Advances in Clinical Medicine
Vol. 10  No. 08 ( 2020 ), Article ID: 37249 , 214 pages
10.12677/ACM.2020.108260

Sources, Mechanism and Clinical Application of Antimicrobial Peptides

Yangkai Wu, Mingchang Jin

Guangdong Rongda Biological Co., Ltd., Qingyuan Guangdong

Received: Aug. 3rd, 2020; accepted: Aug. 19th, 2020; published: Aug. 26th, 2020

ABSTRACT

Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are usually small peptides composed of 7~100 amino acids, which are an important part of the natural immune defense system. AMPs have many biological activities, such as broad-spectrum anti-infective bacteria (G+, G), antiviral, antifungal, antiparasitic, antitumor and immunomodulatory activities. AMPs can inhibit and kill pathogenic bacteria through membrane acting mechanism and non-membrane acting mechanism. AMPs have been widely concerned in recent years because of their potential therapeutic effects. Compared with traditional antibiotics, AMPs are not easy to produce drug resistance, low toxicity, biodiversity and direct attacking properties. AMPs are considered to be the most promising new generation of antibacterial agents in the post antibiotic era. At present, more than 60 AMPs drugs already reached the market and hundreds of novel therapeutic AMPs are in the clinical trials. This paper reviews the sources, mechanism and recent clinical application of antimicrobial peptides.

Keywords:Antimicrobial Peptides, Antibiotic Resistance, Therapeutic Drugs, Clinical Trials, Immunomodulatory Activity

抗菌肽的来源、作用机制及临床应用 研究进展

吴阳开,金明昌

广东容大生物股份有限公司,广东 清远

收稿日期:2020年8月3日;录用日期:2020年8月19日;发布日期:2020年8月26日

摘 要

抗菌肽(Antimicrobial peptide, AMPs)又叫宿主防御肽(Host defence peptide, HDPs),通常是由7~100个氨基酸组成的小分子多肽,是生物体天然免疫防御系统的一个重要组成部分。AMPs具有广谱抗感染性细菌(G+、G)、抗病毒、抗真菌、抗寄生虫、抑杀肿瘤细胞和免疫调节等生物学活性。AMPs通过膜作用和非膜作用两种机制抑杀病原菌。AMPs由于其潜在的治疗作用,近年来受到了人们的广泛关注。与传统的抗生素相比,AMPs具有不易产生耐药性、低毒性、生物多样性和直接攻击性的特点,AMPs被认为是后抗生素时代最有前途的新一代抗菌药物。目前已有60多种AMPs药物进入市场,数百种AMPs药物正处于临床试验阶段。文章综述了抗菌肽的来源、作用机制及在临床上的应用。

关键词 :抗菌肽,抗生素耐药性,治疗药物,临床试验,免疫调节活性

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

抗菌肽(Antimicrobial peptide, AMPs)又叫宿主防御肽(Host defence peptide, HDPs),通常是由7~100个氨基酸组成的小分子多肽 [1],是生物体天然免疫防御系统的一个重要组成部分 [2],也是各种生物抵御入侵病原体的第一道防线 [3]。AMPs具有广谱抗感染性细菌(G+、G) [4]、抗病毒 [5]、抗真菌 [6]、抗寄生虫 [7]、抑杀肿瘤细胞 [8] 和免疫调节 [9] 等生物学活性。尽管大多数AMPs是阳离子肽,但在脊椎动物、无脊椎动物和植物中已经发现了一些阴离子AMPs (Malik等,2016) [10]。根据AMPs的二级结构,AMPs可分为四大类:1) α-螺旋(α-helical)、2) β-折叠(β-Stranded)、3) β-发夹或环(β-hairpin or loop)和4) 延伸型肽(extended),其中α-螺旋肽和β-折叠肽是最常见的(图1) [11]。本文就抗菌肽的来源、作用机制及在临床上的应用作一综述。

(a) α-螺旋(α-helix)、(b) β-折叠(β-strand)、(c) β-发夹或环状(β-hairpin or loop)、(d)延伸型(extended)

Figure 1. The secondary structural classes of antimicrobial peptides. Adapted from Ahmed T A E, Hammami R. (2019)

图1. AMPs的二级结构。引自Ahmed T A E, Hammami R. (2019)

2. 抗菌肽的来源

AMPs的发现可以追溯到1939年,当时,Dubos从土壤样本的芽孢杆菌(Bacillus)中分离出一种抗菌剂 [12],这种物质能预防小鼠肺炎球菌(Pneumococcus)的感染,后来被命名为gramicidin (短杆菌肽) [13]。此后,从原核生物和真核生物中相继发现了许多AMPs [14] [15] [16],仅蛙皮肤中就发现了300多种AMPs [15]。据APD抗菌肽数据库报道(截止2020年5月),已经有3099种天然抗菌肽被鉴定、分离出来,其中来自于动物2359种(76.12%)、植物352种(11.36%)、细菌355种(11.46%)、真菌20种(0.65%)、原虫8种(0.26%)、古细菌5种(0.16%) [17] (见图2)。表1总结了从各种生物中发现的部分AMPs。

Figure 2. The sources of AMPs. Adapted from http://aps.unmc.edu/ap/main.php (May, 2020)

图2. AMPs 的来源。引自http://aps.unmc.edu/ap/main.php (2020年5月)

