subtropical Forests. Soil Biology and Biochemistry, 96, 180-190. https://doi.org/10.1016/j.soilbio.2016.02.004

  7. 7. Bock, M.D. and Van Rees, K.C.J. (2002) Mechanical Site Preparation Impacts on Soil Properties and Vegetation Communities in the Northwest Territories. The Canadian Journal of Forest Research, 32, 1381-1392. https://doi.org/10.1139/x02-067

  8. 8. 满秀玲, 屈宜春, 蔡体久, 佟德海. 森林采伐与造林对土壤化学性质的影响[J]. 东北林业大学学报, 1998, 26(4): 15-17.

  9. 9. Arocena, J.M. and Opio, C. (2003) Prescribed Fire-Induced Changes in Properties of Sub-Boreal Forest Soils. Geoderma, 113, 1-16. https://doi.org/10.1016/S0016-7061(02)00312-9

  10. 10. Hamman, S.T., Burke, I.C. and Knapp, E.E. (2008) Soil Nutrients and Microbial Activity after Early and Late Season Prescribed Burns in a Sierra Nevada Mixed Conifer Forest. Forest Ecology and Management, 256, 367-374. https://doi.org/10.1016/j.foreco.2008.04.030

  11. 11. Certini, G. (2005) Effects of Fire on Properties of Forest Soils: A Review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8

  12. 12. Day, N.J., Dunfield, K.E., Johnstone, J.F., Mack, M.C., Turetsky, M.R., Walker, X.J., White, A.L. and Baltzer, J.L. (2019) Wildfire Severity Reduces Richness and Alters Composition of Soil Fungal Communities in Boreal Forests of Western Canada. Global Change Biology, 25, 2310-2324. https://doi.org/10.1111/gcb.14641

  13. 13. Garduńo, H.R., Fernald, A.G., Cibils, A.F. and VanLeeuwen, D.M. (2010) Response of Understory Vegetation and Soil Moisture to Infrequent Heavy Defoliation of Chemically Thinned Juniper Woodland. Journal of Arid Environments, 74, 291-297. https://doi.org/10.1016/j.jaridenv.2009.08.005

  14. 14. Adams, P.W., Flint, A.L. and Fredriksen, R.L. (1991) Long-Term Patterns in Soil Moisture and Revegetation after a Clearcut of a Douglas-Fir Forest in Oregon. Forest Ecology and Management, 41, 249-263. https://doi.org/10.1016/0378-1127(91)90107-7

  15. 15. Ritter, E., Dalsgaard, L. and Einhorn, K.S. (2005) Light, Temperature and Soil Moisture Regimes Following Gap Formation in Semi-Natural Beech-Dominated Forest in Den-mark. Forest Ecology and Management, 206, 15-33. https://doi.org/10.1016/j.foreco.2004.08.011

  16. 16. Jehangir, A., Yousuf, A.R., Reshi, Z.A., Tanveer, A. and Ah-mad, A. (2012) Comparison of Physical, Chemical and Microbial Properties of Soils in a Clear-Cut and Adjacent Intact Forest in North Western Himalaya, India. International Journal of Soil Science, 7, 71-81. https://doi.org/10.3923/ijss.2012.71.81

  17. 17. 张亨宇. 火干扰对大兴安岭北方森林土壤性质和碳氮磷化学计量特征的影响[D]: [硕士学位论文]. 沈阳: 沈阳师范大学, 2019.

  18. 18. 吴博雨. 火烧对森林土壤性状的影响及土壤质量综合评价[D]: [硕士学位论文]. 呼和浩特: 内蒙古农业大学, 2017.

  19. 19. Merilä, P., Mustajärvi, K., Helmisaari, H., Hilli, S., Lindroos, A., Nieminen, T.M., et al. (2014) Above- and Below- Ground N Stocks in Coniferous Boreal Forests in Finland: Implications for Sustainability of More Intensive Biomass Utilization. Forest Ecology & Manage-ment, 311, 17-28. https://doi.org/10.1016/j.foreco.2013.06.029

  20. 20. Palviainen, M., Finér, L., Kurka, A.M., Mannerkoski, H., Piirainen, S. and Starr, M. (2004) Decomposition and Nutrient Release from Logging Residues after Clear-Cutting of Mixed Boreal Forest. Plant & Soil, 263, 53-67. https://doi.org/10.1023/B:PLSO.0000047718.34805.fb

  21. 21. Palviainen, M., Finér, L., Laiho, R., Shorohova, E., Kapitsa, E. and Vanha-Majamaa, I. (2010) Carbon and Nitrogen Release from Decomposing Scots Pine, Norway Spruce and Silver Birch Stumps. Forest Ecology & Management, 259, 390-398. https://doi.org/10.1016/j.foreco.2009.10.034

