Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 80336 , 8 pages
10.12677/ACM.2024.141306

新生儿脑损伤发生机制及其产前相关高危因素研究进展

邢丽媛1,李亚军2*,刘红艳3,邢怡3,郭甜甜3,张楚楚3

1西安医学院第一附属医院,陕西 西安

2西北妇幼儿童医院,陕西 西安

3西安医学院,陕西 西安

收稿日期:2023年12月27日;录用日期:2024年1月21日;发布日期:2024年1月31日

摘要

新生儿缺氧缺血性脑病(Hypoxic ischemic encephalopathy, HIE)是由于新生儿期严重缺氧脑损伤引起的复杂生理、细胞和分子变化。导致过早死亡或各种终身发病率,包括癫痫发作、意识改变、呼吸无力、肌肉紧张度差或代谢紊乱等急性症状,以及脑瘫、癫痫、智力残疾和行为障碍等慢性疾病。本文分析了新生儿缺氧缺血性脑病(HIE)可能的发病机制及如分娩孕周、出生体重、孕母合并症、胎盘因素等相关危险因素对新生儿缺氧缺血性脑病的影响,目的是讨论相关危险因素对HIE发生的影响,为预防HIE的发生提供指导意义。

关键词

新生儿缺氧缺血性脑病,新生儿脑损伤发生机制,产前相关高危因素

Research Progress on the Pathogenesis of Neonatal Brain Injury and Its Related Risk Factors before Birth

Liyuan Xing1, Yajun Li2*, Hongyan Liu3, Yi Xing3, Tiantian Guo3, Chuchu Zhang3

1The First Affiliated Hospital of Xi’an Medical College, Xi’an Shaanxi

2Northwest Women’s and Children’s Hospital, Xi’an Shaanxi

3Xi’an Medical College, Xi’an Shaanxi

Received: Dec. 27th, 2023; accepted: Jan. 21st, 2024; published: Jan. 31st, 2024

ABSTRACT

Neonatal hypoxic ischemic encephalopathy is a complex physiological, cellular and molecular change caused by severe hypoxic brain injury in the neonatal period. Causes premature death or a variety of lifetime morbidity, including acute symptoms such as seizures, altered consciousness, respiratory weakness, poor muscle tone or metabolic disorders, as well as chronic conditions such as cerebral palsy, epilepsy, intellectual disability and behavioural disorders. This paper analyzed the possible pathogenesis of neonatal hypoxic ischemic encephalopathy and the influence of related risk factors such as gestational week, birth weight, maternal comorbiditions, placental factors and other risk factors on neonatal hypoxic ischemic encephalopathy, with the purpose of discussing the influence of related risk factors on the occurrence of HIE and providing guidance for the prevention of HIE.

Keywords:Neonatal Hypoxic Ischemic Encephalopathy, Mechanism of Neonatal Brain Injury, Prenatal Related Risk Factors

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. HIE概念

新生儿脑病(Neonatal enceopathy, NE)是一种新生儿脑功能紊乱的临床综合征,发生在妊娠35周以上的婴儿出生后第一天。最常见的原因是围产期窒息后的缺氧缺血性脑病(Hypoxic ischemic encephalopathy, HIE) [1] 。缺氧缺血性脑病是由于新生儿期严重缺氧脑损伤引起的复杂生理、细胞和分子变化。导致过早死亡或各种终身发病率,包括癫痫发作、意识改变、呼吸无力、肌肉紧张度差或代谢紊乱等急性症状,以及脑瘫、癫痫、智力残疾和行为障碍等慢性疾病 [2] 。围产期缺氧缺血性脑病(HIE)是新生儿脑病的一个亚组,大约每1000例活产婴儿中有3例发生,并且仍然是足月婴儿死亡的主要原因 [3] [4] 。HIE的发病率和死亡率为23%,其临床后果包括癫痫发作、脑瘫(CP)、视力和听力障碍以及精神异常 [3] [5] [6] 。因此有效预防缺氧缺血性脑病是我们目前首先要解决的问题 [7] 。HIE的发病率在发达国家为每1000例活产1.5例,在发展中国家为每1000例活产2.3~26.5例 [3] [8] 。据估计,在高收入国家,NE的发病率为每1000例活产3.0例,其中每1000例活产1.5例为HIE,其余为其他病因 [3] 。在低收入和中等收入国家,这一发病率上升至每1000例活产9.8~26.5例 [9] ,NE是发病和死亡的主要原因 [10] 。