Table 1. Some antimicrobial peptides from various organisms

表1. 各种生物来源的部分抗菌肽

注:F——真菌;G+——革兰氏阳性菌;G——革兰氏阴性菌。

3. 抗菌肽的作用机制

一般来说,AMPs首先通过静电作用与细菌细胞膜相互吸引 [66]。根据其作用方式,AMPs的作用机制可分为膜作用和非膜作用两种类型。

3.1. 膜作用机制

阳离子AMPs通过选择性相互作用与带负电的微生物外膜作用(Zhao等,2001 [67];Sani等,2016 [68]),导致细胞膜破裂而引起细胞内物质的渗漏而杀死细胞(Da Costa 等,2015 [69])。这些AMPs在与微生物细胞膜相互作用的过程中显示出结构和拓扑的动态性变化(Mingeot-Leclercq等,2016 [70];Haney等,2017 [71])。目前,解释AMPs作用于细菌膜的机制,有桶板模型(barrel-stave model)、环形孔模型(toroidal-pore model)、地毯模型(carpet-like model) 聚合模型(aggregate model)。如图3所示(Nguyen等,2011 [72])。

A桶板模型(barrel-stave model)、B环形孔模型(toroidal-pore model)、C地毯模型(carpet-like model)、D聚集模型(aggregate model)

Figure 3. The membrane acting mechanisms following initial adsorption of AMPs. Adapted from Nguyen, et al. (2011) and Da Costa, et al. (2015)

图3. AMPs初始吸附后作用于细胞膜的机制。引自Nguyen等(2011)和Da Costa等(2015)

3.1.1. 桶板模型(Barrel-Stave Model)

在该模型中,α-螺旋结构的AMPs与细胞膜结合后,促使更多的AMPs结合在细胞膜表面,AMPs由与细胞膜平行方向逐渐转为垂直方向,通过螺旋结构中的疏水区域,插入至磷脂双分子层中,形成“桶样”的穿膜通道(Yang等,2001 [73];Reddy等,2005 [74])。更多AMPs分子的聚集增大了孔径,导致细胞内容物的外溢,最终导致细胞死亡(Brogden,2005 [75])。

3.1.2. 环形孔模型(Toroidal-Pore Model)

在环形孔模型中,AMPs的亲水段与细胞膜中磷脂的极性部分相互作用,并持续诱导脂质单层弯曲以获得稳定的曲率并形成环形孔(Melo等,2009 [76])。当插入的AMPs的极性面与膜脂的极性头结合时,形成跨膜环形孔,孔内同时排列着肽和脂头基团(Brogden, 2005 [75])。

3.1.3. 地毯式模型(Carpet Model)

在该模型中,AMPs与靶膜表面结合,并以地毯状的形式覆盖。在AMPs达到特定阈值后,肽分子与磷脂头基结合,形成含有碎片的胶束而穿透膜(Melo等,2009 [76]),最终导致细胞膜崩解和随后的细胞死亡(Gaspar等,2013 [77])。

3.1.4. 聚合模型(Aggregate Channel Model)

在该模型中,AMPs无特定取向地聚集在细胞膜表面,达到一定浓度后与膜磷脂分子形成类似胶状的肽–脂复合物,以类似洗涤剂的方式破坏脂质双层,形成跨膜的动态孔道(Wu等,1999 [78])。

3.2. 非膜作用机制

一些AMPs即使在低浓度下,也不改变膜完整性,穿过膜脂质双层,靶向细胞内成分(Hancock等,2002 [79]),通过影响细胞内代谢活动,如结合DNA,阻断酶活性,抑制DNA、RNA或蛋白质的合成等而杀死细菌(Cudic等,2002 [80];Krizsan等,2014 [81];Mansour等,2014 [82];Yeaman等,2003 [83]。见图4 (Da Costa等,2015 [69])。表2列出了部分作用于细胞内活性的抗菌肽。

Figure 4. The non-membrane acting mechanisms of AMPs. Adapted from Da Costa, et al. (2015). A. Disruption of cell membrane integrity); B. Blocking of RNA synthesis); C. Inhibition of enzymes necessary for linking of cell wall structural proteins; D. Inhibition of ribosomal function and protein synthesis; E. Blocking of chaperone proteins necessary for proper folding; F. Targeting of mitochondria: 1) inhibition of cellular respiration and induction of ROS formation, 2) disruption of mitochondrial cell membrane integrity and efflux of ATP and NADH

图4. AMPs非膜作用机制。引自Da Costa等(2015)。A. 破坏细胞膜完整性;B. 阻断RNA合成;C. 抑制细胞壁结构蛋白连接所需酶的活性;D. 核糖体功能与蛋白质合成的抑制;E. 适当折叠所必需的伴侣蛋白的阻断;F. 靶向线粒体:1) 抑制细胞呼吸和诱导活性氧(ROS)的形成,2) 破坏线粒体膜完整性以及ATP和NADH的外排

Table 2. Some antimicrobial peptides acting on intracellular activity

表2. 部分作用于细胞内活性的抗菌肽

4. AMPS在临床上的应用

4.1. AMPS作为治疗局部感染的药物

目前,一些抗菌肽已用于治疗人的局部感染药物,如抗菌肽NEUPREX为rBPI21的注射制剂,用于治疗接受心脏直视手术的儿科患者和严重烧伤患者(Conlon, 2011) [90];重组肽HBD-2用于治疗在使用假体植入过程中获得的感染(Shin, 2013) [91];来源于两栖动物皮肤的肽,如白细胞介素(alyteserin)、灯盏花素(brevinin)、蛔虫毒素(ascaphin)、假丝酵素(pseudin)、卡氏菌素(kassinatuerin)和颞叶蛋白(temporin),已被有效地用于治疗由鲍曼不动杆菌(Acinetobacter baumannii)、肺炎克雷伯菌(Klebsiella pneumoniae)、大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、铜绿假单胞菌(Pseudomonas),念珠菌(Candida spp.)等多重耐药菌株引起的局部感染(Migoń, 2018) [92];P113是另一种天然存在于唾液中的抗菌肽(Haney, 2018) [93],它以漱口液的形式用于治疗艾滋病毒(HIV)患者的口腔念珠菌病(Candidiasis)感染。Pexiganan用于治疗糖尿病足溃疡中的局部感染(Greber, 2017) [94];吲哚基肽的变体MX-226和MX-594AN (omiganan pentahcolitan,1%凝胶)分别用于治疗与使用导管相关的感染和治疗寻常痤疮(Sachdeva, 2017) [95]。

