Advances in Microbiology
Vol.07 No.01(2018), Article ID:24141,7 pages
10.12677/AMB.2018.71003

Research Progress on the Relationship between Gut Microbiome and Human Cancer

Jingjing Xia1, Jingli Yu1*, Xininigen2*, Ji Zhao1

1School of Ecology and Environment, Inner Mongolia University, Hohhot Inner Mongolia

2College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot Inner Mongolia

Received: Mar. 2nd, 2018; accepted: Mar. 16th, 2018; published: Mar. 23rd, 2018

ABSTRACT

With the rapid development of high throughput sequencing (HTS) and related technologies, studying the effects of microbiome on human health has become a hotspot research in multidisciplinary field. Gut microbiome plays an important role in regulating the human homeostasis and metabolism, while the change of microbiome structure and function can cause human obesity, diabetes, depression and even cancer and other diseases. Based on the reported literatures over the last ten years, this paper summarized the meaning and distribution of human microbiome, reviewed the application of HTS technology in human microbiome research and the importance of gut microbiome in human cancer research. To date cancer has been the number one killer of human beings; this paper focused on the interaction mechanism between cancer’s occurrence, prevention, control and the gut microbiome, and summarized main findings about the role of gut microbiome in cancer’s prevention and control. Furthermore, this paper put forward the bottleneck problems in studying the relationship between gut microbiome and the chronic diseases including cancer at present. Finally, the paper prospected future researches, including the study the role of gut microbiome in preventing and controlling cancer, the interaction of gut and other multi-organs microbiome, the application of multi-omics based on HTS. This paper not only provided the new ideas for studying the interaction mechanism between gut microbiota and cancer’s occurrence, prevention and control, but also laid the foundation for achieving targeted therapy and personalized medicine for cancer in future, in order to better prevent and control human cancer.

Keywords:High-Throughput Sequencing Technology, Human Microbiome, Gut Microbiome, Cancer, Prevention and Control

肠道微生物组与人类癌症关系研究进展

夏晶晶1,于景丽1*,希尼尼根2*,赵吉1

1内蒙古大学生态与环境学院,内蒙古 呼和浩特

2内蒙古农业大学兽医学院,内蒙古 呼和浩特

收稿日期:2018年3月2日;录用日期:2018年3月16日;发布日期:2018年3月23日

摘 要

随着高通量测序等相关技术的迅猛发展,微生物组对人体健康影响的研究成为多学科领域的研究热点。肠道微生物菌群在调节人类免疫内稳态和新陈代谢方面发挥非常重要的作用,其结构和功能的改变会引起人类肥胖症、糖尿病、抑郁症甚至癌症等各种疾病。本文基于国内外近十年报道的文献资料综述了人体微生物组的涵义及分布、高通量测序技术在人体微生物组研究中的应用以及肠道微生物组在人类癌症研究中的重要性。迄今癌症仍是人类的头号杀手,本文重点阐述了肠道微生物组与癌症的发生和防控的互作机制,总结了人体肠道微生物组在癌症防控方面所取得的研究成果,提出了当前研究肠道微生物组与癌症等慢性病关系方面所面临的瓶颈问题,并对肠道微生物组与癌症防控研究、肠道等多器官微生物组互作关系研究、以高通量测序为依托的多组学技术应用进行了展望。本文为今后深入研究肠道微生物组与癌症的发生与防控机制、实现癌症的靶向治疗和个性化医疗提供新思路,以期更好的预防和控制癌症。

关键词 :高通量测序技术,人体微生物组,肠道微生物组,癌症,防控

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

1.1. 人体微生物组(Microbiome)的涵义及分布

人体是一个超级有机体(Super-organism) [1] 。从细胞角度看,人体由10%的人体细胞和90%的微生物细胞组成。从基因组角度看,人体包含两类基因组,一类是控制着表型、遗传机制的人类自身基因组,编码大约25,000个基因,叫做“第一基因组”;另一类则是人体中全部的微生物(细菌、古细菌、真菌和病毒)及其基因组和周围环境条件共同构成的整个微生物组(Microbiome),也叫做“第二基因组”,编码基因大约是第一基因组的100倍 [2] [3] 。据此,人体共生功能体(Holobiont)及共生基因组(Hologenome)的概念相伴而生。前者为人体及其共生全部微生物组成的功能体系;后者为人体与共生全部微生物基因组的总和。

