Advances in Clinical Medicine
Vol.
14
No.
02
(
2024
), Article ID:
80484
,
9
pages
10.12677/ACM.2024.142347
肠道内产丁酸细菌与神经变性疾病的相关性 研究进展
田格1,张李娜2*
1西安医学院研工部,陕西 西安
2陕西省人民医院老年神经内科,陕西 西安
收稿日期:2024年1月5日;录用日期:2024年1月31日;发布日期:2024年2月5日

摘要
产丁酸细菌(Butyric acid producing bacteria, BAPB)是利用碳水化合物发酵产生丁酸的一类细菌,其主要代谢物丁酸能促进肠道黏膜及血脑屏障完整性防止有害物质进入大脑引起神经元损伤。丁酸是BAPB的主要产物,发挥抗炎、抑制细胞增殖、诱导免疫耐受及促进黏膜屏障完整性等作用。大量的研究表明,BAPB的丰度和丁酸的水平在不同的神经变性疾病中均显著下降。因此提高BAPB丰度及促进丁酸产生可能成为神经变性病干预中的新靶标。本文一方面介绍了神经变性疾病的发病机制以及丁酸的生理功能,另一方面综述了与神经变性病相关的BAPB的种类及特点,目的是提供更全面的与变性疾病相关的BAPB类型,为进一步研究提供可选择的靶细菌。
关键词
产丁酸细菌,丁酸,神经变性疾病

Research Progress on the Correlation between Butyric Acid Producing Bacteria in Intestine and Neurodegenerative Diseases
Ge Tian1, Lina Zhang2*
1Research Department of Xi’an Medical University, Xi’an Shaanxi
2Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi
Received: Jan. 5th, 2024; accepted: Jan. 31st, 2024; published: Feb. 5th, 2024

ABSTRACT
Butyric acid producing bacteria (BAPB), a class of bacteria using carbohydrate fermentation to produce butyrate, can promote the integrity of intestinal mucosa and blood-brain barrier and prevent harmful substances from entering the brain through microbial gut-brain axis causing neuronal damage. Butyrate is the main product of BAPB, which plays the role of anti-inflammation, inhibiting cell proliferation, inducing immune tolerance and promoting the integrity of mucosal barrier. A large number of studies have shown that BAPB abundance and butyric acid levels are significantly decreased in different neurodegenerative diseases. Therefore, remodelling the intestinal flora, especially increasing BAPB abundance, may be a new target for intervention in neurodegenerative diseases. On the one hand, the physiological function of butyric acid and the role of the gut-brain axis in BAPB and diseases are introduced. On the other hand, the types and characteristics of BAPB associated with neurodegenerative diseases are reviewed; the aim is to provide a more comprehensive version of BAPB associated with degenerative diseases and to provide an alternative strain of intervention for further research.
