Journal of Organic Chemistry Research
Vol. 10  No. 02 ( 2022 ), Article ID: 52393 , 9 pages
10.12677/JOCR.2022.102006

合成白藜芦醇糖苷的研究进展

刘海平,唐宗军,马文晋

兰州交通大学,化学化工学院,甘肃 兰州

收稿日期:2022年4月13日;录用日期:2022年6月7日;发布日期:2022年6月14日

摘要

白藜芦醇糖苷是一种分布在自然界中的二苯乙烯类天然产物。白藜芦醇糖苷具有很高的药用价值,如镇咳、平喘、降血脂等多种药理作用。它的药理作用和白藜芦醇相近,其药用价值相对白藜芦醇有明显的提升。研究表明,糖苷化的白藜芦醇在药理上有较好的生物利用度和靶向性,因其独特的优势引起了众多化学与生物研究者的关注。本文收集了白藜芦醇糖苷的研究进展,包括生物酶合成法和化学合成法并进行了讨论,希望能为进一步研究开发利用白藜芦醇糖苷提供一定的参考。

关键词

白藜芦醇,糖苷,糖苷化,白藜芦醇糖苷

Research Progress in the Synthesis of Resveratrol Glycosides

Haiping Liu, Zongjun Tang, Wengjing Ma

College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu

Received: Apr. 13th, 2022; accepted: Jun. 7th, 2022; published: Jun. 14th, 2022

ABSTRACT

Resveratrol glycoside is a stilbene natural product distributed in nature. Resveratrol glycosides have high medicinal value, such as anti-tussive, anti-asthmatic, hypolipidemic and other pharmacological effects. Its pharmacological action is similar to that of resveratrol, and its medicinal value is significantly improved compared with resveratrol. Studies have shown that glycosidic resveratrol has good bioavailability and targeting in pharmacology, which has attracted the attention of many chemical and biological researchers because of its unique advantages. This paper collects and discusses the research progress of resveratrol glycosides, including biological enzymatic synthesis and chemical synthesis, hoping to provide some reference for further research, development and utilization of resveratrol glycosides.

Keywords:Resveratrol, Glycosides, Glycosidation, Resveratrol Glycoside

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

白藜芦醇1 (图1) [1],是一种天然多酚类的化合物。其于1924被发现,1940年被日本学者Takaok首次从毛叶藜芦的根茎中分离出来。白藜芦醇在自然界中分布广泛,主要分布于廖属、葡萄属、藜芦属等植物中,到目前为止,至少已在34科、69属的100种植物中被发现 [2]。其因具有多种生物活性 [3] 和较好的药用价值 [4],如抗癌 [5]、抗肿瘤 [6]、抗糖尿病 [7]、抗氧化 [8]、神经保护和心血管保护 [9] 等功效,而备受关注。

Figure 1. Structure of resveratrol

图1. 白藜芦醇的结构

糖苷广泛存在于生物体内,也是糖存在于自然界中的一种形式。糖苷一般是指单糖的半缩醛羟基和醇或者酚的羟基发生反应,失水从而形成的缩醛式衍生物 [10],由糖基受体和糖基给体两部分组成。也可以理解为糖苷是由糖或糖的衍生物等与另一个非糖物质通过其端基碳原子联接而成的化合物。具有生物活性的物质与糖反应生成糖苷,会使其毒性降低、水溶性提高。糖苷的分类也是多种多样的,根据苷元的结构不同可以分为香豆素苷、蒽醌苷、吲哚苷、黄酮苷等;根据糖苷在生物体内的存在形式可分为原生苷、次级苷;根据苷键原子的不同可分为氧糖苷、碳糖苷、硫糖苷、氮糖苷等 [11]。氧糖苷类化合物在提高免疫力、抗病毒、抗肿瘤等方面存在着良好的药理活性 [12]。经文献报道的糖苷化学合成方法有:糖基卤化物法 [13]、硫糖苷法 [14]、三氯乙酰亚胺酯法 [15]、1-O-硅烷醚糖法 [16]、1-O-酰基糖供体法 [17]、卤代乙酸酯法 [18]、原酸酯法 [19]、相转移催化法 [20]、烯糖法 [21] 等。