人体微生物遍布周身各个组织器官,包括皮肤、鼻腔、口腔、泌尿生殖道和胃肠道等。肠道是微生物生长繁殖的主要场所,正常肠道菌群多达100万亿(100 trillions)。研究表明,肠道基因组(Gut microbiome)在调节人体代谢及免疫内稳态(Homeostasis)方面发挥重要作用 [4] [5] ,并直接影响人类健康 [6] [7] [8] 。

1.2. 高通量测序技术对人体微生物组研究的促进作用

国内外关于人体微生物群落(Microflora)与人体健康相关的研究与探索尤为活跃 [9] [10] ,特别是在高通量测序(High throughput sequencing, HTS)技术出现以来。高通量测序又称深度测序(Deep sequencing),可同时对几百万DNA分子进行序列测定,为人体微生物组(Microbiome)遗传信息的揭示和基因表达调控等基础研究提供了重要的技术支撑。更为重要的是,高通量测序为后续快速跟踪鉴别及早期预警微生物组相关的癌症 [11] 、抑郁 [12] 及免疫 [13] 有关的肥胖症、溃疡性结肠炎、过敏性疾病和糖尿病等提供了重要的技术支撑。例如,通过16S rRNA基因高通量测序技术即可检测到厚壁菌门(G+)的数量在肥胖者体内明显增加 [14] ,也可检测到微生物菌群的改变与直肠癌的发生有密切联系,这为预防癌症的发生提供了重要的理论支撑 [15] 。同时,高通量测序技术也促进了微生物组为研究对象的宏基因组学(Metagenomics)、宏转录组学(Metatranscriptomics)、宏蛋白组学(Metaproteomics)、宏代谢组学(Metabolomics)等多组学(Multi-omics)技术的快速发展和广泛应用。

1.3. 微生物在人类癌症研究中的重要性

癌症是人类健康的头号杀手,然而癌症的发生机制与环境微生物之间的复杂关系一直难以阐明 [16] 。19世纪后期自William Coley尝试通过局部注射治疗肉瘤的细菌(Coley’s毒素)实验部分成功后,癌症与细菌、病毒和真菌等病原学的关系引起全球的广泛关注 [11] [17] 。特别是Christine等 [18] 在癌细胞黏膜表面第一次发现微生物生物膜(Biofilm)后,人体微生物尤其是肠道微生物组与癌症之间的相互作用研究如雨后春笋,涌现出一些前瞻性的流行病学研究成果,大大丰富了人类微生物组与人类健康关系的背景资料。

2. 肠道微生物组(Gut Microbiome)在癌症研究中的进展

2.1. 肠道微生物组与人类疾病关系进展

肠道微生物组与人体健康密切相关。肠道微生物菌群不仅与免疫系统的形成有关,还与免疫系统之间的相互作用有关 [19] [20] [21] [22] 。在正常稳态条件下,肠道共生菌被Toll样受体(Toll-like receptor, TLR)识别,在维持肠道上皮细胞内稳态方面发挥至关重要的作用。Rakoff-Nahoum [19] 在化学诱导小鼠肠上皮细胞损伤的实验中发现,小鼠缺少病原微生物与肠道共生菌所产生的微生物配体或缺乏一种接头蛋白(Toll样受体,Toll-like receptor, TLR)通路中的一个关键接头分子,将会加剧细胞的损伤。可见,机体的健康与疾病状态是病原菌和肠道菌群相互作用的结果。Upadhyay等 [20] 证明肠道微生物组与免疫应答互作,并通过影响肥胖症形成相关的脂代谢。Russell等人 [21] 研究发现肠道菌群中的白色念珠菌如果发生突变,其产生的特异性化学物质会影响免疫应答,使免疫系统过分敏感而产生过敏性疾病。总之,微生物菌群与免疫的关系是动态平衡的,微生物菌群一旦失衡或失调将会引起一系列的免疫性疾病、炎症性疾病及癌症的发生。