Keywords:Butyric Acid Producing Bacteria (BAPB), Butyrate, Neurodegenerative Diseases
Copyright © 2024 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 介绍
人类肠道中大约含有1014个细菌,1000多个物种 [1] 。肠道内细菌主要存在于结肠,据估计,结肠有300~400种 [2] 细菌,其中门水平以厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)为主。产丁酸细菌(Butyric acid producing bacteria, BAPB)主要隶属于厚壁菌门,可通过消化膳食纤维产生丁酸。丁酸参与人体多种代谢活动,介导着丰富的生化反应,维持机体内环境稳态。大量研究表明,微生物菌群失调会破坏肠粘膜屏障及血脑屏障并激活炎症信号通路,通过释放大量炎症因子介导神经、内分泌及免疫途径干预神经细胞的免疫功能及能量代谢水平,最终发展为神经变性病。
阿尔兹海默病(Alzheimer’s disease, AD)是老年期最常见的痴呆类型,到2050年,全世界将有1亿多AD患者 [3] [4] ,给世界经济造成巨大压力,然而目前仍缺乏延缓疾病进展的有效治疗。AD以细胞外β-淀粉样蛋白(Amyloid-beta protein, Aβ)沉积形成老年斑、细胞内Tau蛋白过度磷酸化导致的神经元纤维缠结以及小胶质细胞增生为主要病理机制。临床上患者主要表现为进行性认知功能障碍、日常生活能力减退及丰富的精神行为症状,后期会因生活能力完全丧失出现并发症而最终死亡。帕金森病(Parkinson’ disease, PD)是仅次于阿尔茨海默病的第二大中枢神经系统退行性疾病,流行病学调查显示,目前全球约600多万人患有PD,据估计,到2030年我国将有500多万PD患者 [5] 。PD是一种以黑质致密部多巴胺神经元选择性凋亡及残余神经元中路易小体沉积为主要病理特征的神经变性疾病。PD患者主要临床表现为运动迟缓、肌强直、静止性震颤、姿势不稳。既往研究表明,遗传因素、环境因素、衰弱、氧化应激均可能参与多巴胺能神经元的变性 [6] 。然而目前尚不清楚导致PD这一病理改变的确切原因。来自粪便样本的16S rRNA测序数据表明,AD和PD患者肠道微生物菌群多样性及丰度与健康对照组相比有显著性变化,其中以BAPB丰度下降和肠杆菌丰度增高为主要特征 [7] 。本文就肠道菌群与AD、PD发生机制的联系、丁酸的生理功能及神经变性病相关的BAPB的种类及特点进行总结,旨在于为AD、PD的治疗提供相关依据。
2. 肠道菌群与肠脑轴的联系
微生物肠脑轴(Microbiota-gut-brain-axis, MGB)是由肠道微生物群、肠道及神经系统共同构成,是人体的“第二大脑”。MGB在肠脑交互作用中发挥重要作用 [8] ,大量研究均提示MGB可以通过迷走神经、神经内分泌、细胞免疫等途径将肠道细菌的代谢产物运输至延髓、脑干及大脑,调节神经炎症、黏膜屏障功能和神经递质活性从而参与神经变性疾病的发生。Braak和他的同事 [9] 发现异常折叠的α-突出核蛋白始于肠道,经延髓、迷走神经背核、嗅球到中脑黑质致密部,最后累及前脑。消化性溃疡患者接受迷走神经切断术后发生PD的风险显著下降。临床上PD患者首先出现便秘、嗅觉障碍等非运动症状,大约10年后才出现运动症状。有意思的是,人体90%的血清素和50%的多巴胺都在肠道中产生,肠道微生物通过调节神经递质影响神经系统。近期研究发现补充益生菌和粪便移植 [10] 可能改善紊乱的肠道菌群来延缓疾病。综上所述,肠道菌群诱导神经变性疾病发生可能与MGB有关。
3. 丁酸盐的功能