2. HIE发生机制

在HIE中,有早期和晚期的炎症过程。早期的炎症反应持续数小时到数天。它是由脑内固有免疫细胞小胶质细胞的激活引起的,受损的神经元细胞释放内源性分子和促炎细胞因子TNF-a和IL-1b [11] 。激活的小胶质细胞随后释放促炎细胞因子和蛋白酶,激活nmda介导的毒性,导致继发性神经元损伤 [12] 星形胶质细胞是新生儿大脑中最大的胶质细胞群,通过谷氨酸摄取代谢、血脑屏障(BBB)的维持和损伤后胶质瘢痕的形成发挥保护作用。在HIE中,星形胶质细胞产生细胞外谷氨酸失调,神经元轴突损伤,并释放TNF-a和IL-6 [12] 在基础试验中,中性粒细胞在新生儿大鼠脑HIE后4小时首次出现在脑血管系统中,并在初始损伤后42小时外渗至脑实质。中性粒细胞的耗竭只有在HIE [13] 之前才具有神经保护作用。最后T细胞和B细胞参与HIE后的延迟神经炎症反应,并持续长期炎症反应,直至HIE后35天。此外脑损伤后大量小胶质细胞(Microglia)被激活,其表型发生变化,由具有促炎和神经毒性作用的M1表型转换为具有抗炎和神经保护作用的M2表型,从而减轻继发性神经损伤;星形胶质细胞(Astrocytes)是神经系统内分布最广泛的胶质细胞,伴随标志蛋白胶质原纤维酸性蛋白的改变,发挥对神经系统的“双刃剑”作用,适度活化有益,而过度活化会引起神经元死亡,胶质瘢痕的最终形成不利于神经元轴突和髓鞘的再生;少突胶质细胞(Oligodendrocytes)的脱髓鞘化是HIE后遗留脑瘫等后遗症的重要机制之一 [14] 。HIE是新生儿发病和死亡的重要原因。

对于HIE的病理生理和生化机制来说,其中神经细胞凋亡或坏死是脑损伤的最终结果。新生儿HIE的病理生理包括三个阶段:第一阶段为原发性能量缺乏。这是缺氧缺血性损伤的前6小时。它发生在通过胎盘的血流量减少的情况下,导致胎儿缺氧缺血、酸中毒、心肌收缩力下降、动脉血压下降和脑血流量减少 [15] 。因此,脑组织缺氧缺血性发作时,神经细胞内葡萄糖的无氧代谢增强,三磷酸腺苷减少。这导致细胞内能量消耗,离子泵和Na+、Ca++运输中断,乳酸和自由基积聚,以及线粒体功能障碍、神经水肿和可能的细胞凋亡。第二阶段为二次能量不足。它发生在缺氧缺血性事件后6~72小时。兴奋的神经递质(谷氨酸、GABA、天冬氨酸)和自由基继续释放,线粒体功能障碍更加明显,磷储备耗尽。这一阶段的进展激活了许多级联反应,包括炎症因子,强调神经细胞的凋亡或坏死。在此期间预计会发生抽搐 [16] 。第三阶段称为慢性炎症期。它发生在缺氧缺血过程开始后72小时,可持续数天或数月。受损脑组织的修复可以发生在这一阶段,此时神经元和神经胶质细胞开始繁殖和再生,或者脑组织的损伤和退化通过从小胶质细胞和星形胶质细胞释放有害细胞因子而继续进行。这导致轴突生长、突触发生和神经发生受损 [16] [17] 。因此,查找HIE发生相关因素,给予针对性干预措施,控制病情,可以阻止HIE病情进展,减轻脑损害,增加脑血流,消除脑水肿,减少神经后遗症,从而改善患儿生存质量 [18] [19] 。

3. HIE危险因素

HIE发生的主要原因是由于胎儿宫内窘迫和新生儿出身时窒息,约有80%~90% HIE发生于孕期或产时,仅有10%的HIE发生于产后 [20] 。甚至一些未被认为是新生儿脑损伤的高危因素,但却导致了严重的脑损害,如剖宫产、红细胞增多症、化脓性脑膜炎、弥散性血管内凝血(disseminated intravascular coagulation, DIC)、电解质紊乱、动脉导管未闭(patent ductus arteriosus, PDA)、高频震荡通气(high-frequency oscillatory ventilation, HFOV)。是刘敬等人发现可能会影响新生儿脑损伤发生的原因 [21] 。为此我们来讨论一下产前相关危险因素对新生儿脑损伤的作用。

