Advances in Physical Sciences
Vol.04 No.02(2016), Article ID:17795,6 pages
10.12677/APS.2016.42007

Review on Exercise and Mitochondrial Dynamics

Yanhuan Liu, Guodong Ma

School of Physical Education, Shandong University of Technology, Zibo Shandong

Received: May 29th, 2016; accepted: Jun. 13th, 2016; published: Jun. 16th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Mitochondrial dynamics is closely related to mitochondrial quality control. The effect of exercise on mitochondrial dynamics directly influences mitochondrial quality control. This paper reviewed the mechanism of mitochondrial dynamics and its relationship with exercise.

Keywords:Exercise, Mitochondrial Fusion/Fission, Mitophagy

运动与线粒体动力学研究综述

刘艳环,马国栋

山东理工大学体育学院,山东 淄博

收稿日期:2016年5月29日;录用日期:2016年6月13日;发布日期:2016年6月16日

摘 要

线粒体动力学与线粒体质量控制关系紧密,而运动对线粒体动力学的影响直接影响到线粒体的质量控制。本文就线粒体动力学的调控机制以及与运动的关系做一综述。

关键词 :运动,线粒体融合/分裂,线粒体自噬

1. 引言

线粒体作为真核细胞内提供能量的“动力工厂”,供给了机体所需的90%以上的能量。线粒体不仅为机体提供能量,而且在细胞代谢中处于中心位置 [1] 。线粒体是一个高度动态化的细胞器,它会随着细胞的不同生理状态而发生不同的改变 [2] ,而线粒体动态的维持与线粒体动力学(包括线粒体融合、分裂和自噬)改变密切相关。线粒体动力学的改变不仅与机体正常的生长发育有密切关系,而且还与糖尿病、肿瘤、肝病和心脑血管疾病等多种疾病密切相关 [3] 。线粒体作为对运动刺激高度敏感的细胞器,运动常常改变线粒体的质量,进而促进线粒体的功能,从而改善细胞的功能,维护机体的健康。线粒体质量的维持与线粒体动力学密切相关。近些年,许多研究均证实运动与线粒体动力学改变有密切关系,因此,本文将在这一方面做一综述。

2. 线粒体融合/分裂

2.1. 线粒体融合/分裂的机制

线粒体融合/分裂受动力蛋白家族GTPase的调控 [4] [5] ,线粒体融合与线粒体外膜和内膜蛋白有关,外膜融合依赖线粒体融合蛋白Mfn1和Mfn2的调控 [6] [7] ,线粒体融合/分裂与健康密切相关 [8] [9] ,这两个线粒体融合蛋白的重要性通过基因敲除的小鼠得到验证,当单独敲除Mfn1或Mfn2S是,小鼠在妊娠中期会死亡,而两个基因同时敲除死亡时间更早 [6] 。在心肌特异敲除Mfn1/Mfn2会导致胚胎死亡,而在部分敲除成年鼠的心脏中,会导致明显的线粒体功能异常和加快心肌病死亡的速度 [10] ,然而,Papanicolau等最近的研究中发现,心脏特异敲除Mfn1和Mfn2的小鼠在出生时表现正常,但很快在心肌细胞中堆积大量的不正常线粒体,这些小鼠很快形成了心肌病并且出生后不能活过16天 [11] 。尽管不清楚为什么在这两个研究中特异敲除心脏融合蛋白基因产生不同的表现,但这两个实验均说明Mfn1/2在维持线粒体正常形态和功能的重要性。线粒体融合还可以阻止线粒体自噬,从而保护细胞中线粒体的过度降解 [12] 。线粒体融合还能通过稀释线粒体受损蛋白或使正常的线粒体mtDNA进入有缺陷的线粒体从而起到保护作用 [4] ,然而,这种保护存在着一定的界限,Bhandari等发现:当在果蝇中阻止Parkin介导的线粒体自噬后,会导致果蝇的异常线粒体与正常线粒体的再融合,从而导致更多的线粒体异常,引起心肌病 [13] 。

线粒体内膜融合依赖Opa1蛋白 [4] ,最近发现,在病理状态下,小鼠心脏Opa1在926和931处的赖氨酸被乙酰化,进而降低了其功能。Opa1缺失是胚胎致死性的,在杂合子小鼠中,出生12个月后,心肌细胞中mtDNA数量减少,同时导致心脏和心肌中线粒体功能异常。