4.2. 临床试验中的AMPs

目前,超过60种AMPs药物投入市场,数百种新的治疗用AMPs正处于临床试验中(Lau, 2018) [96] (见表3)。新出现的多肽技术,包括多功能肽、细胞穿透肽和肽–药物结合物,将拓宽AMPs在医学中的应用(Raucher, 2015) [97]。

Table 3. Partial AMPs in clinical trials

表3. 临床试验中的部分AMPs

5. 总结

抗生素耐药性是世界第二大死亡原因,导致每年约70万人死亡,预计到2050年每年死于抗生素耐药性的人数将达到1000万,造成的经济损失约10万亿美元。抗生素耐药性是多方面、多层面的,革兰氏阳性菌和革兰氏阴性菌都对现有的抗菌药物产生了难以治愈的耐药性,如耐万古霉素的粪肠球菌(Enterococcus faecium)、阴沟肠杆菌(Enterobacter cloacae, MRSA),耐碳青霉烯类的鲍曼不动杆菌(Acinetobacter baumannii)和耐第三代头孢菌素大肠杆菌(E. coli)、β-内酰胺酶的MDR菌株,耐碳青霉烯类铜绿假单胞菌(Pseudomonas aeruginosa)和分枝杆菌(Mycobacterium)。对碳青霉烯类抗生素耐药的肺炎克雷伯菌(Klebsiella pneumoniae)对美国批准用于治疗的26种抗生素均产生耐药性。抗生素耐药性在全球范围内的扩展和蔓延速度远远高于发现并最终批准用于临床的新抗生素的速度。目前已有相当部分的AMPs在临床应用或处于临床试验中。AMPs被认为是后抗生素时代最有前途的新一代抗菌药物。人们对AMPs的结构、理化性质以及对其活性的影响已有充分的了解,但对AMPs的作用机制以及其对细菌和宿主细胞的反应仍缺乏深入了解。这是未来AMPs在临床上普遍应用的主要瓶颈。

文章引用

吴阳开,金明昌. 抗菌肽的来源、作用机制及临床应用研究进展
Sources, Mechanism and Clinical Application of Antimicrobial Peptides[J]. 临床医学进展, 2020, 10(08): 1729-1942. https://doi.org/10.12677/ACM.2020.108260

参考文献

  1. 1. Ageitos, J.M., Sanchez-Perez, A., Calo-Mata, P., et al. (2017) Antimicrobial Peptides (AMPs): Ancient Compounds That Represent Novel Weapons in the Fight against Bacteria. Biochemical Pharmacology, 133, 117-138. https://doi.org/10.1016/j.bcp.2016.09.018

  2. 2. Harris, F., Dennison, S.R. and Phoenix, D.A. (2009) Anionic Antimicrobial Peptides from Eukaryotic Organisms. Current Protein Peptide Science, 10, 585-606. https://doi.org/10.2174/138920309789630589

  3. 3. Pasupuleti, M., Schmidtchen, A. and Malmsten, M. (2012) Antimicrobial Peptides: Key Components of the Innate Immune System. Critical Reviews in Biotechnology, 32, 143-171. https://doi.org/10.3109/07388551.2011.594423

  4. 4. Brogden, K.A. (2005) Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria. Nature Reviews Microbiology, 3, 238-250. https://doi.org/10.1038/nrmicro1098

  5. 5. Wang, Y.D., Kung, C.W. and Chen, J.Y. (2010) Antiviral Activity by Fish Antimicrobial Peptides of Epinecid-in-1 and Hepcidin 1-5 against Nervous Necrosis Virus in Medaka. Peptides, 31, 1026-1033. https://doi.org/10.1016/j.peptides.2010.02.025

  6. 6. Lupetti, A., Van Dissel, J., Brouwer, C., et al. (2008) Human Antimicrobial Peptides’ Antifungal Activity against Aspergillus fumigatus. European Journal of Clinical Microbiology & Infectious Diseases, 27, 1125-1129. https://doi.org/10.1007/s10096-008-0553-z

  7. 7. Vizioli, J. and Salzet, M. (2002) Antimicrobial Peptides versus Parasitic Infections. Trends in Parasitology, 18, 475-476. https://doi.org/10.1016/S1471-4922(02)02428-5

  8. 8. Hoskin, D.W. and Ramamoorthy, A. (2008) Studies on Anticancer Activities of Antimicrobial Peptides. Biochimica et Biophysica Acta (BBA) Biomembranes, 1778, 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008

  9. 9. Hilchie, A.L., Wuerth, K. and Hancock, R.E. (2013) Immune Modulation by Multifaceted Cationic Host Defense (Antimicrobial) Peptides. Nature Chemical Biology, 9, 761-768. https://doi.org/10.1038/nchembio.1393

  10. 10. Malik, E., Dennison, S.R., Harris, F., et al. (2016) pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel), 9, 67. https://doi.org/10.3390/ph9040067

  11. 11. Ahmed, T.A.E. and Hammami, R. (2019) Recent Insights into Structure-Function Relationships of Antimicrobial Peptides. Journal of Food Biochemistry, 43, e12546. https://doi.org/10.1111/jfbc.12546

  12. 12. Dubos, R.J. (1939) Studies on a Bactericidal Agent Extracted from a Soil Bacillus: II. Protective Effect of the Bactericidal Agent against Experimental Pneumococcus Infections in Mice. Journal of Experimental Medicine, 70, 11-17. https://doi.org/10.1084/jem.70.1.11

  13. 13. Dubos, R.J. and Hotchkiss, R.D. (1941) The Production of Bactericidal Substances by Aerobic Sporulating Bacilli. Journal of Experimental Medicine, 73, 629-640. https://doi.org/10.1084/jem.73.5.629