2.2. 肠道微生物组(Microbiome)与癌症形成机制的研究进展

Wu等 [23] 通过对19名结直肠癌患者和20名正常人对照组的粪便微生物进行16S rRNA测序,发现拟杆菌的丰度与疾病的发生有一定相关性且与疾病的严重程度呈正相关。健康的结肠上皮细胞覆盖着两层粘液层,即粘液内层和粘液外层,粘液外层附着着大量共生菌群,而内层粘液致密,微生物难以渗入,从而阻止了微生物与宿主结肠上皮细胞的直接接触 [24] 。一旦有保护性的粘液层遭到破坏,微生物伺机进入与上皮细胞接触形成生物膜,引起炎症性肠病并伴随组织生物学变化 [25] 。在癌变的细胞中,微生物会影响结直肠癌患者机体的免疫细胞。例如,具核梭杆菌会产生一种特殊的蛋白质参与到T细胞和自然杀伤细胞的免疫受体中从而阻断免疫细胞对肿瘤细胞的毒作用,形成恶性肿瘤 [26] 。Yongzhi Yang课题组 [27] 用接种梭杆菌的直结肠癌细胞(CRC)注入BALB/C裸鼠体内,测量移植瘤的增殖情况。通过对比分析发现与没有接种梭杆菌的对照细胞相比,接种梭杆菌Fusobacterium nucleatum)可增加CRC细胞系的增殖和侵袭活性,感染梭杆菌(F. nucleatum)的CRC细胞系在BALB/C裸鼠体内能更迅速地形成更大的肿瘤。Susan [22] 研究发现肠道微生物组与宿主免疫细胞之间存在一个完整的相互作用网,促进癌细胞的生长并影响癌症的发生发展及发病程度。总体来说,肠道微生物组与癌症的发生机制尚不明晰,有待进一步研究。

2.3. 肠道微生物组在癌症防控方面取得的成果

法国科学家Sophie Viaud [28] 利用一种环磷酰胺的抗癌药物改变肠道微生物的种群构成,驱使种群中的革兰氏阳性菌进入次级淋巴系统,触发一种特殊的辅助T细胞对肿瘤发动攻击,从而达到杀灭肿瘤的治疗效果。也有些研究人员正在尝试分离微生物制剂或药物来治疗恶性疾病,并取得一些研究成果。例如基于牛分枝杆菌的减毒形式治疗浅表性膀胱癌 [29] 、利用溶瘤疱菌治疗黑素瘤等新型疗法 [30] 、利用增生李斯特菌治疗胰腺癌的初步临床试验 [31] 。Xiaomin Yao [32] 课题组以携带Nlrp3R258W的突变小鼠进行实验,发现增加调节T细胞诱导加强小鼠反自体炎症能力,使肠道微生物重塑,可维持小鼠肠道内稳态,减少炎症的发生,达到预防疾病的目的。由此可见,很多包括癌症在内的慢性疾病是可预防的 [33] 。例如Tingting Chen [34] 等人发现,个体的肠道微生物菌群以利用不同纤维的细菌为主,例如普氏菌与拟杆菌将食物中的纤维发酵成短链脂肪酸(Short Chain Fatty Acids, SCFAs)。其中丁酸作为结肠细胞的首选能量来源,可促进肠道的屏障功能,减少炎症。可见,摄食纤维能优化肠道菌群结构及功能,对疾病的早期防控至关重要。

3. 肠道微生物组的研究展望

3.1. 肠道微生物组与癌症防控研究展望

肠道菌群在调节炎症性肠病、肥胖、Ⅱ型糖尿病、心血管疾病和癌症等慢性疾病 [35] 方面发挥着重要作用,同时在调节焦虑、情绪障碍等神经疾病方面也发挥重要作用 [36] 。值得注意的是,肠道微生物组一方面可维持人体内稳态(Homeostasis),另一方面也可能通过细菌产生潜在的致癌毒素和代谢产物对癌症的预防产生负面影响。因此,未来可以通过肠道微生物组及其代谢产物与免疫疗法结合来进行抗肿瘤治疗,也可以和传统的直接靶向恶性细胞方法结合起来进行抗肿瘤治疗 [37] 。基于肠道微生物组诱导机体的免疫反应及诱癌机制筛选高效抗癌菌株以开发新型高效的抗癌菌剂。