线粒体分裂由细胞质中的Drp1蛋白介导,它在线粒体外面形成一个环形结构,并进一步收缩,将线粒体分成两个线粒体 [2] [14] 。线粒体分裂在线粒体质量控制中发挥着重要作用,通过一种未知的机制将功能异常的蛋白质不对称地分离到线粒体的某一个区域,线粒体的分裂将这两个区域分开,形成两个新的线粒体,其中一个具有较高膜电位的线粒体将更有可能进行下一步的融合 [7] [15] ,在小鼠中研究发现,当Drp1发生突变后,线粒体自噬降低,氧化型的线粒体蛋白堆积,线粒体呼吸减弱,线粒体表现出高度融合 [15] 。在体内,抑制缺血再灌注大鼠心脏Drp1能改善心脏功能,减小心肌梗死的面积 [16] 。

2.2. 运动与线粒体融合/分裂

越来越多的研究表明,运动可以通过有效地提高线粒体的质量 [17] ,因此运动引起的线粒体融合分裂近些年受到众多学者的关注 [18] 。运动可以改变线粒体融合/分裂过程 [19] ,七个间歇性的高强度训练会逐渐增加Mfn1和Fis1蛋白的表达 [20] ,Ding等 [21] 的研究进一步表明,一次跑台运动后24小时,Mfn1和Mfn2 mRNA表达显著升高,但蛋白表达未见显著性差异。Cartoniet等 [22] 研究表明,在人类骨骼肌中一次骑自行车运动后24小时,Mfn1和Mfn2 mRNA表达也显著升高,而其表达通过PGC-1α的调控。但刘慧君 [23] 等研究发现,在120分钟的急性运动过程中,运动60分钟组和120分钟组小鼠骨骼肌Mfn2表达均显著降低,线粒体融合蛋白Mfn2表达显著降低,而分裂蛋白Drp1在这两个时间点表达显著升高。然而,我们研究发现,在经过12周的耐力训练后,大鼠肝脏融合蛋白Mfn1、Mfn2和Opa1的mRNA表大显著升高,而分裂蛋白Drp1表达显著降低 [24] ;Goncalves等 [25] 研究也发现耐力训练使肝脏线粒体融合能力增强;Greene等 [26] 也发现在肥胖小鼠的骨骼肌中,运动后Mfn1和Opa1 mRNA表达显著升高。出现上述差异可能与运动方式、运动强度以及受试对象不同等原因造成的。

关于运动引起线粒体融合分裂的机理目前尚不完全清楚。Garnier [27] 等研究发现,长期有氧耐力训练后,骨骼肌线粒体氧化磷酸化能力增强,线粒体融合蛋白Mfn2和分裂蛋白Drp1表达显著升高,而且PGC-1α分别与Mfn1和Drp1呈显著正相关,从而认PGC-1α在线粒体融合中起到至关重要的作用。另外,Cartoni等 [22] 研究发现,在男性运动员经过一次50分钟的中等强度运动后24小时,股外侧肌肉线粒体融合蛋白Mfn1和Mfn2表达同时升高,并且其表达的升高由PGC-1α和雌激素相关受体α (ERRα)共同激活。

3. 线粒体自噬

3.1. 线粒体自噬的机制

线粒体自噬是线粒体质量控制的重要步骤之一,在正常情况下,异常线粒体数量较少,线粒体处于较低水平的自噬状态,但当受到应激(如饥饿)情况下线粒体自噬能力会显著增强 [28] 。线粒体自噬作为细胞内调控线粒体质量控制的重要途径,在维持细胞功能中发挥着重要的作用。线粒体自噬受多种途径的调控。

PINK1-Parkin途径是其中重要的一个途径。在正常的细胞中,PINK1通过TOM复合体进入线粒体,然后被MPP和PARL降解,然而,对于失去线粒体膜电位的线粒体,PINK1不再进入线粒体,而是直接堆积在OMM上 [29] 。当PINK1堆积在OMM上后,PINK1募集Parkin [30] ,一旦募集成功,Parkin将使OMM上的VDAC1、Mfn1/2和己糖激酶I等泛素化 [31] 。然而,目前关于PINK1如何募集Parkin到线粒体上所知甚少。有学者认为,Parkin直接与PINK1在OMM上结合 [32] ,另外有研究表明,PINK1和Parkin有共同的底物,例如,PINK1介导Miro磷酸化,引起Parkin介导的泛素化和线粒体的降解 [31] 。最近,Chen等报道,Mfn2与Parkin作用,Mfn2的磷酸化是Parkin聚合到线粒体的先决条件 [33] ,但还需进一步明确PINK1是如何募集Parkin到线粒体上的。