  22. 22. Olsson, B.A., Staaf, H., Lundkvist, H., Bengtsson, J. and Rosén, K. (1996) Carbon and Nitrogen in Coniferous Forest Soils after Clear-Felling and Harvests of Different Intensity. Forest Ecology and Management, 82, 19-32. https://doi.org/10.1016/0378-1127(95)03697-0

  23. 23. Thonicke, K., Venevsky, S., Sitch, S. and Cramer, W. (2001) The Role of Fire Disturbance for Global Vegetation Dynamics: Coupling Fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography, 10, 661-677. https://doi.org/10.1046/j.1466-822X.2001.00175.x

  24. 24. Kashian, D.M., Romme, W.H., Tinker, D.B., Turner, M.G. and Ryan, M.G. (2013) Post-Fire Changes in Forest Carbon Storage over a300-Year Chronosequence of Pinus contorta-Dominated Forests. Ecological Monographs, 83, 49-66. https://doi.org/10.1890/11-1454.1

  25. 25. Koster, K., Köster, E., Orumaa, A., Parro, K., Jõgiste, K., Berninger, F., et al. (2016) How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence? Forests, 7, 201. https://doi.org/10.3390/f7090201

  26. 26. Seedre, M., Taylor, A.R., Brassard, B.W., Chen, H.Y.H. and Jõgiste, K. (2014) Recovery of Ecosystem Carbon Stocks in Young Boreal Forests: A Comparison of Harvesting and Wildfire Disturbance. Ecosystems, 17, 851-863. https://doi.org/10.1007/s10021-014-9763-7

  27. 27. Nave, L.E., Vance, E.D., Swanston, C.W. and Curtis, P.S. (2010) Harvest Impacts on Soil C Storage in Temperate Forests. Forest Ecology and Management, 259, 857-866. https://doi.org/10.1016/j.foreco.2009.12.009

  28. 28. Gruber, N. and Galloway, J.N. (2008) An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451, 293-296. https://doi.org/10.1038/nature06592

  29. 29. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H. and Tilman, D.G. (1997) Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecological Applications, 7, 737-750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

  30. 30. Lindroos, A.J., Tamminen, P., Heikkinen, J. and Ilvesniemi, H. (2016) Effect of Clearcutting and the Amount of Logging Residue on Chemical Composition of Percolation Water in Spruce Stands on Glaciofluvial Sandy Soils in Southern Finland. Boreal Environment Research, 21, 134-148.

  31. 31. Fisher, R.F. and Binkley, D. (2000) Ecology and Management of Forest Soils. 3rd Edition, Wiley, New York.

  32. 32. Weston, C.J. and Attiwill, P.M. (1996) Clearfelling and Burning Effects on Nitrogen Mineralization and Leaching in Soils of Old-Age Eucalyptus regnans Forests. Forest Ecology and Management, 89, 13-24. https://doi.org/10.1016/S0378-1127(96)03871-6

  33. 33. Johnson, D.W. and Curtis, P.S. (2001) Effects of Forest Management on Soil C and N Storage: Meta Analysis. Forest Ecology and Management, 140, 227-238. https://doi.org/10.1016/S0378-1127(00)00282-6

  34. 34. Prieto-Fernandez, A., Villar, M.C., Carballas, M. and Carballas, T. (1993) Short-Term Effects of a Wildfire on the Nitrogen Status and Its Mineralization Kinetics in an Atlantic Forest Soil. Soil Biology and Biochemistry, 25, 1657-1664. https://doi.org/10.1016/0038-0717(93)90167-A

  35. 35. Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Burslem, D.F.R.P. and van der Wal, R. (2010) The Influence of Vegetation Type, Soil Properties and Precipitation on the Composition of Soil Mite and Microbial Communities at the Landscape Scale. Journal of Biogeography, 37, 1317-1328. https://doi.org/10.1111/j.1365-2699.2010.02281.x

  36. 36. Ahn, J., Song, J., Kim, B., Kim, M., Joa, J. and Weon, H. (2012) Characterization of the Bacterial and Archaeal Communities in Rice Field Soils Subjected to Long-Term Fertilization Practices. Journal of Microbiology, 50, 754-765. https://doi.org/10.1007/s12275-012-2409-6

  37. 37. Torsvik, V., Ovreas, L. and Thingstad, T.F. (2002) Prokaryotic Diversity-Magnitude, Dynamics, and Controlling Factors. Science, 296, 1064-1066. https://doi.org/10.1126/science.1071698

  38. 38. Bakker, M.G., Schlatter, D.C., Otto-Hanson, L. and Kinkel, L.L. (2014) Diffuse Symbioses: Roles of Plant-Plant, Plant-Microbe and Microbe-Microbe Interactions in Structuring the Soil Microbiome. Molecular Ecology, 23, 1571-1583. https://doi.org/10.1111/mec.12571

  39. 39. 雷蕾. 马尾松林土壤呼吸与微生物对不同采伐方式的响应[D]: [博士学位论文]. 北京: 中国林业科学研究院, 2015.