3.2. 肠道等多器官微生物组互作关系研究展望

从现阶段的研究来看,肠道、口腔 [38] 及呼吸道 [39] 等微生物组与人体健康均有紧密联系,微生物组结构和功能的改变将会引起机体一系列反应,特别是肠道微生物组与人类健康与疾病关系最为密切。我们可以进行大胆的科学假设:遍布于口腔、眼睛、鼻子、血液、胃肠道等各个器官的微生物组是一个有机联系的动态生态系统,只要其中一些器官的微生物数量、结构或性质发生改变都会引起其他器官微生物组的一系列变化。例如,口腔微生物组的变化是否会引起肠道、血液等微生物的相应变化从而对人体健康产生一定影响,特定的微生物变化将耦合环境因素引起炎症、过敏性反应甚至癌症等疾病发生。因此,同步研究人体不同器官微生物组可能是破解靶器官(病灶)和环境因素互作关系的重要线索。

3.3. 微生物组学相关技术展望

目前,微生物组的技术层面多集中于16S rRNA基因的高通量测序方面。未来我们可利用高通量测序技术进一步挖掘、解读和微生物组中有价值的基因。比如,利用宏基因组学(Metagenomics)与宏转录组学(Metatranscriptomics)、宏蛋白组学(Metaproteomics)、宏代谢组学(Metabolomics)及稳定性同位素示踪(Stable Isotope Probing, SIP)技术高效结合挖掘癌症等疾病相关的重要靶标基因,破解重要靶标基因的表达特征。目前多组学方法及SIP技术虽在微生物组学领域有应用但仍有很大的提升空间。因此,全球范围通力合作及时公开并共享肠道、口腔、肺部、胃部及膀胱等各类癌症相关的微生物大数据信息,实现癌症相关疾病靶向治疗以及个性化医疗,逐一攻克医学界难题以造福人类。

4. 小结

肠道微生物组与人体免疫细胞之间存在一个动态平衡的相互作用网,肠道菌群一旦失衡或失调将会引起一系列的免疫性疾病、炎症性疾病及癌症的发生。肠道微生物组是一把双刃剑,既可通过维持人体内稳态(Homeostasis)来发挥正向作用,也可能通过细菌产生潜在的致癌毒素对癌症的防控产生负向作用。未来可以通过肠道微生物组及其代谢产物与免疫疗法结合来进行抗肿瘤治疗,也可以和传统的直接靶向恶性细胞方法结合起来进行抗肿瘤治疗,还可以通过摄食纤维优化肠道菌群结构及功能,还可以通过筛选高效抗癌菌株和研制新型高效抗癌菌剂来达到癌症的早期防控目的。

肠道微生物组与癌症的发生虽有一些学说,但肠道微生物组与癌症的发生机制尚不明晰,有待进一步研究。利用现代的宏基因组学(Metagenomics)与宏转录组学(Meta-transcriptomics)、宏蛋白组学(Metaproteomics)、宏代谢组学(Metabolomics)及稳定性同位素示踪(Stable Isotope Probing, SIP)技术相结合,从肠道、口腔、肺部、胃部及膀胱等多器官水平上对人体微生物相关的大数据进行分析和共享,挖掘癌症等疾病相关的重要靶标基因,破解重要靶标基因的表达特征。力争在肠道微生物组与癌症的发生机制方面取得突破性进展,造福全人类。

致谢

感谢国内外优秀学者提供的文献资料,感谢国家自然科学基金项目(No. 41361053, No. 31660724)、内蒙古自然科学基金项目(No. 2016MS0331, No. 2015MS0306)的支持。感谢审稿专家对该论文的修改和完善提出的宝贵意见。

文章引用

夏晶晶,于景丽,希尼尼根,赵 吉. 肠道微生物组与人类癌症关系研究进展
Research Progress on the Relationship between Gut Microbiome and Human Cancer[J]. 微生物前沿, 2018, 07(01): 19-25. https://doi.org/10.12677/AMB.2018.71003

参考文献

  1. 1. Lederberg, J. (2000) Infectious History. Science, 288, 287-293. https://doi.org/10.1126/science.288.5464.287