  14. 14. Bednarska, N.G., Wren, B.W. and Willcocks, S.J. (2017) The Importance of the Glycosylation of Antimicrobial Peptides: Natural and Synthetic Approaches. Drug Discovery Today, 22, 919-926. https://doi.org/10.1016/j.drudis.2017.02.001

  15. 15. Conlon, B.P., Nakayasu, E.S., Fleck, L.E., et al. (2013) Activated ClpP Kills Persisters and Eradicates a Chronic Biofilm Infection. Nature, 503, 365-370. https://doi.org/10.1038/nature12790

  16. 16. Andrä, J., Berninghausen, O. and Leippe, M. (2001) Cecropins, Antibacterial Peptides from Insects and Mammals, Are Potently Fungicidal against Candida albicans. Medical Microbiology and Immunology (Berl.), 189, 169-173. https://doi.org/10.1007/s430-001-8025-x

  17. 17. The Antimicrobial Peptide Database (APD). http://aps.unmc.edu/ap/main.php

  18. 18. Vogel, H., Badapanda, C., Knorr, E., et al. (2014) RNA Sequencing Analysis Reveals Abundant Developmental Stage-Specific and Immunity-Related Genes in the Pollen Beetle Meligethes aeneus. Insect Molecular Biology, 23, 98-112. https://doi.org/10.1111/imb.12067

  19. 19. Abry, M.F., Kimenyi, K.M., Masiga, D., et al. (2017) Comparative Genomics Identifies Male Accessory Gland Proteins in Five Glossina Species. Wellcome Open Research, 2, 73. https://doi.org/10.12688/wellcomeopenres.12445.1

  20. 20. Farouk, A.E., Ahamed, N.T., AlZahrani, O., et al. (2017) Inducible Antimicrobial Compounds (Halal) Production in Honey Bee Larvae (Apis mellifera) from Rumaida, Taif by Injecting of Various Dead Microorganisms Extracts. Journal of Applied Biology & Biotechnology, 5, 23-29.

  21. 21. Lee, J. and Lee, D.G. (2015) Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis. Journal of Microbiology and Biotechnology, 25, 759-764. https://doi.org/10.4014/jmb.1411.11058

  22. 22. Price, D.P., Schilkey, F.D., Ulanov, A., et al. (2015) Small Mosquitoes, Large Implications: Crowding and Starvation Affects Gene Expression and Nutrient Accumulation in Aedes aegypti. Parasites & Vectors, 8, 252. https://doi.org/10.1186/s13071-015-0863-9

  23. 23. Allocca, M., Zola, S. and Bellosta, P. (2018) The Fruit Fly, Drosophila Melanogaster: Modeling of Human Diseases (Part II). In: Drosophila Melanogaster-Model for Recent Advances in Genetics and Therapeutics, IntechOpen, London. https://doi.org/10.5772/intechopen.73199

  24. 24. Thiyonila, B., Reneeta, N.P., Kannan, M., et al. (2018) Dung Beetle Gut Microbes: Diversity, Metabolic and Immunity Related Roles in Host System. International Journal of Scientific Innovations, 1, 84-91.

  25. 25. Manabe, T. and Kawasaki, K. (2017) D-Form KLKLLLLLKLK-NH2 Peptide Exerts Higher Antimicrobial Properties than Its L-Form Counterpart via an Association with Bacterial Cell Wall Components. Scientific Reports, 7, Article No. 43384. https://doi.org/10.1038/srep43384

  26. 26. Yang, Y.T., Lee, M.R., Lee, S., et al. (2018) Tenebrio molitor Gram-Negative-Binding Protein 3 (TmGNBP3) Is Essential for Inducing Downstream Antifungal Tenecin 1 Gene Expression against Infection with Beauveria bassiana JEF-007. Insect Science, 6, 969-977. https://doi.org/10.1111/1744-7917.12482

  27. 27. Duwadi, D., Shrestha, A., Yilma, B., et al. (2018) Identification and Screening of Potent Antimicrobial Peptides in Arthropod Genomes. Peptides, 103, 26-30. https://doi.org/10.1016/j.peptides.2018.01.017

  28. 28. Sheehan, G., Bergsson, G., McElvaney, N.G., et al. (2018) The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus. Infection and Immunity, 86, IAI.00097-18. https://doi.org/10.1128/IAI.00097-18

  29. 29. Schaal, J.B., Maretzky, T., Tran, D.Q., et al. (2018) Macrocyclic θ-Defensins Suppress Tumor Necrosis Factor-α (TNF-α) Shedding by Inhibition of TNF-α Converting Enzyme. The Journal of Biological Chemistry, 293, 2725-2734. https://doi.org/10.1074/jbc.RA117.000793

  30. 30. Khurshid, Z., Najeeb, S., Mali, M., et al. (2017) Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry. Saudi Pharmaceutical Journal, 25, 25-31. https://doi.org/10.1016/j.jsps.2016.04.027

  31. 31. Baxter, A.A., Lay, F.T., Poon, I.K.H., et al. (2017) Tumor Cell Membrane-Targeting Cationic Antimicrobial Peptides: Novel Insights into Mechanisms of Action and Therapeutic Prospects. Cellular and Molecular Life Sciences, 74, 3809-3825. https://doi.org/10.1007/s00018-017-2604-z

  32. 32. Panteleev, P.V., Balandin, S.V., Ivanov, V.T., et al. (2017) A Therapeutic Potential of Animal β-Hairpin Antimicrobial Peptides. Current Medicinal Chemistry, 24, 1724-1746. https://doi.org/10.2174/0929867324666170424124416

  33. 33. Young-Speirs, M., Drouin, D., Cavalcante, P.A., et al. (2018) Host Defense Cathelicidins in Cattle: Types, Production, Bioactive Functions and Potential Therapeutic and Diagnostic Applications. International Journal of Antimicrobial Agents, 51, 813-821. https://doi.org/10.1016/j.ijantimicag.2018.02.006