3.1. 分娩孕周及出生体重

早产和低出生体重是目前最常见新生儿脑损伤危险因素。出生胎龄 < 32周或出生体重 < 1500 g的早产儿最易发生脑损伤 [22] 。有研究表明,早产是永久性神经系统损伤十分重要的危险因素,分娩孕周、出生体重和发生脑损伤的风险呈负相关,且分娩孕周是新生儿脑损伤的独立危险因素。

3.2. 孕母合并症

产妇自身患有慢性疾病或严重脏器功能障碍疾病,包括高血压、糖尿病、严重贫血、心肺功能障碍;产妇长期吸烟或被动吸二手烟,高龄产妇及多胎妊娠等因素,均会造成产妇产前缺氧。妊高症令产妇和胎儿小动脉发生痉挛,引起脑、心、肝、肾等多脏器功能发生障碍,同时也累计胎盘,从而引起胎儿缺血缺氧;羊水过少常造成胎儿脐带受压,诱发胎儿宫内窘迫;胎膜早破常使胎儿早产,可能引起胎肺发育不良,或羊水流出,严重者会引起胎儿宫内窘迫;羊水污染常是造成胎儿宫内缺氧的主要原因 [23] 。产前因素造成宫内缺氧,可降低产妇子宫胎盘血流量,影响胎盘循环,造成胎儿宫内缺氧。孕期合并症文献报道子痫前期、绒毛膜羊膜炎、胎儿生长受限、胎盘早剥等都与脑损伤的发生相关。妊娠期高血压、妊娠期糖尿病发现与新生儿脑损伤的发生可能有一定的关系 [24] 。

妊娠期高血压疾病是孕产妇相对严重的并发症。子痫前期是新生儿脑损伤的独立危险因素,它与慢性缺血缺氧、炎症及氧化应激可能有关 [25] ,子痫前期使螺旋小动脉收缩痉挛从而导致胎盘灌注不足导致慢性缺血缺氧。而氧化应激和炎症反应则通过刺激血管收缩和激活凝血的级联反应促使脑损伤的发生。两者共同作用引起胎儿宫内慢性缺氧,在病理上严重的缺氧,会引起各种不同器官、组织的缺氧,从而导致不同的病理性变化,例如心肌缺氧时会影响心功能,使心搏量减少、血流减慢,导致肺血管瘀血,同时也会影响胎儿脑部供血,引起缺氧性脑损伤。新生儿缺氧缺血性脑病产前相关高危因素的研究进展。故子痫前期可能通过诱导新生儿脑动静脉血管发生功能和结构变化促进脑梗死发生。子痫前期是胎盘床的血管缺损,可减少子宫胎盘血流量,并可能导致胎儿缺氧 [26] [27] [28] [29] 。多项研究证明,先兆子痫与母体血栓前性疾病、母体血栓栓塞史以及胎盘血栓性病变有关 [30] [31] [32] ,有证据表明,先兆子痫与多种不良妊娠结局相关,包括IUGR、新生儿脑病、新生儿静脉血栓形成和胎儿死亡 [26] [33] [34] [35] [36] 。

妊娠期糖尿病,患有妊糖的母亲高水平糖化血红蛋白可强化氧合血红蛋白与氧气的亲和力,从而使胎儿氧供减少,而高水平胰岛素促进红细胞生成,导致血液黏滞增加血栓风险,同时胎盘绒毛纤维蛋白样坏死毛细血管数量增加使绒毛间隙和胎儿毛细血管间扩散距离增加氧气运输交换紊乱 [37] [38] 引起宫内生长迟缓(intrauterine growth retradatiano, IUGR)及血栓栓塞等不良结局 [39] 。此外母亲产前感染发热体温 > 38℃时,使血管内皮加速损伤,这可能与炎症因子活化血小板有关,严重者甚至会引发弥散性血管内凝血形成血栓 [40] [41] 。

母体、胎盘因素也不同程度影响胎儿宫内发育。疤痕子宫再次妊娠者中,HIE足月儿发生率高于早产儿,这与疤痕子宫易发生盆腔黏连从而导致胎盘供血不足、足月儿耗氧量大导致胎儿宫内生长受限及宫内慢性缺氧等有关 [42] [43] 。故妊娠期间应适当增加胎盘营养、改善胎盘灌注,控制胎儿过期生长、确保胎儿供氧量,尽可能减少或避免HIE发生 [44] 。

