﻿ 超临界机翼的静气动弹性特性研究 Investigations of Static Aeroelasticity Characteristics for Supercritical Wing

Journal of Aerospace Science and Technology
Vol.04 No.03(2016), Article ID:18658,7 pages
10.12677/JAST.2016.43009

Investigations of Static Aeroelasticity Characteristics for Supercritical Wing

Junli Wang, Bolin Feng, Chongli Huang, Dongsheng Zhang, Haiqing Bai

Mechanical Engineering College, Shaanxi University of Technology, Hanzhong Shaanxi

Received: Sep. 8th, 2016; accepted: Sep. 26th, 2016; published: Sep. 29th, 2016

ABSTRACT

Coupling with static aeroelastic balancing equation, the time domain calculation method of static aeroelastic deformation is developed using the structure influence coefficient method. Firstly, the static aeroelastic deformation of medium aspect ratio swept-back wing was simulated using the developed method. Computational results are in good agreement with those of other literatures and experimental results. The static aeroelasticity calculation method is feasible. Then, the aerodynamic force of supercritical wing and common wing is calculated by 3-D Euler equations with cell-centered finite-volume algorithm, explicit Runge-Kutta time stepping scheme. The static aeroelasticity characteristics of supercritical wing are summarized by comparison and analysis of computational results. The characteristics supply some academic foundations for design of supercritical elastic wing and improving aerodynamic characteristics of supercritical elastic wing.

Keywords:Supercritical Wing, Euler Equations, Static Aeroelastic Characteristic, Structure Influence Coefficient Method

1. 引言

2. 气动力数值计算方法

(1)

(2)

2.2.数值求解方法

(3)

3. 机翼弹性变形的求解方法

(4)

(5)

(6)

4. 算例及结果分析

4.1. 中等展弦比后掠机翼的静气动弹性变形计算

Figure 1. Spanwise lift coefficient curve of rigid wing

Figure 2. Elastic wing span wise section torsion angle

4.2. 超临界机翼的静气动弹性变形计算

Table 1. Main geometric parameters of computer wing

Figure 3. Spanwise distribution of wing lift coefficient

Figure 4. Twist angle distribution of straight elastic wing

5. 结论

1) 中等展弦比后掠机翼气动力和静变形的计算结果与试验和文献对比表明，本文所发展的气动力计

Figure 5. Spanwise deformation distribution of straight elastic in each section wing rigid axis

Figure 6. Twist angle distribution of swept elastic wing

Figure 7. Spanwise deformation distribution of swept elastic in each section wing rigid axis

2) 通过对比超临界机翼和普通机翼的真实弹性变形，总结出了一些超临界机翼静气动弹性变化规律，为超临界机翼的设计、避免静气动弹性的影响从而提高机翼的气动特性提供了理论依据。

Investigations of Static Aeroelasticity Characteristics for Supercritical Wing[J]. 国际航空航天科学, 2016, 04(03): 68-74. http://dx.doi.org/10.12677/JAST.2016.43009

1. 1. Flomenhoft, H.I. (2000) Aeroelasticity and Dynamic Loads—From 1903 to the Supersonic Era. AIAA Paper 2000- 1597. http://dx.doi.org/10.2514/6.2000-1597

2. 2. Bhardwaj, M.K, Kapania, R.K., Johnson, E.R., et al. (1998) A CFD/CSD Interaction Methodology for Aircraft Wings. AIAA Paper 98-4673.

3. 3. 闫锋, 杨青, 杨永年. 超临界机翼静气动弹性特性研究[J]. 西北工业大学学报, 2005, 23(6): 733-736.

4. 4. 郭正, 李晓斌, 瞿章华, 刘君. 用非结构动网格方法模拟有相对运动的多体绕流[J]. 空气动力学学报, 2001, 19(3): 309-316.

5. 5. Delanaye, M. (1977) Quadratic-Reconstruction Finite Volume Scheme for Compressible Flows on Unstructured Adaptive Grids. AIAA Journal, 35, 631-639. http://dx.doi.org/10.2514/2.183

6. 6. Jameson, N., Schmit, W. and Turkel, E. (1981) Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Scheme. AIAA Paper 1981-1259.

7. 7. 史爱明. 非结构动网格下非定常气动力计算和跨音速嗡鸣研究[D]: [硕士学位论文]. 西安: 西北工业大学, 2003.

8. 8. Gaitonde, F. (1995) A Three-Dimensional Moving Mesh Method for the Calculation of Unsteady Transonic Flows. The Aeronautical Journal, 99, 150-160.

9. 9. 杨永年. 气动弹性力学讲义[Z]. 西安: 西北工业大学, 1986.

10. 10. 史爱明, 杨永年, 王刚. 弹性机翼跨音速静气动弹性问题研究[J]. 工程力学, 2006, 23(5): 173-176.

11. 11. 郑诚行, 熊小依. 机翼跨音速非线性静气动弹性计算[C]. 杭州: 第六界全国气动弹性会议, 1999.