白藜芦醇糖苷属于天然多酚类化合物,是白藜芦醇和葡萄糖结合的产物。最初是在中药虎杖中被发现的,它与白藜芦醇具有相似的药理活性 [22]。白藜芦醇的水溶性很差而且还容易发生氧化 [23]。在白藜芦醇单体上引入糖基供体后其稳定性 [24]、水溶性、抗氧化性和生物活性都有所提升。因为白藜芦醇糖苷复杂多样的生物活性,使其在医药 [25]、化妆等领域拥有广阔的应用前景 [26]。

近些年,研究发现白藜芦醇苷类化合物具有脑组织的保护、抗炎、抗衰老、抗肿瘤、降血脂、心血管活性和免疫调节等药理活性,因此其具有很高的药用价值,已引起人们广泛的关注。本文收集了白藜芦醇糖苷的研究进展,其中包括生物酶合成法和化学合成法并进行了讨论,希望能为进一步研究开发利用白藜芦醇糖苷提供一定的参考。

2. 白藜芦醇糖苷的研究进展

目前,获得白藜芦醇糖苷的方法有植物提取法 [27] [28] [29] [30] [31] 和合成法 [32] 两种,合成法又分为化学合成法和生物酶合成法 [33]。从植物中提取的方法是获得白藜芦醇苷的主要途径,但该方法产量较低无法满足市场需求。生物酶合成法是以酶作为催化剂,糖作为糖基供体,白藜芦醇为受体进行反应得到白藜芦醇糖苷 [34]。化学合成的方法首先需要对糖基供体进行活化,对糖基受体进行适当的保护,最后糖基供体与糖基受体发生反应得到目标产物 [35]。因为白藜芦醇糖苷较高的药用价值 [36],研究者们一直都在探索如何合成白藜芦醇糖苷,但到目前为止合成的白藜芦醇糖苷还是以氧糖苷为主,碳糖苷的合成未见报道。

2.1. 白藜芦醇糖苷的生物酶合成

2014年Hiroki Hamada团队将枯草芽孢杆菌作为葡萄糖基转移酶(PaGT3酶)的来源(图2) [37]。用PaGT3酶对白藜芦醇、紫檀芪 [38]、白皮杉醇 [39] 进行了糖苷化的探索并对产物的药理活性进行了讨论。其中PaGT3酶将白藜芦醇糖苷化为白藜芦醇3-β-葡萄糖苷和4'-β-葡萄糖苷、PaGT3酶将紫檀芪糖苷化为其4'-β-葡萄糖苷、PaGT3酶将白皮杉醇糖苷化为其4'-β-葡萄糖苷。

Figure 2. Hiroki Hamada’s route for synthesis of resveratrol glycosides

图2. Hiroki Hamada团队合成白藜芦醇糖苷路线

2014年Ramesh Prasad Pandey团队从地衣芽孢杆菌 [40] 中筛选获得了糖基转移酶YjiC (图3) [41]。以UDP-D-葡萄糖为供糖体,在YjiC酶催化下白藜芦醇与UDP-D-葡萄糖反应,可产生四种白藜芦醇苷。分别为白藜芦醇3-O-β-D-葡萄糖苷、白藜芦醇4'-O-β-D-葡萄糖苷、白藜芦醇3,5-O-β-D-二葡萄糖苷和白藜芦醇3,5,4'-O-β-D-三葡萄糖苷,该过程中白藜芦醇的生物转化率有显著提高(90%)。并通过实践研究发现糖基转移酶YjiC具有生产结构多样的白藜芦醇苷的能力。