  40. 40. 龙涛, 蓝嘉川, 陈厚荣, 王家妍, 谢益君, 陆晓明, 雷丽群, 朱宏光, 温远光, 蔡道雄. 采伐和炼山对马尾松林土壤微生物多样性的影响[J]. 南方农业学报, 2013, 44(8): 1318-1323.

  41. 41. Hartmann, M., Howes, C.G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Henrik Nilsson, R., Hallam, S.J. and Mohn, W.W. (2012) Significant and Persistent Impact of Timber Harvesting on Soil Microbial Communities in Northern Coniferous Forests. The ISME Journal, 6, 2199-2218. https://doi.org/10.1038/ismej.2012.84

  42. 42. Lehto, T. and Zwiazek, J.J. (2011) Ectomycorrhizas and Water Relations of Trees: A Review. Mycorrhiza, 21, 71-90. https://doi.org/10.1007/s00572-010-0348-9

  43. 43. Kernaghan, G. and Patriquin, G. (2011) Host Associations between Fungal Root Endophytes and Boreal Trees. Microbial Ecology, 62, 460-473. https://doi.org/10.1007/s00248-011-9851-6

  44. 44. Certini, G. (2005) Effect of Fire on Properties of Forest Soils: A Review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8

  45. 45. Cairney, J.W.G. and Bastias, B.A. (2007) Influences of Fire on Forest Soil Fungal Communities. Canadian Journal of Forest Research, 37, 207-215. https://doi.org/10.1139/x06-190

  46. 46. DeBano, L.F., Neary, D.G. and Ffolliott, P.F. (1998) Fire’s Effects on Ecosystems. John Wiley and Sons Inc., New York.

  47. 47. Prieto-Fernandez, A., Acea, M.J. and Carballas, T. (1998) Soil Microbial and Extractable C and N after Wildfifire. Biology and Fertility of Soils, 27, 132-142. https://doi.org/10.1007/s003740050411

  48. 48. Baath, E., Frostegard, A., Pennanen, T. and Fritze, H. (1995) Microbial Community Structure and pH Response in Relation to Soil Organic Matter Quality in Wood-Ash Fertilized, Clear-Cut or Burned Coniferous Forest Soils. Soil Biology and Biochemistry, 27, 229-240. https://doi.org/10.1016/0038-0717(94)00140-V

  49. 49. Neary, D.G., Klopatek, C.C., DeBano, L.F. and Ffolliott, P.F. (1999) Fire Effects on Belowground Sustainability: A Review and Synthesis. Forest Ecology and Management, 122, 51-71. https://doi.org/10.1016/S0378-1127(99)00032-8

  50. 50. Torres, P. and Honrubia, M. (1997) Changes and Effects of a Natural Fire on Ectomycorrhizal Inoculum Potential of Soil in a Pinus halepensis Forest. Forest Ecology and Management, 96, 189-196. https://doi.org/10.1016/S0378-1127(97)00058-3

  51. 51. Holden, S.R. and Treseder, K.K. (2013) A Meta-Analysis of Soil Microbial Biomass Responses to Forest Disturbances. Frontiers in Microbiology, 4, 573-580. https://doi.org/10.3389/fmicb.2013.00163

  52. 52. 郝建茹. 采伐对东北温带次生林土壤微生物碳氮的影响[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2010.

  53. 53. 邱雷, 陈信力, 丁辉, 关庆伟. 间伐对侧柏人工林土壤微生物生物量碳、氮的影响[J]. 江苏林业科技, 2013, 40(6): 14-19.

  54. 54. Holden, S.R. and Treseder, K.K. (2013) A Meta-Analysis of Soil Microbial Biomass Responses to Forest Disturbances. Frontiers in Microbiology, 4, 163. https://doi.org/10.3389/fmicb.2013.00163

  55. 55. Ilstedt, U., Giesler, R., Nordgren, A. and Malmer, A. (2003) Changes in Soil Chemical and Microbial Properties after a Wildfire in a Tropical Rainforest in Sabah, Malaysia. Soil Biology and Biochemistry, 35, 1071-1078. https://doi.org/10.1016/S0038-0717(03)00152-4

  56. 56. DeBano, L.F., Neary, D.G. and Ffolliott, P.F. (1998) Fire Effects on Ecosystems. Wiley, New York.