  34. 34. Savelyeva, A., Ghavami, S., Davoodpour, P., et al. (2014) An Overview of Brevinin Superfamily: Structure, Function and Clinical Perspectives. Advances in Experimental Medicine & Biology, 818, 197-212. https://doi.org/10.1007/978-1-4471-6458-6_10

  35. 35. Sun, T., Zhan, B. and Gao, Y. (2015) A Novel Cathelicidin from Bufo Bufo gargarizans Cantor Showed Specific Activity to Its Habitat Bacteria. Gene, 571, 172-177. https://doi.org/10.1016/j.gene.2015.06.034

  36. 36. Upadhyay, R.K. (2018) Spider Venom Toxins, Its Purification, Solubilization, and Antimicrobial Activity. International Journal of Green Pharmacy, 12, S200-2014.

  37. 37. Belmadani, A., Semlali, A. and Rouabhia, M. (2018) Dermaseptin! S1 Decreases Candida albicans Growth, Biofilm Formation and the Expression of Hyphal Wall Protein 1 and Aspartic Protease Genes. Journal of Applied Microbiology, 125, 72-83. https://doi.org/10.1111/jam.13745

  38. 38. Tahir, H.M., Zaheer, A., Khan, A.A., et al. (2018) Antibacterial Potential of Venom Extracted from Wolf Spider, Lycosa terrestris (Araneae: Lycosiade). Indian Journal of Animal Science, 52, 286-290. https://doi.org/10.18805/ijar.v0iOF.8484

  39. 39. Kuzmin, D.V., Emelianova, A.A., Kalashnikova, M.B., et al. (2017) Effect of N- and C-Terminal Modifications on Cytotoxic Properties of Antimicrobial Peptide Tachyplesin I. Bulletin of Experimental Biology and Medicine, 162, 754-757. https://doi.org/10.1007/s10517-017-3705-2

  40. 40. Coulen, S.C., Sanders, J.P. and Bruins, M.E. (2017) Valorisation of Proteins from Rubber Tree. Waste and Biomass Valorization, 8, 1027-1041. https://doi.org/10.1007/s12649-016-9688-9

  41. 41. Thao, H.T., Lan, N.T.N. and Mau, C.H. (2017) Overexpression of VrPDF1 Gene Confers Resistance to Weevils in Transgenic Mung Bean Plant. https://doi.org/10.7287/peerj.preprints.3264v1

  42. 42. Mills, S., Griffin, C., O’Connor, P.M., et al. (2017) A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum. Applied and Environmental Microbiology, 83, 717-799. https://doi.org/10.1128/AEM.00799-17

  43. 43. Su, Z., Leitch, J.J., Abbasi, F., et al. (2017) EIS and PM-IRRAS Studies of Alamethicin Ion Channels in a Tethered Lipid Bilayer. Journal of Electroanalytical Chemistry, 812, 213-220. https://doi.org/10.1016/j.jelechem.2017.12.039

  44. 44. Braïek, O.B., Morandi, S., Cremonesi, P., et al. (2018) Biotechnological Potential, Probiotic and Safety Properties of Newly Isolated Enterocin-Producing Enterococcus lactis Strains. LWT, 92, 361-370. https://doi.org/10.1016/j.lwt.2018.02.045

  45. 45. Ebrahimipour, G.H., Khosravibabadi, Z., Sadeghi, H., et al. (2014) Isolation, Partial Purifification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus. Jundishapur Journal of Microbiology, 7, e11802. https://doi.org/10.5812/jjm.11802

  46. 46. Sharma, G., Dang, S., Gupta, S., et al. (2018) Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Medical Principles and Practice, 27, 186-192. https://doi.org/10.1159/000487306

  47. 47. Hammi, I., Delalande, F., Belkhou, R., et al. (2016) Maltaricin CPN, a New Class IIa Bacteriocin Produced by Carnobacterium Maltaromaticum CPN Isolated from Mould-Ripened Cheese. Journal of Applied Microbiology, 121, 1268-1274. https://doi.org/10.1111/jam.13248

  48. 48. Chen, Y.S., Wu, H.C., Kuo, C.Y., et al. (2018) Leucocin C-607, a Novel Bacteriocin from the Multiple Bacteriocin-Producing Leuconostoc Pseudomesenteroides 607 Isolated from Persimmon. Probiotics and Antimicrobial Proteins, 10, 148-156. https://doi.org/10.1007/s12602-017-9359-6

  49. 49. Singh, R., Miriyala, S.S., Giri, L., et al. (2017) Identification of Unstructured Model for Subtilin Production through Bacillus subtilis Using Hybrid Genetic Algorithm. Process Biochemistry, 60, 1-12. https://doi.org/10.1016/j.procbio.2017.06.005

  50. 50. Guzmán-Rodríguez, J.J., Ochoa-Zarzosa, A., López-Gómez, R., et al. (2015) Plant Antimicrobial Peptides Aspotential Anticancer Agents. BioMed Research International, 2015, Article ID: 735087. https://doi.org/10.1155/2015/735087

  51. 51. Zhao, N., Pan, Y., Cheng, Z., et al. (2016) Lasso Peptide, a Highly Stable Structure and Designable Multi-Functional Backbone. Amino Acids, 48, 1347-1356. https://doi.org/10.1007/s00726-016-2228-x

  52. 52. Muhammad, S.A., Ali, A., Naz, A., et al. (2016) A New Broad-Spectrum Peptide Antibiotic Produced by Bacillus brevis Strain MH9 Isolated from Margalla Hills of Islamabad, Pakistan. International Journal of Peptide Research and Therapeutics, 22, 271-279. https://doi.org/10.1007/s10989-015-9508-2