Figure 3. Ramesh Prasad Pandey’s route for synthesis of resveratrol glycosides

图3. Ramesh Prasad Pandey团队合成白藜芦醇糖苷路线

2020年王书元团队对于淀粉蔗糖酶 [42] 催化白藜芦醇的性质进行了探索(图4) [43]。将中度嗜热菌Deinococcusgeothermalis作为淀粉蔗糖酶DGAS的来源,以蔗糖为葡萄糖基的供体,白藜芦醇为受体进行生物酶合成反应。淀粉蔗糖酶DGAS对白藜芦醇产生催化作用,合成了两个白藜芦醇糖苷,分别为白藜芦醇-4'-O-α-D-吡喃葡萄糖苷和白藜芦醇-4'-O-α-D-吡喃葡萄糖基-(1→4)-O-α-D-吡喃葡萄糖苷。

Figure 4. Wang Shuyuan’s route for synthesis of resveratrol glycosides

图4. 王书元团队合成白藜芦醇糖苷路线

2.2. 白藜芦醇糖苷的化学合成

1997年FulviaOrsini团队用化学方法合成了白藜芦醇糖苷(图5) [44]。先通过wittig反应 [45] 建立双键再脱除硅醚基的保护得到4'位被甲基保护的顺式和反式白藜芦醇单体(2-5、2-6)。之后以乙酰溴α-D-葡萄糖作为糖基供体,被保护的反式白藜芦醇单体为受体进行糖苷化反应得到了反式的白藜芦醇糖苷类似物2-7。最后先脱除糖上的乙酰基保护再脱除单体上的甲基保护得到目标产物白藜芦醇3-β-D-葡萄糖苷。

Figure 5. FulviaOrsini’s route for synthesis of resveratrol glycosides

图5. FulviaOrsini团队合成白藜芦醇糖苷路线

2003年G Regev-Shoshani团队用简单的一步法合成了两种白藜芦醇糖苷(图6) [46]。采用Koenigs-Knorr方法 [47] [48] [49] 对糖苷化反应进行了一些改进,以白藜芦醇单体为受体,乙酰溴α-D-葡萄糖为糖基供体,在强碱的催化下直接发生糖苷化反应,最后用高效液相色谱法对糖苷化反应的产物进行分离纯化。得到反式白藜芦醇4'-O-β-D-葡萄糖苷(产率12%)和反式白藜芦醇3-O-β-D-葡萄糖苷(产率10%),此方法合成路线最为简单。

2010年任金红团队应用保护基策略,采用Schmidt成苷法 [50] [51] [52] 制得了10个白藜芦醇的单糖苷化衍生物(图7) [53]。首先利用叔丁基二甲基氯硅烷(TBS)对白藜芦醇上的酚羟基进行随机保护,得到了5个白藜芦醇类似物(TBS-Res、TBS-Res-4'-OH、TBS-Res-3-OH、TBS-Res-3,4'-OH、TBS-Res-3,5-OH)。再将只剩一个羟基未保护的化合物(TBS-Res-4'-OH、TBS-Res-3-OH)分别与各种天然单糖的三氯乙酰亚胺酯经Schmidt成苷法进行糖苷化反应。最后对其进行脱保护反应,将之前的硅醚和苯甲酰保护基脱除,再经过RP-HPLC纯化得到了10个白藜芦醇单糖苷衍生物,并且对其的药理活性进行了分析讨论。