3.3. 宫内因素

宫内感染(例如绒毛膜羊膜炎)使得新生儿发生脑瘫的风险增加,发生痉挛性脑瘫和脑室周围白质损伤的风险也大大增加 [45] 。研究表明宫内感染所致的胎儿生长受限的严重程度与脑损伤的发生率呈正相关 [46] 。胎盘早剥引起胎儿宫内急性缺血缺氧,新生儿易并发脑室内出血和脑瘫 [47] ,宫内感染时炎症因子损伤脑血管内皮,内皮坏死脱落激发内源性凝血,促进血小板聚集,同时也可导致胎儿生长受限,宫内感染占胎儿生长受限病因的5%~10%。最常见的是巨细胞病毒和弓形虫感染,其他病原体如风疹病毒、人乳头瘤病毒等也会引起,促进NCI的发生。多项研究表明宫内感染不仅是早产的危险因素之一,也大大增加了脑损伤的风险,严重宫内感染引起的炎症反应也是新生儿脑损伤导致脑瘫的重要原因 [48] 。产热提示宫内炎症 [31] [49] [50] 存在炎性细胞因子,可损害胎儿中枢神经系统 [51] 。绒毛膜羊膜炎也是HIE的围产期危险因素。绒毛膜羊膜炎可导致胎盘血栓栓塞,并增加胎儿脑卒中栓塞的风险。

宫内缺氧(羊水粪染)随孕周增加胃肠道趋于成熟致胎粪生理性排泄增多、足月胎儿体格增长快而发生宫内缺氧几率较早产儿大等因素致羊水粪染从而导致HIE发生有关,HIE足月患儿羊水粪染发生率高于早产患儿。因此要有效预防HIE的发生需密切监测孕晚期胎儿宫内缺氧特异性指标如羊水粪染等 [52] 。

3.4. 胎盘、脐带相关的高危因素

胎盘和脐带是运送营养物质和氧气的主要通道,出现胎盘炎症、血流灌注不足、脐带绕颈和打结等,可引起胎儿血流灌注不足而缺血梗死 [39] [53] 。脐带、胎盘是孕母联系胎儿与胎盘的枢纽,胎儿获得氧气、营养都是靠此维持的。当脐带缠绕时引起血液循环受阻或胎儿颈静脉受压,严重时出现脐血流中断,胎儿氧气供应量明显减少,致使脑部缺氧,造成死胎、死产,宫内窘迫或新生儿窒息以及缺氧缺血性脑损伤。新生儿缺氧缺血性脑病产前相关高危因素的研究进展。脐带过长打结、绕颈,脐带过短,脐带先露、脱垂等均会影响胎盘血液供应,造成新生儿窒息。尽管通过影像学检查可发现脐带绕颈周数,但不易估计脐带绕颈时的松紧度,因此难以评估是否存在胎儿窘迫症状。

3.5. 胎儿因素

宫内发育迟缓、低体重儿、巨大儿、早产儿、过期产、先天畸形等常伴有病理妊娠,包括高血压、糖尿病、严重贫血、胎盘异位、多胎妊娠等。临床发现,诸多胎儿因素常于产时造成胎儿窒息,发病率较高 [54] 。近年来,多胎妊娠导致脑损伤问题日益引起学者的关注。有研究报道多胎妊娠发生脑瘫的风险比单胎妊娠增高4~10倍,尤其是复杂性单绒毛膜双胎(CMCT) [54] 。有研究表明,由单绒毛膜双胎所致脑损伤甚至继发脑瘫的风险远远高于双绒毛双胎 [55] 是由于单绒毛膜双胎(MCT)胎盘交通血管的存在,两胎儿之间存在血液交换,CMCT两胎儿间的血交换不平衡出现血流动力学不稳定,进而出现胎儿脑组织供血供氧变化,可能构成CMC发生新生儿脑损伤的病理生理基础 [56] 。MCT脑损伤风险增高还与其内在的因素(如双胎之一胎死宫内,双胎输血综合征,双胎之一选择性生长受限,双胎贫血–红细胞增多序列等)有关。

3.6. 胎盘异常因素

胎盘早剥、前置胎盘、胎盘功能不良或结构异常等,均会造成HIE的发生。上述胎盘功能异常,常与胎儿供养关系较为密切,第36 W妊娠后,胎盘微绒毛表面扩张因子逐渐减少,产妇和胎儿之间的交换面积逐渐缩小,在孕第41 W后胎盘钙化加剧。胎盘钙化意味着胎盘输送养分的功能下降。而随着胎儿的日益长大,对养分的需求越来越多,胎盘却越来越不能满足,胎儿便可能停止生长、甚至死亡,因此胎盘钙化对胎儿具有危害 [57] 。