  2. 2. Marchesi, J.R. and Ravel, J. (2015) The Vocabulary of Microbiome Research: A Proposal. Microbiome, 3, 31. https://doi.org/10.1186/s40168-015-0094-5

  3. 3. Zhao, L. and Shen, J. (2010) Whole-Body Systems Approaches for Gut Microbiota-Targeted, Preventive Healthcare. Journal of Biotechnology, 149, 183-190. https://doi.org/10.1016/j.jbiotec.2010.02.008

  4. 4. Dishaw, L.J., Cannon, J.P., Litman, G.W. and Parker, W. (2014) Im-mune-Directed Support of Rich Microbial Communities in the Gut Has Ancient Roots. Developmental & Comparative Immunology, 47, 36-51. https://doi.org/10.1016/j.dci.2014.06.011

  5. 5. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Paslier, D.L., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Consortium, M., Bork, P., Ehrlich, S.D. and Wang, J. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. https://doi.org/10.1038/nature08821

  6. 6. Pfeiffer, J.K. and Sonnenburg, J.L. (2011) The Intestinal Microbiota and Viral Susceptibility. Frontiers in Microbiology, 2, 1-6. https://doi.org/10.3389/fmicb.2011.00092

  7. 7. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C., Knight, R. and Gordon, J.I. (2007) The Human Microbiome Project: Exploring the Microbial Part of Ourselves in a Changing World. Nature, 449, 804-810. https://doi.org/10.1038/nature06244

  8. 8. Zilber-Rosenberg, I. and Rosenberg, E. (2008) Role of Microorganisms in the Evolution of Animals and Plants: The Hologenome Theory of Evolution. FEMS Microbiology Reviews, 32, 723-735. https://doi.org/10.1111/j.1574-6976.2008.00123.x

  9. 9. 王林, 李冰, 朱健. 高通量测序技术在人工湿地微生物多样性研究中的研究进展[J]. 中国农学通报, 2016, 32(5): 10-15.

  10. 10. 盛华芳, 周宏伟. 微生微生物组学大数据分析方法、挑战与机遇[J]. 南方医科大学学报, 2015, 35(7): 931-934.

  11. 11. Zitvogel, L., Ayyoub, M., Routy, B. and Kroemer, G. (2016) Microbiome and Anticancer Immunosurveillance. Cell, 165, 276-287. https://doi.org/10.1016/j.cell.2016.03.001

  12. 12. Foster, J.A. and Neufeld, K.A.M. (2013) Gut-Brain Axis: How the Microbiome Influences Anxiety and Depression. Trends in Neurosciences, 36, 305-312. https://doi.org/10.1016/j.tins.2013.01.005

  13. 13. 陈小林, 任宏宇. 肠道微生物群组与肠道免疫的关系[J]. 胃肠病学和肝病学杂志, 2014, 23(11): 1245-1248.

  14. 14. Ohtani, N. (2015) Microbiome and Cancer. Seminars in Immunopathology, 37, 65-72. https://doi.org/10.1007/s00281-014-0457-1

  15. 15. Ahn, J., Sinha, R., Pei, Z., Dominianni, C., Wu, J., Shi, J., Goedert, J.J., Hayes, R.B. and Yang, L. (2013) Human Gut Microbiome and Risk for Colorectal Cancer. Journal of the National Cancer Institute, 105, 1907-1911. https://doi.org/10.1093/jnci/djt300

  16. 16. Wang, X., Yang, Y. and Huycke, M.M. (2017) Microbiome-Driven Carcinogenesis in Colorectal Cancer: Models and Mechanisms. Free Radical Biology and Medicine, 105, 3-15. https://doi.org/10.1016/j.freeradbiomed.2016.10.504

  17. 17. Gholizadeh, P., Eslami, H., Yousefi, M., Asgharzadeh, M., Aghazadeh, M. and Kafil, H.S. (2016) Role of Oral Microbiome on Oral Cancers: A Review. Biomedicine & Pharmacotherapy, 84, 552-558. https://doi.org/10.1016/j.biopha.2016.09.082