Figure 6.G Regev-Shoshani’s route for synthesis of resveratrol glycosides

图6. G Regev-Shoshani团队合成白藜芦醇糖苷路线

Figure 7. Ren Jinhong’s route for synthesis of resveratrol glycosides

图7. 任金红团队合成白藜芦醇糖苷路线

3. 总结

已有研究表明,白藜芦醇的葡萄糖苷类似物比母体化合物白藜芦醇有更好的生物活性,更高的水溶性和生物利用度,因其优越的药理活性,使得许多学者对它的合成方法产生了浓厚的兴趣。以上总结了近些年来部分白藜芦醇糖苷的合成方法,有生物酶合成法和化学合成法。化学合成法产率低、过程繁琐,生物酶合成法相对于化学合成法而言产率有所提升,但这两种合成方法都只停留在白藜芦醇氧糖苷的合成阶段,白藜芦醇碳糖苷依旧需要从植物中分离得到。因此,寻找一种高效、简便、经济、绿色、环保的合成白藜芦醇糖苷的方法仍然具有挑战性,目前已成为了一个潜在的研究热点。

文章引用

刘海平,唐宗军,马文晋. 合成白藜芦醇糖苷的研究进展
Research Progress in the Synthesis of Resveratrol Glycosides[J]. 有机化学研究, 2022, 10(02): 60-68. https://doi.org/10.12677/JOCR.2022.102006

参考文献

  1. 1. Takaoka, M. (1940) The Phenolic Substances of White Helleboro (Veratrum Grandiflorum Hoes. Fil.). III. Nippon Kagaku Kaishi, 61, 30-34. https://doi.org/10.1246/nikkashi1921.61.30

  2. 2. 夏曦, 徐嘉琪, 胡越高, 陈煜, 杨鸿均, 赵志刚. 白藜芦醇的合成研究进展[J]. 化学试剂, 2019, 41(9): 873-881.

  3. 3. Huang, H., Liu, R.N. and Ou, W.H. (2020) A Mini Review on Chemical Synthesis of Resveratrol. Mini-Reviews in Organic Chemistry, 17, 546-558. https://doi.org/10.2174/1570193X16666190617155558

  4. 4. Song, J.T., Woo, D.U., Lee, Y.J., et al. (2021) The Semi-Supervised Strategy of Machine Learning on the Gene Family Diversity to Unravel Resveratrol Synthesis. Plants, 10, Article No. 2058. https://doi.org/10.3390/plants10102058

  5. 5. Borys, S., Khozmi, B., Kranc, W., et al. (2017) Resveratrol and Its Analogues—Is It a New Strategy of Anticancer Therapy? Advances in Cell Biology, 5, 32-42. https://doi.org/10.1515/acb-2017-0003

  6. 6. Kumar, S., Chang, Y.C., Lai, K.H. and Hwang, T.L. (2021) Resveratrol, a Molecule with Anti-Inflammatory and Anti-Cancer Activities: Natural Product to Chemical Synthesis. Current Medicinal Chemistry, 28, 3773-3786. https://doi.org/10.2174/0929867327999200918100746

  7. 7. Shu, L.Y., Hou, X.Y., Song, G.Y., et al. (2021) Comparative Analysis of Long Non Coding RNA Expression Profiles Induced by Resveratrol and Metformin Treatment for Hepatic Insulin Resistance. International Journal of Molecular Medicine, 48, Article No. 206. https://doi.org/10.3892/ijmm.2021.5039

  8. 8. Nam, K.Y., Damodar, K., Lee, Y., et al. (2021) Design and Synthesis of π-Extended Resveratrol Analogues and in Vitro Antioxidant and Anti-Inflammatory Activity Evaluation. Molecules, 26, Article No. 646. https://doi.org/10.3390/molecules26030646

  9. 9. Torregrosa-Muñumer, R., Vara, E., Fernández‑Tresguerres, J.A. and Gredilla, R. (2021) Resveratrol Supplementation at Old Age Reverts Changes Associated with Aging in Inflammatory, Oxidative and Apoptotic Markers in Rat Heart. European Journal of Nutrition, 60, 2683-2693. https://doi.org/10.1007/s00394-020-02457-0

  10. 10. 刘少静. 新型糖苷化反应研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2013.

  11. 11. 梁娟. 新型氧糖苷类化合物的合成研究[D]: [硕士学位论文]. 广州: 广东药科大学, 2017.