4. 结论

综上所述,引起新生儿缺氧缺血性脑病的产前因素都是相互联系,相互作用,共同影响的,例如妊娠期高血压本身也是引起新生儿脑损伤的高危因素。因此,要降低新生儿缺氧缺血性脑病的发生率,不但需要持续观察孕母的健康状况,并且针对这些相关的危险因素及时进行适当的干预,同时,也要求我们切实做好相关孕妇及胎儿的产前检查,预防和治疗并发症、选择适当的分娩方式、熟练掌握新生儿心肺复苏技术等,从而确保降低新生儿缺氧缺血性脑病的发生率。

文章引用

邢丽媛,李亚军,刘红艳,邢 怡,郭甜甜,张楚楚. 新生儿脑损伤发生机制及其产前相关高危因素研究进展
Research Progress on the Pathogenesis of Neonatal Brain Injury and Its Related Risk Factors before Birth[J]. 临床医学进展, 2024, 14(01): 2173-2180. https://doi.org/10.12677/ACM.2024.141306

参考文献

  1. 1. Lamblin, M.D., Racoussot, S., Pierrat, V., et al. (1996) [Hypoxic-Ischemic Encephalopathy of the Full Term Newborn. Contri-bution of the Electroencephalogram and Trans-Fontanelle Echography to the Prognostic Evaluation. Report of 29 Cases]. Neu-rophysiologie Clinique, 26, 369-378.

  2. 2. Greco, P., Nencini, G., Piva, I., et al. (2020) Pathophysiology of Hypoxic-Ischemic Encephalopathy: A Review of the Past and a View on the Future. Acta Neurologica Belgica, 120, 277-288. https://doi.org/10.1007/s13760-020-01308-3

  3. 3. Kurinczuk, J.J., White-Koning, M. and Badawi, N. (2010) Epidemiolo-gy of Neonatal Encephalopathy and Hypoxic-Ischaemic Encephalopathy. Early Human Development, 86, 329-338. https://doi.org/10.1016/j.earlhumdev.2010.05.010

  4. 4. Liu, L., Oza, S., Hogan, D., et al. (2015) Global, Regional, and National Causes of Child Mortality in 2000-13, with Projections to Inform Post-2015 Priorities: An Updated Systematic Analy-sis. The Lancet, 385, 430-440. https://doi.org/10.1016/S0140-6736(14)61698-6

  5. 5. Eunson, P. (2015) The Long-Term Health, Social, and Financial Burden of Hypoxic-Ischaemic Encephalopathy. Developmental Medicine & Child Neurology, 57, 48-50. https://doi.org/10.1111/dmcn.12727

  6. 6. Degos, V., Favrais, G., Kaindl, A.M., et al. (2010) Inflammation Processes in Perinatal Brain Damage. Journal of Neural Transmission, 117, 1009-1017. https://doi.org/10.1007/s00702-010-0411-x

  7. 7. Concepcion, K.R. and Zhang, L. (2018) Corticosteroids and Perinatal Hypoxic-Ischemic Brain Injury. Drug Discovery Today, 23, 1718-1732. https://doi.org/10.1016/j.drudis.2018.05.019

  8. 8. Namusoke, H., Nannyonga, M.M., Ssebunya, R., Nakibuuka, V.K. and Mworozi, E. (2018) Incidence and Short Term Outcomes of Neonates with Hypoxic Ischemic Encephalopathy in a Peri Urban Teaching Hospital, Uganda: A Prospective Cohort Study. Maternal Health, Neonatology and Perinatology, 4, Article No. 6. https://doi.org/10.1186/s40748-018-0074-4

  9. 9. Lee, A.C., Kozuki, N., Blencowe, H., et al. (2013) Intrapartum-Related Neonatal Encephalopathy Incidence and Impairment at Regional and Global Levels for 2010 with Trends from 1990. Pediatric Research, 74, 50-72. https://doi.org/10.1038/pr.2013.206

  10. 10. Lawn, J.E., Cousens, S. and Zupan, J. (2005) 4 Million Neonatal Deaths: When? Where? Why? The Lancet, 365, 891-900. https://doi.org/10.1016/S0140-6736(05)71048-5