  53. 53. Araújo, C., Muñoz-Atienza, E., Poeta, P., et al. (2016) Characterization of Pediococcus acidilactici Strains Isolated from Rainbow Trout (Oncorhynchus mykiss) Feed and Larvae: Safety, DNA Fingerprinting, and Bacteriocinogenicity. Diseases of Aquatic Organisms, 119, 129-143. https://doi.org/10.3354/dao02992

  54. 54. Arakawa, K., Yoshida, S., Aikawa, H., et al. (2016) Production of a Bacteriocin-Like in Hibitory Substance by Leuconostoc mesenteroides subsp. Dextranicum 213M0 Isolated from Mongolian Fermented Mare Milk, Airag. Animal Science Journal, 87, 449-456. https://doi.org/10.1111/asj.12445

  55. 55. Tulini, F.L., Lohans, C.T., Bordon, K.C., et al. (2014) Purification and Characterization of Antimicrobial Peptides from Fish Isolate Carnobacterium maltaromaticum C2: Carnobacteriocin X and Carnolysins A1 and A2. International Journal of Food Microbiology, 173, 81-88. https://doi.org/10.1016/j.ijfoodmicro.2013.12.019

  56. 56. Bosma, T.U.S. (2017) Bacterial Surface Display and Screening of Thioether-Bridge-Containing Peptides. U.S. Patent No. 9, 651, 558.

  57. 57. Gajalakshmi, P. (2017) Selective Isolation and Characterization of Rare Actinomycetes Adopted in Glacier Soil of Manaliice Point and Its Activity against Mycobacterium spp. Journal of Microbiology and Biotechnology Research, 7, 1-10. https://doi.org/10.24896/jmbr.2017751

  58. 58. Maldonado-Barragán, A., Caballero-Guerrero, B., Martín, V., et al. (2016) Purification and Genetic Characterization of Gassericin E, a Novel Co-Culture Inducible Bacteriocin from Lactobacillus gasseri EV1461 Isolated from the Vagina of a Healthy Woman. BMC Microbial, 16, 37. https://doi.org/10.1186/s12866-016-0663-1

  59. 59. Perez, R.H., Ishibashi, N., Inoue, T., et al. (2016) Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 198, 291-300. https://doi.org/10.1128/JB.00692-15

  60. 60. Brillet-Viel, A., Pilet, M.F., Courcoux, P., et al. (2016) Optimization of Growth and Bacteriocin Activity of the Food Bioprotective Carnobacterium divergens V41 in an Animal Origin Protein Free Medium. Frontiers in Marine Science, 3, 128. https://doi.org/10.3389/fmars.2016.00128

  61. 61. Wan, X., Li, R., Saris, P.E., et al. (2013) Genetic Characterisation and Heterologous Expression of Leucocin C, a Class IIa Bacteriocin from Leuconostoc carnosum 4010. Applied Microbiology and Biotechnology, 97, 3509-3518. https://doi.org/10.1007/s00253-012-4406-4

  62. 62. Wang, Y., Shang, N., Qin, Y., et al. (2018) The Complete Genome Sequence of Lactobacillus plantarum LPL-1, a Novel Antibacterial Probiotic Producing Class IIa Bacteriocin. Journal of Biotechnology, 266, 84-88. https://doi.org/10.1016/j.jbiotec.2017.12.006

  63. 63. Le, T.N., Do, T.H., Nguyen, T.N., et al. (2014) Expression and Simple Purification Strategy for the Generation of Antimicrobial Active Enterocin P from Enterococcus faecium Expressed in Escherichia coli ER2566. Iranian Journal of Biotechnology, 12, 17-25. https://doi.org/10.15171/ijb.1154

  64. 64. Venturina, D.H., Villegas, L.C., Perez, M.T.M., et al. (2016) Isolation and Identification of Subtilosin A-Producing Bacillus subtilis from Mongo Sprouts, Silage and Soil Samples in the Philippines. Asia Life Sciences, 25, 123-136.

  65. 65. Bhat, S.G. (2018) Modelling and Computational Sequence Analysis of a Bacteriocin Isolated from Bacillus licheniformis Strain BTHT. International Journal for Computational Biology, 7, 29-34. https://doi.org/10.34040/IJCB.7.1.2018.93

  66. 66. Hollmann, A., Martinez, M., Maturana, P., et al. (2018) Antimicrobial Peptides: Interaction with Model and Biological Membranes and Synergism with Chemical Antibiotics. Frontiers in Chemistry, 6, 204. https://doi.org/10.3389/fchem.2018.00204

  67. 67. Zhao, H., Mattila, J.P., Holopainen, J.M., et al. (2001) Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin. Biophysical Journal, 81, 2979-2991. https://doi.org/10.1016/S0006-3495(01)75938-3

  68. 68. Sani, M.A. and Separovic, F. (2016) How Membrane-Active Peptides Get into Lipid Membranes. Accounts of Chemical Research, 49, 1130-1138. https://doi.org/10.1021/acs.accounts.6b00074

  69. 69. Da Costa, J.P., Cova, M., Ferreira, R., et al. (2015) Antimicrobial Peptides: An Alternative for Innovative Medicines? Applied Microbiology and Biotechnology, 99, 2023-2040. https://doi.org/10.1007/s00253-015-6375-x

  70. 70. Mingeot-Leclercq, M.P. and Décout, J.L. (2016) Bacterial Lipid Membranes as Promising Targets to Fight Antimicrobial Resistance, Molecular Foundations and Illustration through the Renewal of Aminoglycoside Antibiotics and Emergence of Amphiphilic Aminoglycosides. Medicinal Chemistry Communications, 7, 586-611. https://doi.org/10.1039/C5MD00503E

  71. 71. Haney, E.F., Mansour, S.C. and Hancock, R.E.W. (2017) Antimicrobial Peptides: An Introduction. In: Methods in Molecular Biology, Vol. 1548, Humana Press, Totowa, 3-22. https://doi.org/10.1007/978-1-4939-6737-7_1