  12. 12. Danishefsky, S.J. and Allen, J.R. (2000) From the Laboratory to the Clinic: A Retrospective on Fully Synthetic Carbohydrate-Based Anticancer Vaccines. Angewandte Chemie International Edition, 31, 836-863. https://doi.org/10.1002/(SICI)1521-3773(20000303)39:5%3C836::AID-ANIE836%3E3.0.CO;2-I

  13. 13. Meng, S.S., Wang, Q., Huang, G.B., et al. (2018) B(C6F5)3 Catalyzed Direct Nucleophilic Substitution of Benzylic Alcohols: an Effective Method of Constructing C-O, C-S and C-C Bonds from Benzylic Alcohols. RSC Advances, 8, 30946-30949. https://doi.org/10.1039/C8RA05811C

  14. 14. Kolb, H.C., Finn, M.G. and Sharpless, K.B. (2001) Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40, 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::AID-ANIE2004%3E3.0.CO;2-5

  15. 15. Balmond, E.I., Coe, D.M., Galan, M.C., et al. (2012) α-Selective Organocatalytic Synthesis of 2-Deoxygalactosides. Angewandte Chemie International Edition, 124, 9286-9289. https://doi.org/10.1002/ange.201204505

  16. 16. 蔡孟深, 邱东旭. 芳香碳苷的高选择性合成[J]. 科学通报, 1989(17): 1339-1341.

  17. 17. Helferich, B. and Schmitz-Hillebrecht, E. (1933) A New Method for the Synthesis of Glycosides of Phenols. Chemische Berichte, 66, 378-383.

  18. 18. 于建新, 伊向艺, 刘方明, 刘育亭. 1-芳酰基-4-(1’-N-β-D-吡喃型糖基)氨基硫脲类化合物的合成(英文) [J]. 合成化学, 2000(2): 137-141.

  19. 19. Kochetkov, N.K., Bochkov, A.F., Sokolavskaya, T.A., et al. (1971) Modifications of the Orthoester Method of Glycosylation. Carbohydrate Research, 16, 17-27. https://doi.org/10.1016/S0008-6215(00)86094-2

  20. 20. Demetzos, C., Skaltsounis, A.L., Tillequin, F. and Koch, M. (1990) Phase-Transfer-Catalyzed Synthesis of Flavonoid Glycosides. Planta Medica, 56, 535. https://doi.org/10.1055/s-2006-961099

  21. 21. Friesen, R.W. and Danishefsky, S.J. (1989) On the Controlled Oxidative Coupling of Glycals: A New Strategy for the Rapid Assembly of Oligosaccharides. ChemInform, 20, No. 49. https://doi.org/10.1002/chin.198949283

  22. 22. 苏丹. 白藜芦醇与白藜芦醇苷的药效学与药代动力学研究[D]: [硕士学位论文]. 西安: 第四军医大学, 2010.

  23. 23. Xiong, D., Lu, S., Wu, J., et al. (2017) Improving Key Enzyme Activity in Phenylpropanoid Pathway with a Designed Biosensor. Metabolic Engineering, 40, 115-123. https://doi.org/10.1016/j.ymben.2017.01.006

  24. 24. Gachon, C., Langlois-Meurinne, M. and Saindrenan, P. (2005) Plant Secondary Metabolism Glycosyltransferases: The Emerging Functional Analysis. Trends in Plant Science, 10, 542-549. https://doi.org/10.1016/j.tplants.2005.09.007

  25. 25. 郝旭晨, 董燕婕, 范丽霞, 苑学霞, 梁京芸, 王磊, 李大鹏, 赵善仓. 花生中白藜芦醇和白藜芦醇苷的提取及含量测定[J]. 中国食物与营养, 2020, 26(3): 27-30.