  11. 11. Li, B., Concepcion, K., Meng, X. and Zhang, L.B. (2017) Brain-Immune Interactions in Perinatal Hypoxic-Ischemic Brain Injury. Progress in Neurobi-ology, 159, 50-68. https://doi.org/10.1016/j.pneurobio.2017.10.006

  12. 12. Rocha-Ferreira, E. and Hristova, M. (2016) Plas-ticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plasticity, 2016, Article ID: 4901014. https://doi.org/10.1155/2016/4901014

  13. 13. Palmer, C., Roberts, R.L. and Young, P.I. (2004) Timing of Neutrophil Deple-tion Influences Long-Term Neuroprotection in Neonatal Rat Hypoxic-Ischemic Brain Injury. Pediatric Research, 55, 549-556. https://doi.org/10.1203/01.PDR.0000113546.03897.FC

  14. 14. 蒋晨红, 邱洁. 几种胶质细胞在新生儿脑损伤中作用及其机制的研究进展[J]. 中国医药, 2023, 18(7): 1094-1098.

  15. 15. Douglas-Escobar, M. and Weiss, M.D. (2015) Hypox-ic-Ischemic Encephalopathy: A Review for the Clinician. JAMA Pediatrics, 169, 397-403. https://doi.org/10.1001/jamapediatrics.2014.3269

  16. 16. Wang, Q., Lv, H., Lu, L., et al. (2019) Neonatal Hypoxic-Ischemic Encephalopathy: Emerging Therapeutic Strategies Based on Pathophysiologic Phases of the Injury. The Journal of Mater-nal-Fetal & Neonatal Medicine, 32, 3685-3692. https://doi.org/10.1080/14767058.2018.1468881

  17. 17. Juul, S.E. and Ferriero, D.M. (2014) Pharmacologic Neuroprotec-tive Strategies in Neonatal Brain Injury. Clinics in Perinatology, 41, 119-131. https://doi.org/10.1016/j.clp.2013.09.004

  18. 18. 段方祝. 探讨新生儿缺氧缺血性脑病的早期干预和治疗对策[J]. 中国社区医师(医学专业), 2010, 12(22): 9.

  19. 19. 苏杭. 新生儿缺氧缺血性脑病的治疗现状与进展[J]. 中国医药导报, 2009, 6(23): 167-168.

  20. 20. Ristovska, S., Stomnaroska, O. and Danilovski, D. (2022) Hypoxic Ischemic Encephalopathy (HIE) in Term and Preterm Infants. Prilozi, 43, 77-84. https://doi.org/10.2478/prilozi-2022-0013

  21. 21. 刘敬, 张丽, 高月乔. 被忽视而常见的新生儿脑损伤危险因素[J]. 中华实用儿科临床杂志, 2020, 35(23): 1761-1765.

  22. 22. Platt, M.J., Cans, C., Johnson, A., et al. (2007) Trends in Cerebral Palsy among Infants of Very Low Birthweight (< 1500 g) or Born Prematurely (< 32 Weeks) in 16 European Centres: A Data-base Study. The Lancet, 369, 43-50. https://doi.org/10.1016/S0140-6736(07)60030-0

  23. 23. McCarton, C.M., Brooks-Gunn, J., Wallace, I.F., et al. (1997) Re-sults at Age 8 Years of Early Intervention for Low- Birth-Weight Premature Infants. The Infant Health and Development Pro-gram. JAMA, 277, 126-132. https://doi.org/10.1001/jama.277.2.126

  24. 24. 郭晓玥, 王妍, 邵珲, 等. 新生儿脑损伤产前危险因素分析[J]. 中国实用妇科与产科杂志, 2015, 31(3): 251-255.

  25. 25. Berfelo, F.J., Kersbergen, K.J., van Ommen, C.H., et al. (2010) Neonatal Cere-bral Sinovenous Thrombosis from Symptom to Outcome. Stroke, 41, 1382-1388. https://doi.org/10.1161/STROKEAHA.110.583542

  26. 26. Shah, D.M. (2001) Perinatal Implications of Maternal Hyperten-sion. Seminars in Pediatric Neurology, 8, 108-119. https://doi.org/10.1053/spen.2001.25812

  27. 27. Roberts, J.M. and Cooper, D.W. (2001) Pathogenesis and Genetics of Pre-Eclampsia. The Lancet, 357, 53-56. https://doi.org/10.1016/S0140-6736(00)03577-7