短链脂肪酸(Short chain fatty acids, SCFAs)是肠道膳食纤维经细菌发酵后形成的产物,主要包括丙酸、丁酸和戊酸。BAPB是以产生丁酸为主要特征的一类细菌,在健康人群及长寿老人肠道菌群中丰度较高。作为肠脑交互作用的中间代谢物,丁酸能促进肠道黏膜的完整性和增强机体免疫功能 [11] 。越来越多的研究表明,丁酸盐(Sodium Butyrate, NaB)功能丰富,例如与细胞表面GPR43或GPR109A受体偶联缓解肠道炎症、通过调节线粒体功能来减轻氧化应激 [12] ,通过转运体和溶质载体家族5成员8 (SLC5A8)调节肠道紧密连接蛋白 [13] 、增加小鼠杯状细胞数量及Muc2表达来促进肠道上皮完整性及降低DNA氧化损伤作用 [14] 。研究表明NaB通过抑制HDAC影响蛋白表达来改善6-OHDA诱导的大鼠认知及运动症状 [15] 。有趣的是,NaB还能改善AD小鼠认知障碍并且降低脑内Aβ沉积 [16] ,NaB能直接结合和激活游离脂肪酸受体(FFAR)2和FFAR 3发挥抗PD作用。总之,丁酸盐为结肠细胞提供能量,同时通过免疫炎症通路等途径参与神经变性病的发生过程中。
4. AD发生机制及与肠道菌群的关系
由于衰老及病理因素存在,正常可溶的Aβ1-40因淀粉样前体蛋白(APP)基因、早老素1(PS1)、PS2或载脂蛋白E (Apolipoprotein E, APOE4)基因突变形成更易聚集的Aβ1-42,同时因AD患者单核巨噬细胞功能下降引起Aβ生成和清除平衡被打破最终导致AD产生。研究表明Aβ主要沉积在海马区,一方面通过破坏细胞内钙离子稳态激活细胞周期素依赖性激酶-5 (CDK5)导致tau的磷酸化,另一方面促进自由基形成引起氧化应激以激活Toll受体(Toll-like receptor, TLR)及激活小胶质细胞释放TNF-α和IL-1β、IL-18和炎症小体NLR (Nod样受体)等炎症因子参与中枢神经系统炎症反应,加速AD进展 [17] 。目前具体机制尚不清楚,大量研究已证实肥胖、胰岛素抵抗、环境、高脂饮食、衰老、APOE基因突变及肠道菌群失调是认知障碍的危险因素 [18] 。研究发现与健康组相比,AD患者的BAPB丰度及丁酸水平下降,同时也发现丁酸能阻断Aβ沉积 [8] 。一项动物实验也证明丁酸通过促进前额叶皮质区(pre-frontal cortex, PFC)髓鞘的生成改善抗生素处理的幼年小鼠成年后的认知水平 [19] 。综上所述,恢复肠道菌群多样性可能通过增加丁酸水平来缓解AD进展 [20] 。
5. PD发生机制及与肠道菌群的关系
PD患者的尸检发现,黑质致密部存在α-突触核蛋白聚集形成的路易小体。有意思的是,PD动物模型研究发现,肠神经系统内的α-突触核蛋白能通过迷走神经转运到脑干黑质纹状体系统形成路易小体 [21] [22] 。正常情况下α-突触核蛋白高度可溶,相反在病理状态下,α-突触核蛋白极易聚集成不溶的纤维蛋白沉淀,一方面可能是因DJ-1、LRRK2 [23] 及葡糖脑苷脂酶(GBA)基因突变 [24] 等引起α-突触核蛋白降解异常导致α-突触核蛋白病发生,另一方面模式识别受体TLR4特异性结合细菌代谢物脂多糖并激活TLR4-MyD88-NF-κB信号通路产生炎症因子,同时削弱小胶质细胞对α-突触核蛋白的吞噬作用,超载的α-突触核蛋白聚集形成路易小体沉积在黑质纹状体系统 [25] 。肠道菌群和炎症细胞因子相关性分析表明PD患者血浆中TNF-α和IFN-γ显著高于健康对照组并且与菌群多样性相关 [26] 。一项回顾性队列研究表明,与健康对照组相比,PD患者外周血中性粒细胞比淋巴细胞比值升高 [27] [28] 。在PD患者及动物模型中也发现渐进性DA神经元死亡的IFN-γ信号,而且IFN-γ信号基因和编码α-突触核蛋白的基因SNCA基因共表达 [29] 。临床上观察到IBD患者更容易发生PD,其黏膜屏障紧密连接蛋白的缺乏会增加肠道黏膜及血脑屏障通透性进一步损伤神经元。综上所述,肠道菌群失调通过炎症反应、氧化应激等引起PD发生。
6. 产丁酸细菌代表菌特征及与AD、PD联系
6.1. 普氏栖粪杆菌Faecalibacterium prausnitzii
F. prausnitzii属于厚壁菌门、梭菌科,柔嫩梭菌属,是不产芽孢严格厌氧的革兰阴性菌,处于“专性厌氧菌”中氧气耐受的极末端,是健康人群粪便中检测到最丰富的细菌之一,约占粪便细菌总数的5% [30] 。F. prausnitzii的抗炎作用在临床资料中得到证实 [31] ,其上清液和代谢物丁酸均能抑制炎症细胞因子IL-8发挥抗炎作用。近期,以F. prausnitzii作为干预菌种的一项动物研究表明,与AD组和轻度认知障碍组(MCI)相比,健康组的F. prausnitzii丰度高,给予AD小鼠口服F. prausnitzii后认知障碍改善 [32] 。PD患者肠道菌群中F. prausnitzii、Enterococcaceae丰度较年龄匹配的健康组低,同时其代谢物乙酸、丙酸。丁酸水平均减低 [33] 。
