﻿ 矩阵滑模控制法实现异结构分数阶超混沌系统同步 Different Structure Synchronization of Fractional-Order Hyperchaotic Systems Based on Matrix Sliding Mode Structure

Dynamical Systems and Control
Vol.06 No.03(2017), Article ID:21300,10 pages
10.12677/DSC.2017.63014

Different Structure Synchronization of Fractional-Order Hyperchaotic Systems Based on Matrix Sliding Mode Structure

Shuang Liu, Lu Chen, Tao Wang, Lijuan Yue*

College of Physics, Northeast Normal University, Changchun Jilin

Received: Jun. 15th, 2017; accepted: Jul. 7th, 2017; published: Jul. 10th, 2017

ABSTRACT

A sliding mode control method is proposed for different structure synchronization of fractional- order hyperchaos system. Under the action of the new matrix sliding mode controller, different structure synchronization of fractional-order hyperchaotic systems has been realized. Experimental results show that the method has stronger robustness, and furthermore, circuit simulations show the effectiveness of the proposed method.

Keywords:Fractional-Order Hyperchaos System, Matrix Theory, Sliding Mode Variable Structure Control, Hyper-Chaotic Synchronization

Copyright © 2017 by authors and Hans Publishers Inc.

1. 引言

2. 矩阵理论

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(1)

(2)不全为0，

(8)

(9)

(10)

(11)

Figure 1. The state trajectory of the error system for Matrix theory

(a) (b)

Figure 2. The curve after disturbance of. (a) The error curve of the interference is; (b) The error curve of the interference is

3. 矩阵滑模控制

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Figure 3. The state trajectory of the error system for Matrix sliding mode

(20)

Figure 4. The curve after disturbance of

Figure 5. The equivalent circuit of fractional integral operator unit

Figure 6. Driving system circuit

(a) (b) (c) (d)

Figure 7. The synchronous circuit simulation results of Matrix sliding mode. (a) The time domain of; (b) The time domain of; (c) The time domain of; (d) The time domain of

4. 结论

Different Structure Synchronization of Fractional-Order Hyperchaotic Systems Based on Matrix Sliding Mode Structure[J]. 动力系统与控制, 2017, 06(03): 109-118. http://dx.doi.org/10.12677/DSC.2017.63014

1. 1. 李佳. 物理中投影混沌同步在永磁同步电机中的应用[J]. 高师理科学刊, 2016, 36(1): 39-42.

2. 2. 贾遂民, 魏萌, 胡明生. 混沌拟态物理优化的认知频谱差异分配[J]. 计算机应用, 2015, 35(4): 1067-1070.

3. 3. 郑金存, 张慧, 覃斌毅. 变参数混沌信号应用于经皮神经电刺激的探索研究[J]. 生物医学工程学杂志, 2015, 32(5): 1031-1037.

4. 4. 俞斌, 朱明, 贾雅琼. 统一混沌系统同步控制及在保密通信中的应用[J]. 计算机应用研究, 2013, 30(6): 1847- 1848.

5. 5. Lai, H. and Huang, Y. (2015) Chaotic Secure Communication Based on Synchronization Control of Chaotic Pilot Signal. Computational Intelligence and Intelligent Systems, 2015, 640-647.

6. 6. Rossler, O. (1979) An Equation for Hyperchaos. Physics Letters A, 71, 155-157. https://doi.org/10.1016/0375-9601(79)90150-6

7. 7. Li, C. and Peng, G. (2004) Chaos in Chen’s System with a Fractional Order. Chaos, Solitons & Fractals, 22, 443-450. https://doi.org/10.1016/j.chaos.2004.02.013

8. 8. Jia, H.Y., Tao, Q. and Chen, Z.Q. (2014) Analysis and Circuit Design of a Fractional-Order Lorenz System with Different Fractional Orders. Systems Science & Control Engineering, 2, 745-750. https://doi.org/10.1080/21642583.2014.886310

9. 9. Hegazi, A.S., Ahmed, E. and Matouk, A.E. (2013) On Chaos Control and Synchronization of the Commensurate Fractional Order Liu System. Communications in Nonlinear Science & Numerical Simulation, 18, 1193-1202. https://doi.org/10.1016/j.cnsns.2012.09.026

10. 10. Li, C.G. and Chen, G.R. (2004) Chaos and Hyperchaos in the Fractional Order Rössler Equations. Physica A: Statistical Mechanics and Its Applications, 341, 55-61. https://doi.org/10.1016/j.physa.2004.04.113

11. 11. Razminia, A. and Baleanu, D. (2013) Complete Synchronization of Commensurate Fractional Order Chaotic Systems Using Sliding Mode Control. Mechatronics, 23, 873-879. https://doi.org/10.1016/j.mechatronics.2013.02.004

12. 12. Carroll, T.L. and Pecora, L. (1992) A Circuit for Studying the Synchronization of Chaotic Systems. International Jour- nal of Bifurcation and Chaos, 2, 659-667. https://doi.org/10.1142/S021812749200077X

13. 13. Itoh, M., Yang, T. and Chua, L.O. (2011) Conditions for Im-pulsive Synchronization of Chaotic and Hyperchaotic Systems. International Journal of Bifurcation and Chaos, 11, 551-560. https://doi.org/10.1142/S0218127401002262

14. 14. Sinha, S., Henrichs, J. and Ravindra, B. (2000) A General Approach in the Design of Active Controllers for Nonlinear Systems Exhibiting Chaos. International Journal of Bifurcation and Chaos, 10, 165-178. https://doi.org/10.1142/S0218127400000104

15. 15. 刘福才, 王娟, 彭海朋, 等. Hénon混沌系统的预测控制与同步[J]. 物理学报, 2002, 51(9): 1954-1959.

16. 16. 谭文, 王耀南, 刘祖润. 非线性系统混沌运动的神经网络控制[J]. 物理学报, 2005, 51(11): 2463-2466.

17. 17. Ma, J., Wu, X.Y. and Chu, R.T. (2014) Selection of Multi-Scroll Attractors in Jerk Circuits and Their Verification Using Pepice. Nonlinear Dynamics, 76, 1951-1962. https://doi.org/10.1007/s11071-014-1260-1

18. 18. Lin, J.S., Yan, J.J. and Liao, T.L. (2005) Chaotic Synchronization via Adaptive Sliding Mode Observers Subject to Input Nonlinearity. Chaos, Solitons & Fractals, 24, 371-381. https://doi.org/10.1016/S0960-0779(04)00616-2

19. 19. Dadras, S., Momeni, H.R. and Majd, V.J. (2009) Sliding Mode Control for Uncertain New Chaotic Dynamical System. Chaos, Solitons & Fractals, 41, 1857-1862. https://doi.org/10.1016/j.chaos.2008.07.054

20. 20. 董俊, 张广军, 姚宏. 异结构的分数阶超混沌系统函数投影同步及参数辨识[J]. 电子与信息学, 2013, 35(6): 1371-1375.

21. 21. 周平, 程雪峰, 张年英. 一个新分数阶超混沌系统及其混沌同步[J]. 物理学报, 2008, 57(9): 5407-5412.

22. NOTES

*通讯作者。