  26. 26. Ioannou, I., Barboza, E., Willig, G., et al. (2021) Implementation of an Enzyme Membrane Reactor to Intensify the α-O-Glycosylation of Resveratrol Using Cyclodextrins. Pharmaceuticals, 14, Article No. 319. https://doi.org/10.3390/ph14040319

  27. 27. 郑哲彬, 赵守训, 邓京振, 等. 藜芦酚碳甙的分离及鉴定[J]. 中国药科大学学报, 1995, 26(1): 5-7.

  28. 28. 孙娟. 虎杖中白藜芦醇苷和挥发油的分离分析研究[D]: [硕士学位论文]. 长沙: 中南大学, 2007.

  29. 29. Wang, Y.H., Zhang, Z.K., He, H.P., et al. (2007) Stilbene C-Glucosides from Cissus repens. Journal of Asian Natural Products Research, 9, 631-636. https://doi.org/10.1080/10286020600979548

  30. 30. 郝新才, 金明, 明东坡, 张勇洪, 谭艳. 酶解法提取虎杖中白藜芦醇苷的工艺研究[J]. 湖北医药学院学报, 2018, 37(4): 346-348.

  31. 31. Baderschneider, B. and Winterhalter, P. (2000) Isolation and Characterization of Novel Stilbene Derivatives from Riesling Wine. Journal of Agricultural and Food Chemistry, 48, 2681-2686. https://doi.org/10.1021/jf991348k

  32. 32. Brandolini, V., Maietti, A., Tedeschi, P., et al. (2002) Capillary Electrophoresis Determination, Synthesis, and Stability of Resveratrol and Related 3-O-β-d-Glucopyranosides. Journal of Agricultural & Food Chemistry, 50, 7407-7411.

  33. 33. Hanamura, S., Hanaya, K., Shoji, M., et al. (2016) Synthesis of Acacetin and Resveratrol 3,5-di-O-β-Glucopyranoside Using Lipase-Catalyzed Regioselective Deacetylation of Polyphenol Glycoside Peracetates as the Key Step. Journal of Molecular Catalysis B: Enzymatic, 128, 19-26. https://doi.org/10.1016/j.molcatb.2016.03.001

  34. 34. Trobo-Maseda, L., Orrego, A.H., Guisan, J.M., et al. (2020) Coimmobilization and Colocalization of a Glycosyltransferase and a Sucrose Synthase Greatly Improves the Recycling of UDP-Glucose: Glycosylation of Resveratrol 3-O -β-D-Glucoside. International Journal of Biological Macromolecules, 157, 510-521. https://doi.org/10.1016/j.ijbiomac.2020.04.120

  35. 35. Zhang, Z.J., Yu, B. and Schmidt, R.R. (2006) Synthesis of Mono- and Di-O-β-D-Glucopyranoside Conjugates of (E)-Resveratrol. Synthesis, 2006, 1301-1306. https://doi.org/10.1055/s-2006-926394

  36. 36. 陈鹏, 杨丽川, 雷伟亚, 等. 虎杖苷抗血栓形成作用的实验研究[J]. 昆明医学院学报, 2006, 27(1): 10-12.

  37. 37. None (2014) Synthesis of Glycosides of Resveratrol, Pterostilbene, and Piceatannol by Glucosyltransferase from Phytolaccaamericana Expressed in Bacillus subtilis and Their Chemopreventive Activity against Cancer, Allergic, and Alzheimer’s Diseases. Glycobiology Insights, 4, 1-6. https://doi.org/10.4137/GBI.S14123

  38. 38. Aguirre, L., Palacios-Ortega, S., Fernández-Quintela, A., et al. (2019) Pterostilbene Reduces Liver Steatosis and Modifies Hepatic Fatty Acid Profile in Obese Rats. Nutrients, 11, Article No. 961. https://doi.org/10.3390/nu11050961

  39. 39. Boccellino, M., Donniacuo, M., Bruno, F., et al. (2019) Protective Effect of Piceatannol and Bioactive Stilbene Derivatives against Hypoxia-Induced Toxicity in H9c2 Cardiomyocytes and Structural Elucidation as 5-LOX Inhibitors. European Journal of Medicinal Chemistry, 180, 637-647. https://doi.org/10.1016/j.ejmech.2019.07.033

  40. 40. 袁慧坤, 马倩, 袁文华, 赵文文, 刘香杉, 刁新平. 地衣芽孢杆菌的研究进展[J]. 黑龙江畜牧兽医, 2019(11): 43-45.