  57. 57. Yeager, C.M., Northup, D.E., Grow, C.C., Barns, S.M. and Kuske, C.R. (2005) Changes in Nitrogen-Fixing and Ammonia-Oxidizing Bacterial Communities in Soil of a Mixed Conifer Forest after Wildfire. Applied and Environmental Microbiology, 71, 2713-2722. https://doi.org/10.1128/AEM.71.5.2713-2722.2005

  58. 58. Fritze, H., Pennanen, T. and Pietikainen, J. (1993) Recovery of Soil Microbial Biomass and Activity from Prescribed Burning. Canadian Journal of Forest Research, 23, 1286-1290. https://doi.org/10.1139/x93-164

  59. 59. Dunn, P.H., Barro, S.C. and Poth, M. (1985) Soil-Moisture Affects Survival of Microorganisms in Heated Chaparral Soil. Soil Biology and Biochemistry, 17, 143-148. https://doi.org/10.1016/0038-0717(85)90105-1

  60. 60. Dooley, S.R. and Treseder, K.K. (2012) The Effect of Fire on Microbial Biomass: A Meta-Analysis of Field Studies. Biogeochemistry, 109, 49-61. https://doi.org/10.1007/s10533-011-9633-8

  61. 61. 朴河春, 洪业汤, 袁芷云. 贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J]. 生态学杂志, 2001, 20(1): 33-37.

  62. 62. Damon, C., Lehembre, F., Oger-Desfeux, C., Luis, P., Ranger, J., Fraissinet-Tachet, L. and Marmeisse, R. (2012) Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils. PLoS ONE, 7, e28967. https://doi.org/10.1371/journal.pone.0028967

  63. 63. Bini, D., dos Santos, C.A., do Carmo, K.B., Kishino, N. andrade, G., Zangaro, W. and Nogueira, M.A. (2013) Effects of Land Use on Soil Organic Carbon and Microbial Processes Associated with Soil Health in Southern Brazil. European Journal of Soil Biology, 55, 117-123. https://doi.org/10.1016/j.ejsobi.2012.12.010

  64. 64. Raiesi, F. and Beheshti, A. (2015) Microbiological Indicators of Soil Quality and Degradation Following Conversion of Native Forests to Continuous Crop Lands. Ecological Indicators, 50, 173-185. https://doi.org/10.1016/j.ecolind.2014.11.008

  65. 65. Ginzburg, O. and Steinberger, Y. (2012) Effects of Forest Wildfire on Soil Microbial Community Activity and Chemical Components on Atemporal-Seasonal Scale. Plant Soil, 360, 243-257. https://doi.org/10.1007/s11104-012-1243-2

  66. 66. Kabzems, R. and Haeussler, S. (2005) Soil Properties, Aspen, and White Spruce Responses 5 Years after Organic Matter Removal and Compaction Treatments. Canadian Journal of Forest Research, 35, 2045-2055. https://doi.org/10.1139/x05-175

  67. 67. Mariani, L., Chang, S.X. and Kabzems, R. (2006) Effects of Tree Harvesting, Forest Floor Removal, and Compaction on Soil Microbial Biomass, Microbial Respiration, and N Availability in a Boreal Aspen Forest in British Columbia. Soil Biology and Biochemistry, 38, 1734-1744. https://doi.org/10.1016/j.soilbio.2005.11.029

  68. 68. Busse, M.D., Hubbert, K.R., Fiddler, G.O., Shestak, C.J. and Powers, R.F. (2005) Lethal Soil Temperatures during Burning of Masticated Forest Residues. International Journal of Wildland Fire, 14, 267-276. https://doi.org/10.1071/WF04062

  69. 69. Hart, S.C., Deluca, T.H., Newman, S.G., Mackenzie, M.D. and Boyle, S.I. (2005) Post-Fire Vegetative Dynamics as Drivers of Microbial Community Structure and Function in Forest Soils. Forest Ecology and Management, 220, 166-184. https://doi.org/10.1016/j.foreco.2005.08.012

  70. 70. Grogan, P., Baar, J. and Bruns, T.D. (2000) Below-Ground Ectomycorrhizal Community Structure in a Recently Burned Bishop Pine Forest. Journal of Ecology, 88, 1051-1062. https://doi.org/10.1046/j.1365-2745.2000.00511.x

  71. 71. Barker, J.S., Simard, S.W., Jones, M.D. and Durall, D.M. (2013) Ectomycorrhizal Fungal Community Assembly on Regenerating Douglas-Fir after Wildfire and Clearcut Harvesting. Oecologia, 172, 1179-1189. https://doi.org/10.1007/s00442-012-2562-y

  72. NOTES

    *通讯作者。

期刊菜单