  28. 28. Morrison, E.R., Miedzybrodzka, Z.H., Campbell, D.M., et al. (2002) Prothrombotic Genotypes Are Not Associated with Pre-Eclampsia and Gestational Hypertension: Results from a Large Popula-tion-Based Study and Systematic Review. Thrombosis and Haemostasis, 87, 779-785. https://doi.org/10.1055/s-0037-1613083

  29. 29. Kim, Y.J. (2013) Pathogenesis and Promising Non-Invasive Markers for Preeclampsia. Obstetrics & Gynecology Science, 56, 2-7. https://doi.org/10.5468/OGS.2013.56.1.2

  30. 30. Wu, Y.W., March, W.M., Croen, L.A., et al. (2004) Perinatal Stroke in Children with Motor Impairment: A Population-Based Study. Pediatrics, 114, 612-619. https://doi.org/10.1542/peds.2004-0385

  31. 31. Lee, J., Croen, L.A., Backstrand, K.H., et al. (2005) Maternal and Infant Characteristics Associated with Perinatal Arterial Stroke in the Infant. JAMA, 293, 723-729. https://doi.org/10.1001/jama.293.6.723

  32. 32. Harteman, J.C., Groenendaal, F., Kwee, A., et al. (2012) Risk Factors for Perinatal Arterial Ischaemic Stroke in Full-Term Infants: A Case-Control Study. ADC Fetal & Neonatal Edition, 97, F411-F416. https://doi.org/10.1136/archdischild-2011-300973

  33. 33. Badawi, N., Kurinczuk, J.J., Keogh, J.M., et al. (1998) Antepar-tum Risk Factors for Newborn Encephalopathy: The Western Australian Case-Control Study. BMJ, 317, 1549-1553. https://doi.org/10.1136/bmj.317.7172.1549

  34. 34. Hunt, R.W., Badawi, N., Laing, S., et al. (2001) Pre-Eclampsia: A Pre-disposing Factor for Neonatal Venous Sinus Thrombosis? Pediatric Neurology, 25, 242-246. https://doi.org/10.1016/S0887-8994(01)00291-0

  35. 35. Hnat, M.D., Sibai, B.M., Caritis, S., et al. (2002) Perinatal Outcome in Women with Recurrent Preeclampsia Compared with Women Who Develop Preeclampsia as Nulliparas. American Journal of Obstetrics & Gynecology, 186, 422-426. https://doi.org/10.1067/mob.2002.120280

  36. 36. Buchbinder, A., Sibai, B.M., Ca-ritis, S., et al. (2002) Adverse Perinatal Outcomes Are Significantly Higher in Severe Gestational Hypertension than in Mild Preeclampsia. American Journal of Obstetrics & Gynecology, 186, 66-71. https://doi.org/10.1067/mob.2002.120080

  37. 37. Meng, Q., Shao, L., Luo, X., et al. (2015) Ultrastructure of Placenta of Gravidas with Gestational Diabetes Mellitus. Obstetrics and Gynecology International, 2015, Article ID: 283124. https://doi.org/10.1155/2015/283124

  38. 38. Istrate-Ofiţeru, A.M., Berceanu, C., Berceanu, S., et al. (2020) The Influence of Gestational Diabetes Mellitus (GDM) and Gestational Hypertension (GH) on Placental Morphological Changes. Romanian Journal of Morphology and Embryology, 61, 371-384. https://doi.org/10.47162/RJME.61.2.07

  39. 39. Aldahmash, W.M., Alwasel, S.H. and Aljerian, K. (2022) Gestational Diabetes Mellitus Induces Placental Vasculopathies. Environmental Science and Pollution Research, 29, 19860-19868. https://doi.org/10.1007/s11356-021-17267-y

  40. 40. Bernson-Leung, M.E., Boyd, T.K., Meserve, E.E., et al. (2018) Placental Pathology in Neonatal Stroke: A Retrospective Case-Control Study. The Journal of Pediatrics, 195, 39-47. https://doi.org/10.1016/j.jpeds.2017.11.061

  41. 41. Lee, S., Mirsky, D.M., Beslow, L.A., et al. (2017) Pathways for Neuroimaging of Neonatal Stroke. Pediatric Neurology, 69, 37-48. https://doi.org/10.1016/j.pediatrneurol.2016.12.008

  42. 42. 栗娜, 刘彩霞. 瘢痕子宫妊娠的孕期保健与分娩期处理[J]. 中国实用妇科与产科杂志, 2020, 36(2): 104-107.