  41. 41. Pandey, R.P., Parajuli, P., Shin, J.Y., et al. (2014) Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives. Applied and Environmental Microbiology, 80, 7235-7243. https://doi.org/10.1128/AEM.02076-14

  42. 42. Pizzut-Serin, S., Potocki-Véronèse, G., van der Veen, B.A., et al. (2005) Characterisation of a Novel Amylosucrase from Deinococcus radiodurans. FEBS Letters, 579, 1405-1410. https://doi.org/10.1016/j.febslet.2004.12.097

  43. 43. 王书元, 张雨彤, 杨芳, 于晓海, 陈慧, 金建明. 白藜芦醇葡萄糖苷的生物合成[J]. 食品工业, 2020, 41(3): 191-195.

  44. 44. Orsini, F., Pelizzoni, F., Bellini, B., et al. (1997) Synthesis of Biologically Active Polyphenolic Glycosides (Combretastatin and Resveratrol Series). Carbohydrate Research, 301, 95-109. https://doi.org/10.1016/S0008-6215(97)00087-6

  45. 45. Hernández-Romero, Y., Rojas, J.I., Castillo, R., et al. (2004) Spasmolytic Effects, Mode of Action, and Structure-Activity Relationships of Stilbenoids from Nidema boothii. Journal of Natural Products, 67, 160-167. https://doi.org/10.1021/np030303h

  46. 46. Regev-Shoshani, G., Shoseyov, O., Bilkis, I., et al. (2003) Glycosylation of Resveratrol Protects It from Enzymicoxidation. Biochemical Journal, 374, 157-163. https://doi.org/10.1042/bj20030141

  47. 47. Singh, Y. and Demchenko, A.V. (2019) Koenigs-Knorr Glycosylation Reaction Catalyzed by Trimethylsilyl Trifluoromethanesulfonate. Chemistry—A European Journal, 25, 1461-1465. https://doi.org/10.1002/chem.201805527

  48. 48. Koenigs, W. and Knorr, E. (1901) Uebereinige Derivate des Traubenzuckers und der Galactose. Berichte der deutschen chemischen Gesellschaft, 34, 957-981. https://doi.org/10.1002/cber.190103401162

  49. 49. 梁海晶. 新型糖苷化方法学研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2020.

  50. 50. Schmidt, R.R. and Michel, J. (1980) Facile Synthesis of α- and β-O-GlycosylImidates; Preparation of Glycosides and Disaccharides. Angewandte Chemie International Edition in English, 19, 731-732. https://doi.org/10.1002/anie.198007311

  51. 51. Schmidt, R.R. and Kinzy, W. (1994) Anomeric-Oxygen Activation for Glycoside Synthesis: The Trichloroacetimidate Method. Advances in Carbohydrate Chemistry and Biochemistry, 50, 21-123. https://doi.org/10.1016/S0065-2318(08)60150-X

  52. 52. Aiguabella, N., Holland, M.C. and Gilmour, R. (2016) Fluorine-Directed 1,2-Trans Glycosylation of Rare Sugars. Organic & Biomolecular Chemistry, 14, 5534-5538. https://doi.org/10.1039/C6OB00025H

  53. 53. 任金红, 王博, 赵冬梅, 张健, 李刚, 程卯生. 白藜芦醇苷的合成及其维甲酸代谢阻断活性研究[J]. 中国药物化学杂志, 2010, 20(1): 19-24.

期刊菜单