另外,一些研究发现:线粒体外膜上存在着一些蛋白质或脂质类物质,而这些成分能够直接与线粒体作用,导致线粒体自噬的发生,如线粒体心磷脂和FUNDC1 [34] 直接与自噬泡上的LC3结合,从而形成线粒体自噬。相似的,线粒体外膜上的Nix/BNIP3L和BNIP3可以直接与自噬泡上的LC3结合,产生自噬 [35] 。Nix作为线粒体自噬的受体发挥着两个方面的作用:一ROS引起自噬,二促使Parkin移位。类似的,在Parkin缺失的心肌细胞中,BNIP3介导的自噬能力降低 [36] 。然而,Nix和BNIP3能够直接与自噬泡上的LC3结合,现在还不清楚Parkin为什么是Nix和BNIP3介导的线粒体自噬所必须的。

在线粒体自噬调控的PINK1/Parkin途径和Nix/BINP3途径中,在一般情况下,Nix/BNIP3途径乎发挥着维持线粒体健康的作用,而PINKI/Parkin途径似乎在应激条件下发挥作用更大。

线粒体自噬可能还与HIF-1α有关,在低氧环境下,PGAM5 (phosphoglycerate mutase family member)使FUNDC1去磷酸化,从而使FUNDC1与LC3结合更加紧密,诱导线粒体自噬发生 [28] [34] [37] [38] 。上调HIF-1α蛋白表达会显著提高线粒体自噬能力 [39] ,而BNIP3表达依赖HIF-1α的表达 [40] 。另外,去乙酰化酶SIRT1 (哺乳类与酵母蛋白沉默信息调节子2的同源基因)在线粒体自噬中也可能发挥着重要作用,当基因敲除SIRT1后会引起线粒体自噬能力降低 [41] ,SIRT1活性升高引起线粒体自噬能力增强 [42] 。SIRT1使FOXO3 (The forkhead box, class O3)去乙酰化 [43] ,使其与BNIP3启动子结合,上调BNIP3表达,从而加强线粒体自噬 [44] 。

3.2. 运动与线粒体自噬

运动与线粒体自噬方面的研究目前研究较少。2012年1月Beth Levine (自噬研究的领跑人)在Naure上发表文章首次证实运动可以改变线粒体自噬 [45] ,而SCIENCE少有地在同一时间对此进行了评述 [46] 。我们的研究表明,肝脏单纯的运动并不能改变线粒体自噬,但在急性酒精性肝损伤中,预运动训练却能降低因急性酒精性肝损伤引起的线粒体自噬 [47] 。另有研究表明,耐力训练可以提高衰老小鼠骨骼肌的线粒体自是能力 [48] 。薄海等研究发现,低氧联合运动可以提高骨骼肌线粒体自是能力 [49] ,催迪等 [50] 也研究发现耐力训练使骨骼肌线粒体自噬蛋白表达增加。

运动引起线粒体自噬改变的机制目前尚不完全清楚。我们及薄海等研究表明,运动引起线粒体自噬改变可能与HIF-1α有关 [47] [49] ,而催迪等 [50] 研究认为可能与PNIK1/Parkin通路有关。

4. 展望

线粒体质量控制对维持细胞的健康至关重要,而线粒体质量的控制与线粒体动力学密切相关。尽管许多的研究均证实了线粒体动力学与多种疾病的发病有关,但其研究结果尚不一致。运动对线粒体动力学的影响资料更为缺乏,其引起的变化规律也存在着矛盾之处,特别是运动引起线粒体动力学改变的机理更为模糊,因此进一步探讨运动改变线粒体动力学的规律及其机制对提高运动对健康的认识意义重大。

文章引用

刘艳环,马国栋. 运动与线粒体动力学研究综述
Review on Exercise and Mitochondrial Dynamics[J]. 体育科学进展, 2016, 04(02): 39-44. http://dx.doi.org/10.12677/APS.2016.42007

参考文献 (References)

  1. 1. Dorn 2nd, G.W. and Kitsis, R.N. (2015) The Mitochondrial Dynamism-Mitophagy-Cell Death Interactome: Multiple Roles Performed by Members of a Mitochondrial Molecular Ensemble. Circulation Research, 116, 167-182. http://dx.doi.org/10.1161/CIRCRESAHA.116.303554

  2. 2. Suliman, H.B. and Piantadosi, C.A. (2016) Mitochondrial Quality Control as a Therapeutic Target. Pharmacological Reviews, 68, 20-48. http://dx.doi.org/10.1124/pr.115.011502

  3. 3. Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065.