  72. 72. Nguyen, L.T., Haney, E.F. and Vogel, H.J. (2011) The Expanding Scope of Antimicrobial Peptide Structures and Their Modes of Action. Trends in Biotechnology, 29, 464-472. https://doi.org/10.1016/j.tibtech.2011.05.001

  73. 73. Yang, L., Harroun, T.A., Weiss, T.M., et al. (2001) Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophysical Journal, 81, 1475-1485. https://doi.org/10.1016/S0006-3495(01)75802-X

  74. 74. Reddy, K., Yedery, R. and Aranha, C. (2005) Antimicrobial Peptides: Premises and Promises. International Journal of Antimicrobial Agents, 24, 536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005

  75. 75. Brogden, K.A. (2005) Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria. Nature Reviews Microbiology, 3, 238-250. https://doi.org/10.1038/nrmicro1098

  76. 76. Melo, M.N., Ferre, R. and Castanho, M.A. (2009) Antimicrobial Peptides: Linking Partition, Activity and High Membrane-Bound Concentrations. Nature Reviews Microbiology, 7, 245-250. https://doi.org/10.1038/nrmicro2095

  77. 77. Gaspar, D., Veiga, A.S. and Castanho, M.A. (2013) From Antimicrobial to Anticancer Peptides. A Review. Frontiers in Microbiology, 4, 294. https://doi.org/10.3389/fmicb.2013.00294

  78. 78. Wu, M.H., Maier, E., Benz, R., et al. (1999) Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 38, 7235-7242. https://doi.org/10.1021/bi9826299

  79. 79. Hancock, R.E.W. and Patrzykat, A. (2002) Clinical Development of Cationic Antimicrobial Peptides: From Natural to Novel Antibiotics. Current Drug Targets—Infectious Disorders, 2, 79-83. https://doi.org/10.2174/1568005024605855

  80. 80. Cudic, M. and Otvos, L. (2002) Intracellular Targets of Antibacterial Peptides. Current Drug Targets, 3, 101-106. https://doi.org/10.2174/1389450024605445

  81. 81. Krizsan, A., Volke, D., Weinert, S., et al. (2014) Insect-Derived Proline-Rich Antimicrobial Peptides Kill Bacteria by Inhibiting Bacterial Protein Translation at the 70S Ribosome. Angewandte Chemie International Edition in English, 53, 12236-12239. https://doi.org/10.1002/anie.201407145

  82. 82. Mansour, S.C., Pena, O.M. and Hancock, R.E. (2014) Host Defense Peptides: Frontline Immunomodulators. Trends in Immunology, 35, 443-450. https://doi.org/10.1016/j.it.2014.07.004

  83. 83. Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 55, 27-55. https://doi.org/10.1124/pr.55.1.2

  84. 84. Carrera, M., Böhme, K., Gallardo, J.M., et al. (2017) Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Net Works, Virulence Factors and Species-Specific Peptide Biomarkers. Frontiers in Microbiology, 8, 2458. https://doi.org/10.3389/fmicb.2017.02458

  85. 85. Nagarajan, K., Marimuthu, S.K., Palanisamy, S., et al. (2018) Peptide Therapeutics versus Superbugs: Highlight on Current Research and Advancements. International Journal of Peptide Research and Therapeutics, 24, 19-33. https://doi.org/10.1007/s10989-017-9650-0

  86. 86. Le, C.F., Fang, C.M. and Sekaran, S.D. (2017) Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 61, e02340-16. https://doi.org/10.1128/AAC.02340-16

  87. 87. Gordon, Y.J., Romanowski, E.G. and McDermott, A.M. (2005) A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Current Eye Research, 30, 505-515. https://doi.org/10.1080/02713680590968637

  88. 88. Mirski, T., Niemcewicz, M., Bartoszcze, M., et al. (2017) Utilisation of Peptides against Microbial Infections—A Review. Annals of Agricultural and Environmental Medicine, 25, 205-210. https://doi.org/10.26444/aaem/74471

  89. 89. Wuerth, K. (2017) Combating Pseudomonas aeruginosa Lung Infections Using Synthetic Host Defense Peptides. Doctoral Dissertation, University of British Columbia, Vancouver.

  90. 90. Conlon, J.M. and Sonnevend, A. (2011) Clinical Applications of Amphibian Antimicrobial Peptides. Journal of Medical Sciences, 4, 62-72. https://doi.org/10.2174/1996327001104020062

  91. 91. Shin, S.H., Lee, Y.S., Shin, Y.P., et al. (2013) Therapeutic Efficacy of Halocidinderived Peptide HG1 in a Mouse Model of Candida albicans Oral Infection. Journal of Antimicrobial Chemotherapy, 68, 1152-1160. https://doi.org/10.1093/jac/dks513

  92. 92. Migoń, D., Neubauer, D. and Kamysz, W. (2018) Hydrocarbon Stapled Antimicrobial Peptides. The Protein Journal, 37, 2-12. https://doi.org/10.1007/s10930-018-9755-0

  93. 93. Haney, E.F., Pletzer, D. and Hancock, R.E. (2018) Impact of Host Defense Peptides on Chronic Wounds and Infections. In: Recent Clinical Techniques, Results, and Research in Wounds, Springer, Cham, 1-17. https://doi.org/10.1007/15695_2017_88

  94. 94. Greber, K.E. and Dawgul, M. (2017) Antimicrobial Peptides under Clinical Trials. Current Topics in Medicinal Chemistry, 17, 620-628. https://doi.org/10.2174/1568026616666160713143331

  95. 95. Sachdeva, S. (2017) Peptides as “Drugs”: The Journey So Far. International Journal of Peptide Research and Therapeutics, 23, 49-60. https://doi.org/10.1007/s10989-016-9534-8

