﻿ 多旋翼UAV混合动力系统设计与性能分析 The Design and Performance Analysis of Hybrid Dynamical System with Multil-Rotor UAV

Journal of Aerospace Science and Technology
Vol.04 No.02(2016), Article ID:17903,9 pages
10.12677/JAST.2016.42004

The Design and Performance Analysis of Hybrid Dynamical System with Multil-Rotor UAV

Jian Zong, Yun Wang, Jusheng Mao

School of Aircraft Engineering, Nanchang Hangkong University, Nanchang Jiangxi

Received: Jun. 9th, 2016; accepted: Jun. 26th, 2016; published: Jun. 29th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

ABSTRACT

According to multi-rotor unmanned aerial vehicle’s disadvantages and the structure characteristic at the present, a hybrid dynamical system is being put forward for solving this relevant issue. Have designed and calculated with the hybrid dynamical system for multi-rotor unmanned aerial vehicle, and used the MATLAB/Simulink software to establish the hybrid dynamical system simulation model, there are some simulation and performance analysis for the hybrid dynamical system’s design. The results show that the hybrid dynamical system has the lower fuel consumption characteristic than single two-cycle engine in the same condition that type and output power and the hybrid dynamical system have the high reliability and without artificial recharge advantages, it also can reduce the multi-rotor unmanned aerial vehicle depending on battery when it needs to fly longer and reduce the demand with two-cycle engine’s reliability.

Keywords:Multi-Rotor Unmanned Aerial Vehicle, Hybrid Dynamical System, Simulation Model, Fuel Consumption Characteristic, Two-Cycle Engine, Reliability

1. 引言

2. 多旋翼UAV混合动力系统

3. 多旋翼UAV混合动力系统的设计

3.1. 多旋翼UAV混合动力系统的设计要求

1) 降低二冲程发动机油耗，减少多旋翼UAV长航时对电池的依赖性。

Table 1. Three kinds of hybrid system characteristics compare

Figure 1. Overall picture of series connection hybrid dynamical system for multi-rotor UAV

Figure 2. Overall picture of parallel connection hybrid dynamical system for multi-rotor UAV

2) 不需要人工为电池充电。

3) 当该混合动力系统的发动机空中停车时，在一定时间范围内仅靠电动机提供的升力能够确保多旋翼UAV的安全着陆，提高多旋翼UAV发动机的可靠性和多旋翼UAV的抗坠毁能力。

Figure 3. Overall picture of series parallel hybrid dynamical system for multi-rotor UAV

3.2. 多旋翼UAV混合动力系统设计计算

3.2.1. 发动机燃油消耗计算

3.2.2. 发电机和电动机模型

3.2.3. 电池充电和放电模型

3.2.4. 减速传动系统

4. 多旋翼UAV混合动力系统仿真

4.1. 混合动力系统参数选择

4.3. 计算结果与分析

Table 2. Parameter list of multi-rotor UAV hybrid dynamical system

Figure 4. Simulation mode of hybrid dynamical system

Figure 5. Performance simulation result of two-cycle gasoline engine

Figure 6. Test result of electric motor power input and pneumatic tension output

Figure 7. Simulation result of generator motor produce electricity after rectifier and voltage regulator

Figure 8. Simulation result of battery constant current discharge

5. 结论

1) 550 cm3油箱容量时，调节二冲程发动机转速为9500 r/min较低耗油率情况下，电池可提供额外

Figure 9. Simulation result of two kinds of engine’s fuel consumption

10 A长航时低电流为电动机组供电，此时混合动力总功率达到1.795 KW，混合动力燃油功耗比为3.011 W∙h/g，等效同样二冲程发动机以相同输出功率工作功耗比为2.592 W∙h/g，混合动力比单独二冲程发动机功耗比提高16.165%，即混合动力比单独二冲程发动机具有更低油耗特性，降低长航时对电池的依赖性。

2) 发动机空中停车时，电池满电可以为电机组提供约2.8 min 50 A电流，可为多旋翼UAV降落提供反应和操纵降落时间，提高发动机可靠性和飞行器的抗坠毁率。

3) 电动机输入功率小于发电机功率时，余额功率可以为电池充电，无须人工充电或补充电池燃料。

The Design and Performance Analysis of Hybrid Dynamical System with Multil-Rotor UAV[J]. 国际航空航天科学, 2016, 04(02): 25-33. http://dx.doi.org/10.12677/JAST.2016.42004

1. 1. 杨益军. 植保无人机飞入千亿市场蓝海可期[J]. 中国农药, 2015(12): 48-55.

2. 2. Hung, J.Y. and Gonzalez, L.F. (2012) On Parallal Hybrid-Electic Propusion System for Unmanned Aerial Verial Vehicles. Progress in Aerospace Science, 51, 1-17. http://dx.doi.org/10.1016/j.paerosci.2011.12.001

3. 3. 周宝龙, 刘忠长, 高宗英. 内燃机学[M]. 北京: 机械工业出版社, 2010: 67-72.

4. 4. 吴影生. 永磁无刷直流电机起动/发电系统研究[M]. 南京: 东南大学, 2004: 17-25.

5. 5. 陈根, 程启明, 李明, 等.电动汽车中锂电池两种建模方式的分析与比较[J]. 电源技术, 2014(11): 2051-2054.