  18. 18. Dejea, C.M., Wick, E.C., Hechenbleikner, E.M., White, J.R., Welch, J.L.M., Rossetti, B.J., Peterson, S.N., Snesrud, E.C., Borisy, G.G., Lazarev, M., Stein, E., Vadivelu, J., Roslani, A.C., Malik, A.A., Wanyiri, J.W., Goh, K.L., Thevambiga, L., Fu, K., Wan, F., LIosa, A.C., Malik, A.A., Housseau, F., Romans, K., Wu, X.Q., McAllister, F.M., Wu, S., Vogelstein, B., Kinzler, K.W., Pardoll, D.M. and Sears, C.L. (2014) Microbiota Organization Is a Distinct Feature of Proximal Colorectal Cancers. Proceedings of the National Academy of Sciences, 111, 18321-18326. https://doi.org/10.1073/pnas.1406199111

  19. 19. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R. (2004) Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118, 229-241. https://doi.org/10.1016/j.cell.2004.07.002

  20. 20. Upadhyay, V., Poroyko, V., Kim, T.J., Devkota, S., Fu, S., Liu, D., Tumanov, A.V., Koroleva, E.P., Deng, L.F., Nagler, C., Chang, E.B., Tang, H. and Fu, Y.X. (2012) Lymphotoxin Regulates Commensal Responses to Enable Diet-Induced Obesity. Nature Immunology, 13, 947-953. https://doi.org/10.1038/ni.2403

  21. 21. Russell, S.L., Gold, M.J., Hartmann, M., Willing, B.P., Thorson, L., Wlodarska, M., Gill, N., Blanchet, M.R., Mohn, W.W., McNagny, K.M. and Finlay, B.B. (2012) Early Life Anti-Biotic-Driven Changes in Microbiota Enhance Susceptibility to Allergic Asthma. EMBO Reports, 13, 440-447. https://doi.org/10.1038/embor.2012.32

  22. 22. Susan, E. and Erdman, T.P. (2016) Gut Microbiota Modulate Host Immune Cells in Cancer Development and Growth. Free Radical Biology and Medicine, 105, 28-34.

  23. 23. Wu, N., Yang, X., Zhang, R., Li, J., Xiao, X., Hu, Y., Chen, Y., Yang, F., Lu, N., Wang, Z., Luan, C., Liu, Y., Wang, B., Xiang, C., Wang, Y., Zhao, F., Gao, G.F., Wang, S., Li, L., Zhang, H. and Zhu, B. (2013) Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients. Microbial Ecology, 66, 462-470. https://doi.org/10.1007/s00248-013-0245-9

  24. 24. Johansson, M.E., Larsson, J.M.H. and Hansson, G.C. (2011) The Two Mucus Layers of Colon Are Organized by the MUC2 Mucin, Whereas the Outer Layer Is a Legislator of Host-Microbial Interactions. Proceedings of the National Academy of Sciences, 108, 4659-4665. https://doi.org/10.1073/pnas.1006451107

  25. 25. Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 284, 1318-1322. https://doi.org/10.1126/science.284.5418.1318

  26. 26. Mima, K., Sukawa, Y., Nishihara, R., Qian, Z.R., Yamauchi, M., Inamura, K., Kim, S.A., Masuda, A., Nowak, J.A., Nosho, K., Kostic, A.D., Giannakis, M., Watanabe, H., Bullman, S., Milner, D.A., Harris, C.C., Giovannucci, E., Garraway, L.A., Freeman, G.J., Dranoff, G., Chan, A.T., Garrett, W.S., Huttenhower, C., Fuchs, C.S. and Ogino, S. (2015) Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncology, 1, 653-661.