  96. 96. Lau, J.L. and Dunn, M.K. (2018) Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic & Medicinal Chemistry, 26, 2700-2707. https://doi.org/10.1016/j.bmc.2017.06.052

  97. 97. Raucher, D. and Ryu, J.S. (2015) Cell-Penetrating Peptides: Strategies for Anticancer Treatment. Trends in Molecular Medicine, 21, 560-570. https://doi.org/10.1016/j.molmed.2015.06.005

  98. 98. Ghosh, C. and Haldar, J. (2015) Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides. ChemMedChem, 10, 1606-1624. https://doi.org/10.1002/cmdc.201500299

  99. 99. Cortes-Penfield, N., Oliver, N.T., Hunter, A., et al. (2018) Daptomycin and Combination Daptomycin-Ceftaroline as Salvage Therapy for Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia. The Journal of Infectious Diseases (London), 50, 643-647. https://doi.org/10.1080/23744235.2018.1448110

  100. 100. Gagliardini, E., Benigni, A. and Perico, N. (2017) Pharmacological Induction of Kidney Regeneration. In: Orlando, G., Remuzzi, G. and Williams, D.F., Eds., Kidney Transplantation, Bioengineering and Regeneration, Academic Press, Cambridge, 1025-1037. https://doi.org/10.1016/B978-0-12-801734-0.00074-6

  101. 101. Jepson, A.K., Schwarz-Linek, J., Ryan, L., et al. (2016) What Is the “Minimum Inhibitory Concentration” (MIC) of Pexiganan Acting on Escherichia coli? A Cautionary Case Study. Advances in Experimental Medicine and Biology, 915, 33-48. https://doi.org/10.1007/978-3-319-32189-9_4

  102. 102. Ng, S.M.S., Teo, S.W., Yong, Y.E., et al. (2017) Preliminary Investigations into Developing All-D Omiganan for Treating Mupirocin-Resistant MRSA Skin Infections. Chemical Biology & Drug Design, 90, 1155-1160. https://doi.org/10.1111/cbdd.13035

  103. 103. Mohammad, H., Thangamani, S. and Seleem, M.N. (2015) Antimicrobial Peptides and Peptidomimetics-Potent Therapeutic Allies for Staphylococcal Infections. Current Pharmaceutical Design, 21, 2073-2088. https://doi.org/10.2174/1381612821666150310102702

  104. 104. Morici, P., Fais, R., Rizzato, C., et al. (2016) Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. PLoS ONE, 11, e0167470. https://doi.org/10.1371/journal.pone.0167470

  105. 105. Javia, A., Amrutiya, J., Lalani, R., et al. (2018) Antimicrobial Peptide Delivery: An Emerging Therapeutic for the Treatment of Burn and Wounds. Therapeutic Delivery, 9, 375-386. https://doi.org/10.4155/tde-2017-0061

  106. 106. De Lorenzi, E., Chiari, M., Colombo, R., et al. (2018) Evidence That the Human Innate Immune Peptide LL-37 May Be a Binding Partner of Abeta and Inhibitor of Fibril Assembly. Biophysical Journal, 114, 393a. https://doi.org/10.1016/j.bpj.2017.11.2174

  107. 107. Menko, A.S. (2015) Method to Treat and Prevent Posterior Capsule Opacification. Patent 8, 999, 370.

  108. 108. Moorthy, N.S.H.N., Pratheepa, V. and Manivannan, E. (2018) Natural Product Derived Drugs for Immunological and Inflammatory Diseases. Natural Products in Clinical Trials, 1, 1-31. https://doi.org/10.2174/9781681082134118010004

  109. 109. Deslouches, B. and Di, Y.P. (2017) Antimicrobial Peptides with Selective Antitumor Mechanisms: Prospect for Anticancer Applications. Oncotarget, 8, 46635-46651. https://doi.org/10.18632/oncotarget.16743

  110. 110. Dösler, S. (2017) Antimicrobial Peptides: Coming to the End of Antibiotic Era, the Most Promising Agents. İstanbul Journal of Pharmacy, 47, 72-76. https://doi.org/10.5152/IstanbulJPharm.2017.0012

  111. 111. Mangoni, M.L., McDermott, A.M. and Zasloff, M. (2016) Antimicrobial Peptides and Wound Healing: Biological and Therapeutic Considerations. Experimental Dermatology, 25, 167-173. https://doi.org/10.1111/exd.12929

  112. 112. Krutetskaya, Z.I., Melnitskaya, A.V., Antonov, V.G., et al. (2017) Lipoxygenases Modulate the Effect of Glutoxim on Na+ Transport in the Frog Skin Epithelium. Doklady Biochemistry and Biophysics, 474, 193-195. https://doi.org/10.1134/S1607672917030073

  113. 113. Harvey, A., Edrada-Ebel, R. and Quinn, R.J. (2015) The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nature Reviews Drug Discovery, 14, 111-129. https://doi.org/10.1038/nrd4510

  114. 114. Butler, M.S., Blaskovich, M.A. and Cooper, M.A. (2017) Antibiotics in the Clinical Pipeline at the End of 2015. The Journal of Antibiotics (Tokyo), 70, 3-24. https://doi.org/10.1038/ja.2016.72

  115. 115. Giuliani, A., Pirri, G. and Nicoletto, S. (2007) Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Open Life Sciences, 2, 1-33. https://doi.org/10.2478/s11535-007-0010-5

  116. 116. Feng, Q., Huang, Y. and Chen, M. (2015) Functional Synergy of α-Helical Antimicrobial Peptides and Traditional Antibiotics against Gram-Negative and Gram-Positive Bacteria in Vitro and in Vivo. European Journal of Clinical Microbiology & Infectious Diseases, 34, 197-204. https://doi.org/10.1007/s10096-014-2219-3

  117. 117. 李惠钰. 金环蛇毒抗菌肽能否成为下一个抗感染“明星” [N]. 中国科学报, 2019-01-21(5).

期刊菜单