  4. 4. Chan, D.C. (2012) Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46, 265-287. http://dx.doi.org/10.1146/annurev-genet-110410-132529

  5. 5. Iqbal, S. and Hood, D.A. (2015) The Role of Mitochondrial Fusion and Fission in Skeletal Muscle Function and Dysfunction. Frontiers in Bioscience (Landmark Ed), 20, 157-172. http://dx.doi.org/10.2741/4303

  6. 6. Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E. and Chan, D.C. (2003) Mitofusins Mfn1 and Mfn2 Coordinately Regulate Mitochondrial Fusion and Are Essential for Embryonic Development. The Journal of Cell Biology, 160, 189-200. http://dx.doi.org/10.1083/jcb.200211046

  7. 7. Cai, Q. and Tammineni, P. (2016) Alterations in Mitochondrial Quality Control in Alzheimer’s Disease. Frontiers in Cellular Neuroscience, 10, 24. http://dx.doi.org/10.3389/fncel.2016.00024

  8. 8. Held, N.M. and Houtkooper, R.H. (2015) Mitochondrial Quality Control Pathways as Determinants of Metabolic Health. BioEssays, 37, 867-876. http://dx.doi.org/10.1002/bies.201500013

  9. 9. Frohman, M.A. (2015) Role of Mitochondrial Lipids in Guiding Fission and Fusion. Journal of Molecular Medicine (Berl), 93, 263-269. http://dx.doi.org/10.1007/s00109-014-1237-z

  10. 10. Chen, Y., Liu, Y. and Dorn 2nd, G.W. (2011) Mitochondrial Fusion Is Essential for Organelle Function and Cardiac Homeostasis. Circulation Research, 109, 1327-1331. http://dx.doi.org/10.1161/CIRCRESAHA.111.258723

  11. 11. Papanicolaou, K.N., Kikuchi, R., Ngoh, G.A., et al. (2012) Mitofusins 1 and 2 Are Essential for Postnatal Metabolic Remodeling in Heart. Circulation Research, 111, 1012-1026. http://dx.doi.org/10.1161/CIRCRESAHA.112.274142

  12. 12. Gomes, L.C., Di, B.G. and Scorrano, L. (2011) During Autophagy Mitochondria Elongate, Are Spared from Degradation and Sustain cell Viability. Nature Cell Biology, 13, 589-598. http://dx.doi.org/10.1038/ncb2220

  13. 13. Bhandari, P., Song, M., Chen, Y., Burelle, Y. and Dorn 2nd, G.W. (2014) Mitochondrial Contagion Induced by Parkin Deficiency in Drosophila Hearts and Its Containment by Suppressing Mitofusin. Circulation Research, 114, 257-265. http://dx.doi.org/10.1161/CIRCRESAHA.114.302734

  14. 14. Smirnova, E., Griparic, L., Shurland, D.L. and van der Bliek, A.M. (2001) Dynamin-Related Protein Drp1 Is Required for Mitochondrial Division in Mammalian Cells. Molecular Biology of the Cell, 12, 2245-2256. http://dx.doi.org/10.1091/mbc.12.8.2245

  15. 15. Twig, G., Elorza, A., Molina, A.J., et al. (2008) Fission and Selective Fusion Govern Mitochondrial Segregation and Elimination by Autophagy. The EMBO Journal, 27, 433-446. http://dx.doi.org/10.1038/sj.emboj.7601963

  16. 16. Ong, S.B., Subrayan, S., Lim, S.Y., Yellon, D.M., Davidson, S.M. and Hausenloy, D.J. (2010) Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury. Circulation, 121, 2012-2022. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.906610

  17. 17. Cobley, J.N., Moult, P.R., Burniston, J.G., Morton, J.P. and Close, G.L. (2015) Exercise Improves Mitochondrial and Redox-Regulated Stress Responses in the Elderly: Better Late than Never. Biogerontology, 16, 249-264. http://dx.doi.org/10.1007/s10522-014-9546-8

  18. 18. Drake, J.C., Wilson, R.J. and Yan, Z. (2016) Molecular Mechanisms for Mitochondrial Adaptation to Exercise Training in Skeletal Muscle. The FASEB Journal, 30, 13-22. http://dx.doi.org/10.1096/fj.15-276337

  19. 19. Yan, Z., Lira, V.A. and Greene, N.P. (2012) Exercise Training-Induced Regulation of Mitochondrial Quality. Exercise and Sport Sciences Reviews, 40, 159-164.