  27. 27. Yang, Y., Weng, W., Peng, J., Hong, L., Yang, L., Toiyama, Y., Gao, R., Liu, M., Yin, M., Pan, C., Li, H., Guo, B., Zhu, Q., Wei, Q., Moyer, M.P., Wang, P., Cai, S., Goel, A., Qin, H. and Ma, Y. (2017) Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κb, and Up-Regulating Expression of Microrna-21. Gastroenterology, 152, 851-866. https://doi.org/10.1053/j.gastro.2016.11.018

  28. 28. Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D.P., Pfirschke, C., Engblom, C., Pittet, M.J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., Bizet, C., Gaboriau-Routhiau, V., Cerf-Bensussan, N., Opolon, P., Yessaad, N., Vivier, E., Ryffel, B., Elson, C.O., Doré, J., Kroemer, G., Lepage, P., Boneca, I.G., Ghiringhelli, F. and Zitvogel, L. (2013) The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342, 971-976. https://doi.org/10.1126/science.1240537

  29. 29. Kiselyov, A., Bunimovich-Mendrazitsky, S. and Startsev, V. (2015) Treatment of Non-Muscle Invasive Bladder Cancer with Bacillus Calmette-Guerin (BCG): Biological Markers and Simulation Studies. BBA Clinical, 4, 27-34. https://doi.org/10.1016/j.bbacli.2015.06.002

  30. 30. Gummesson, A.L., Carlsson, L.M., Storlien, L.H., Bäckhed, F., Lundin, P., Löfgren, L., Stenlöf, K., Lam, Y.Y., Fagerberg, B. and Carlsson, B. (2011) Intestinal Permeability Is Associated with Visceral Adiposity in Healthy Women. Obesity, 19, 2280-2282. https://doi.org/10.1038/oby.2011.251

  31. 31. Le, D.T., Wang-Gillam, A., Picozzi, V., Greten, T.F., Crocenzi, T., Springett, G., Morse, M., Zeh, H., Cohen, D., Fine, R.L., Onners, B., Uram, J.N., Laheru, D.A., Lutz, E.R., Solt, S., Murphy, A.L., Skoble, J., Lemmens, E., Grous, J., Dubensky, T., Brockstedt, D.G. and Jaffee, E.M. (2015) Safety and Survival with GVAX Pancreas Prime and Listeria Monocytogenes-Expressing Mesothelin (CRS-207) Boost Vaccines for Metastatic Pancreatic Cancer. Journal of Clinical Oncology, 33, 1325-1333. https://doi.org/10.1200/JCO.2014.57.4244

  32. 32. Yao, X., Zhang, C., Xing, Y., Xue, G., Zhang, Q., Pan, F., Wu, G., Hu, Y., Guo, Q., Lu, A., Zhang, X., Zhou, R., Tian, T., Strober, W., Zhao, L. and Meng, G. (2017) Remodelling of the Gut Microbiota by Hyperactive nlrp3 Induces Regulatory T Cells to Maintain Homeostasis. Nature Communications, 8, 1-17. https://doi.org/10.1038/s41467-017-01917-2

  33. 33. Willett, W.C. (2008) Overview and Perspective in Human Nutrition. Asia Pacific Journal of Clinical Nutrition, 17, 1-4.

  34. 34. Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L. and Hamaker, B.R. (2017) Fiber-Utilizing Capacity Varies in Prevotella versus Bacteroides Dominated Gut Microbiota. Science Reports, 7, 2594-2600. https://doi.org/10.1038/s41598-017-02995-4

  35. 35. Singh, R.K., Chang, H.W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., Bhutani, T. and Liao, W. (2017) Influence of Diet on the Gut Microbiome and Implications for Human Health. Journal of Translational Medicine, 15, 73. https://doi.org/10.1186/s12967-017-1175-y

  36. 36. Malan-Muller, S., Valles-Colomer, M., Raes, J., Lowry, C.A., Seedat, S. and Hemmings, S.M.J. (2017) The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders. Journal of Integrative Biology, 22, 90-107.

  37. 37. Zitvogel, L., Daillãre, R., Roberti, M.P., Routy, B. and Kroemer, G. (2017) Anticancer Effects of the Microbiome and Its Products. Nature Reviews Microbiology, 15, 465-478. https://doi.org/10.1038/nrmicro.2017.44

  38. 38. Yamashita, Y. and Takeshita, T. (2017) The Oral Microbiome and Human Health. Journal of Oral Science, 59, 201-206. https://doi.org/10.2334/josnusd.16-0856

  39. 39. Unger, S.A. and Bogaert, D. (2017) The Respiratory Microbiome and Respiratory Infections. Journal of Infection, 74, S84-S88. https://doi.org/10.1016/S0163-4453(17)30196-2

NOTES

*通讯作者。

期刊菜单