  43. 43. 王茹敏, 胡慧慧. 瘢痕子宫合并胎盘植入产妇的剖宫产结局及影响因素分析[J]. 中国妇幼保健, 2020, 35(19): 3575-3577.

  44. 44. 何青, 江林, 苏端, 等. 早产与足月HIE的临床危险因素及颅脑MRI对比研究[J]. 中国CT和MRI杂志, 2023, 21(6): 1-3.

  45. 45. Pugni, L., Pietrasanta, C., Acaia, B., et al. (2016) Chorioamnionitis and Neonatal Outcome in Preterm Infants: A Clinical Overview. The Journal of Maternal-Fetal & Neonatal Medicine, 29, 1525-1529. https://doi.org/10.3109/14767058.2015.1053862

  46. 46. Zhao, J., Chen, Y., Xu, Y. and Pi, G.H. (2013) Effect of Intrauter-ine Infection on Brain Development and Injury. International Journal of Developmental Neuroscience, 31, 543-549. https://doi.org/10.1016/j.ijdevneu.2013.06.008

  47. 47. Kułak, W., Okurowska-Zawada, B., Sienkiewicz, D., et al. (2010) Risk Factors for Cerebral Palsy in Term Birth Infants. Advances in Medical Sciences, 55, 216-221. https://doi.org/10.2478/v10039-010-0030-7

  48. 48. 刘淑华, 张成元, 张永峰, 等. 新生儿脑损伤危险因素分析[J]. 潍坊医学院学报, 2018, 40(1): 32-35.

  49. 49. Dueck, C.C., Grynspan, D., Eisenstat, D.D., et al. (2009) Ischemic Perinatal Stroke Secondary to Chorioamnionitis: A Histopathological Case Presentation. Journal of Child Neurology, 24, 1557-1560. https://doi.org/10.1177/0883073809341271

  50. 50. Redline, R.W., Sagar, P., King, M.E., et al. (2008) Case 12-2008: A Newborn Infant with Intermittent Apnea and Seizures. The New England Journal of Medicine, 358, 1713-1723. https://doi.org/10.1056/NEJMcpc0801164

  51. 51. Dammann, O. and Leviton, A. (1998) Infection Remote from the Brain, Neonatal White Matter Damage, and Cerebral Palsy in the Preterm Infant. Seminars in Pediatric Neurology, 5, 190-201. https://doi.org/10.1016/S1071-9091(98)80034-X

  52. 52. 杨秀娟, 王海芳, 田宗茹. 高龄产妇新生儿缺氧缺血性脑病相关危险因素分析及防护研究[J]. 中国妇幼保健, 2018, 33(10): 2282-2284.

  53. 53. Li, C., Miao, J.K., Xu, Y., et al. (2017) Prenatal, Perinatal and Neonatal Risk Factors for Perinatal Arterial Ischaemic Stroke: A Systematic Review and Meta-Analysis. European Journal of Neurology, 24, 1006-1015. https://doi.org/10.1111/ene.13337

  54. 54. Hack, K.E., Koopman-Esseboom, C., Derks, J.B., et al. (2009) Long-Term Neu-rodevelopmental Outcome of Monochorionic and Matched Dichorionic Twins. PLOS ONE, 4, e6815. https://doi.org/10.1371/journal.pone.0006815

  55. 55. Glinianaia, S.V., Obeysekera, M.A., Sturgiss, S. and Bell, R. (2011) Stillbirth and Neonatal Mortality in Monochorionic and Dichorionic Twins: A Population-Based Study. Human Reproduction, 26, 2549-2557. https://doi.org/10.1093/humrep/der213

  56. 56. Ortibus, E., Lopriore, E., Deprest, J., et al. (2009) The Pregnancy and Long-Term Neurodevelopmental Outcome of Monochorionic Diamniotic Twin Gestations: A Multicenter Prospective Cohort Study from the First Trimester Onward. American Journal of Obstetrics & Gynecology, 200, 491-494. https://doi.org/10.1016/j.ajog.2009.01.048

  57. 57. Gilles, F., Gressens, P., Dammann, O. and Leviton, A. (2018) Hypox-ia-Ischemia Is Not an Antecedent of Most Preterm Brain Damage: The Illusion of Validity. Developmental Medicine & Child Neurology, 60, 120-125. https://doi.org/10.1111/dmcn.13483

  58. NOTES

    *通讯作者。

期刊菜单