  20. 20. Perry, C.G., Lally, J., Holloway, G.P., Heigenhauser, G.J., Bonen, A. and Spriet, L.L. (2010) Repeated Transient mRNA Bursts Precede Increases in Transcriptional and Mitochondrial Proteins during Training in Human Skeletal Muscle. The Journal of Physiology, 588, 4795-4810. http://dx.doi.org/10.1113/jphysiol.2010.199448

  21. 21. Ding, H., Jiang, N., Liu, H., et al. (2010) Response of Mitochondrial Fusion and Fission Protein Gene Expression to Exercise in Rat Skeletal Muscle. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800, 250-256. http://dx.doi.org/10.1016/j.bbagen.2009.08.007

  22. 22. Cartoni, R., Leger, B., Hock, M.B., et al. (2005) Mitofusins 1/2 and ERRα Expression Are Increased in Human Skeletal Muscle after Physical Exercise. The Journal of Physiology, 567, 349-358. http://dx.doi.org/10.1113/jphysiol.2005.092031

  23. 23. 刘慧君, 姜宁, 赵斐, 等. 急性运动中骨骼肌线粒体移动相关基因表达与线粒体动力学的关系[J]. 天津体育学院学报, 2010, 25(2): 118-121.

  24. 24. 马国栋, 刘艳环. 耐力训练对急性酒精性肝损伤大鼠线粒体融合与分裂的影响[J]. 北京体育大学学报, 2013(11): 70-74.

  25. 25. Goncalves, I.O., Passos, E., Diogo, C.V., et al. (2016) Exercise Mitigates Mitochondrial Permeability Transition Pore and Quality Control Mechanisms Alterations in Nonalcoholic Steatohepatitis. Applied Physiology, Nutrition, and Metabolism, 41, 298-306. http://dx.doi.org/10.1139/apnm-2015-0470

  26. 26. Greene, N.P., Lee, D.E., Brown, J.L., et al. (2015) Mitochondrial Quality Control, Promoted by PGC-1α, Is Dysregulated by Western Diet-Induced Obesity and Partially Restored by Moderate Physical Activity in Mice. Physiological Reports, 3, pii: e12470.

  27. 27. Garnier, A., Fortin, D., Zoll, J., et al. (2005) Coordinated Changes in Mitochondrial Function and Biogenesis in Healthy and Diseased Human Skeletal Muscle. The FASEB Journal, 19, 43-52. http://dx.doi.org/10.1096/fj.04-2173com

  28. 28. Liu, L., Sakakibara, K., Chen, Q. and Okamoto, K. (2014) Recep-tor-Mediated Mitophagy in Yeast and Mammalian Systems. Cell Research, 24, 787-795. http://dx.doi.org/10.1038/cr.2014.75

  29. 29. Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P. and Youle, R.J. (2010) Mitochondrial Membrane Potential Regulates PINK1 Import and Proteolytic Destabilization by PARL. The Journal of Cell Biology, 191, 933-942. http://dx.doi.org/10.1083/jcb.201008084

  30. 30. Jin, S.M. and Youle, R.J. (2013) The Accumulation of Misfolded Proteins in the Mitochondrial Matrix Is Sensed by PINK1 to Induce PARK2/Parkin-Mediated Mitophagy of Polarized Mitochondria. Autophagy, 9, 1750-1757. http://dx.doi.org/10.4161/auto.26122

  31. 31. Wang, X., Winter, D., Ashrafi, G., et al. (2011) PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell, 147, 893-906. http://dx.doi.org/10.1016/j.cell.2011.10.018

  32. 32. Kim, Y., Park, J., Kim, S., et al. (2008) PINK1 Controls Mitochondrial Localization of Parkin through Direct Phosphorylation. Biochemical and Biophysical Research Communications, 377, 975-980. http://dx.doi.org/10.1016/j.bbrc.2008.10.104

  33. 33. Chen, Y. and Dorn 2nd, G.W. (2013) PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science, 340, 471-475.

  34. 34. Novak, I., Kirkin, V., McEwan, D.G., et al. (2010) Nix Is a Selective Autophagy Receptor for Mitochondrial Clearance. EMBO Reports, 11, 45-51. http://dx.doi.org/10.1038/embor.2009.256

  35. 35. Lee, Y., Lee, H.Y., Hanna, R.A. and Gustafsson, A.B. (2011) Mitochondrial Autophagy by Bnip3 Involves Drp1-Me- diated Mitochondrial Fission and Recruitment of Parkin in Cardiac Myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 301, H1924-H1931. http://dx.doi.org/10.1152/ajpheart.00368.2011

  36. 36. Liu, L., Feng, D., Chen, G., et al. (2012) Mitochondrial Outer-Membrane Protein FUNDC1 Mediates Hypoxia-Induced Mitophagy in Mammalian Cells. Nature Cell Biology, 14, 177-185. http://dx.doi.org/10.1038/ncb2422

  37. 37. Chen, G., Han, Z., Feng, D., et al. (2014) A Regulatory Signaling Loop Comprising the PGAM5 Phosphatase and CK2 Controls Receptor-Mediated Mitophagy. Molecular Cell, 54, 362-377. http://dx.doi.org/10.1016/j.molcel.2014.02.034

  38. 38. Wu, H., Xue, D., Chen, G., et al. (2014) The BCL2L1 and PGAM5 Axis Defines Hypoxia-Induced Receptor-Mediated Mitophagy. Autophagy, 10, 1712-1725. http://dx.doi.org/10.4161/auto.29568

  39. 39. Gong, G., Hu, L., Liu, Y., et al. (2014) Upregulation of HIF-1α Protein Induces Mitochondrial Autophagy in Primary Cortical Cell Cultures through the Inhibition of the mTOR Pathway. International Journal of Molecular Medicine, 34, 1133-1140.

  40. 40. Ishihara, M., Urushido, M., Hamada, K., et al. (2013) Sestrin-2 and BNIP3 Regulate Autophagy and Mitophagy in Renal Tubular Cells in Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 305, F495-F509. http://dx.doi.org/10.1152/ajprenal.00642.2012

  41. 41. Di, S.G., Pestell, T.G., Casimiro, M.C., et al. (2015) Loss of Sirt1 Promotes Prostatic Intraepithelial Neoplasia, Reduces Mitophagy, and Delays Park2 Translocation to Mitochondria. The American Journal of Pathology Home, 185, 266-279. http://dx.doi.org/10.1016/j.ajpath.2014.09.014

  42. 42. Jang, S.Y., Kang, H.T. and Hwang, E.S. (2012) Nicotinamide-Induced Mitophagy: Event Mediated by High NAD+/ NADH Ratio and SIRT1 Protein Activation. The Journal of Biological Chemistry, 287, 19304-19314. http://dx.doi.org/10.1074/jbc.M112.363747

  43. 43. Hariharan, N., Maejima, Y., Nakae, J., Paik, J., DePinho, R.A. and Sadoshima, J. (2010) Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circulation Research, 107, 1470-1482. http://dx.doi.org/10.1161/CIRCRESAHA.110.227371

  44. 44. Kume, S., Uzu, T., Horiike, K., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1- Dependent Mitochondrial Autophagy in Mouse Aged Kidney. Journal of Clinical Investigation, 120, 1043-1055. http://dx.doi.org/10.1172/JCI41376

  45. 45. He, C., Bassik, M.C., Moresi, V., et al. (2012) Exercise-Induced BCL2-Regulated Autophagy Is Required for Muscle Glucose Homeostasis. Nature, 481, 511-515. http://dx.doi.org/10.1038/nature10758

  46. 46. Garber, K. (2012) Autophagy. Explaining Exercise. Science, 335, 281.

  47. 47. Ma, G.D., Liu, Y.H., Zhang, Q.L., et al. (2014) Pre-Endurance Training Prevents Acute Alcoholic Liver Injury in Rats through the Regulation of Damaged Mitochondria Accumulation and Mitophagy Balance. Hepatology International, 8, 425-435. http://dx.doi.org/10.1007/s12072-014-9529-5

  48. 48. Kim, Y.A., Kim, Y.S., Oh, S.L., Kim, H.J. and Song, W. (2013) Autophagic Response to Exercise Training in Skeletal Muscle with Age. Journal of Physiology and Biochemistry, 69, 697-705. http://dx.doi.org/10.1007/s13105-013-0246-7

  49. 49. 薄海, 李玲, 段富强, 朱江. 低氧联合运动对大鼠骨骼肌线粒体自噬的影响[J]. 中国康复医学杂志, 2014, 29(10): 908-912.

  50. 50. 崔迪, 贺杰, 孙婧瑜, 丁树哲. 耐力训练与p53抑制剂pft-α对小鼠骨骼肌线粒体自噬相关基因表达的影响[J]. 天津体育学院学报, 2013, 28(5): 422-426.

期刊菜单