6.2. 罗氏菌属Roseburia
Roseburia属于厚壁菌门、梭菌纲、梭菌目和毛螺菌科,是轻微弯曲,含鞭毛,杆状专性厌氧的革兰氏阳性细菌,自人类粪便样本分离出 [34] 。近期一项基于机器学习预测AD模型的研究表明,Roseburia hominis丰度下降与磷酸化Tau蛋白较高有关 [35] 。XIE A等发现Roseburia,Romboutsia,and Prevotella丰度与PD患者抑郁症状呈负相关 [7] 。
6.3. 真杆菌Eubacterium
直肠真杆菌Eubacterium rectale是厚壁菌门、梭菌目、毛螺菌科厌氧革兰阳性菌,多呈直杆状或稍微弯曲。近期Lu H.等 [36] 发现与移植健康人群粪便的小鼠相比,通过补充E. rectale能抑制TLR4/MyD88/NF-κB通路减轻接受淋巴瘤患者粪便移植的小鼠体内TNF水平并改善肠道微环境。霍氏真杆菌Eubacterium hallii是兼性厌氧革兰阴性菌。孟德尔随机化分析表明,Eubacterium、Blautia与AD、重度抑郁及精神障碍有关 [37] 。对31名PD患者和28名健康对照粪便宏基因鸟枪测序分析提示PD患者Eubacterium biforme丰度下降 [38] ,Prevotellaceae、Akkermansia muciniphila丰度增高。
6.4. 臭杆菌属Odoribacter
Odoribacter属拟杆菌门,是普遍存在于人类肠道的一类产丁酸的厌氧菌。Odoribacter丰度下降与多种有关,如非酒精性脂肪肝、囊胞性纤维症和炎症性肠病 [39] 。结肠辅助性T细胞17 (T helper cell 17, Th17)具有免疫抑制功能,有研究证明了内脏臭杆菌Odoribacter splanchnicus是一种诱导Th17分化来保护小鼠免受结肠炎和结直肠癌的细菌 [40] 。针对AD和野生型小鼠粪便16SrRNA分析表明,AD小鼠Odoribacter在属水平上的丰度显著高于野生型小鼠,而在野生型小鼠中Prevotella的丰度显著高于AD小鼠 [32] 。6-OHDA和抗生素诱导的双打击PD小鼠模型实验表明,与假手术组和6-OHDA组相比,目标模型组Odoribacter、Bacteroides、Prevotella、Lachnospiraceae、Papillibacter丰度下降,然而唯一增加的是Ruminococcus,给予丁酸钠干预后与假手术组相比,Odoribacter、Prevotella、Dorea丰度增加,Butyricicoccus、Ruminococcus、Oscillospira丰度下降 [41] 。
6.5. 布劳氏菌Blautia
Blautia属于厚壁菌门毛螺菌科产丁酸和乙酸的厌氧菌 [42] ,由Liu等人于2008年首次提出。Blautia intestinalis sp. nov.是从中国一名自闭症儿童的粪便标本中分离到一株严格厌氧细菌,相比于健康儿童,自闭症患儿Blautia属丰度下降 [43] 。有意思的是,Blautia与AD发生风险关联方向的研究有差异,但一致的是Blautia依赖的精氨酸代谢的下游产物GABA与AD风险的降低有关 [37] 。近期Guo X. [44] 等发现Blautia是一个在PD的粪便、血液及大脑样本中持续消耗的独特菌属,而且该菌属的丰度与能量代谢有关,对神经系统退行性疾病和代谢疾病有同样作用 [44] 。
6.6. 丁酸梭菌Clostridium butyricum
C. butyricum属于厚壁菌门芽孢杆菌科梭状芽孢杆菌属,是产芽孢严格厌氧的革兰氏阳性菌。C. butyricum通过增长肠道微绒毛、增加粘膜层厚度和上调紧密连接蛋白的表达以及增加脑源性神经营养因子和胰高血糖素样肽(GLP-1)来激活脑内Akt通路增加肠道黏膜屏障紧密连接作用 [45] 。研究发现,Akt信号通路的失调与神经退行性疾病和代谢性疾病以及癌症有关 [46] [47] [48] 。Sun等证明口服C. butyricum可防止APP/PS1转基因小鼠认知障碍、脑内Aβ沉积以及提高丁酸水平 [49] 。同时丁酸梭菌还能通过GLP-1途径改善PD小鼠的运动障碍 [50] 。
6.7. 普雷沃菌属Prevotella
Prevotella属于拟杆菌门普氏菌科,是非运动性、杆状厌氧革兰氏阴性菌,主要存在于黏膜表面,已从口腔、胃肠道及泌尿生殖道分离出。Prevotella含有黏液蛋白降解相关酶,可能导致肠道通透性增加。研究发现,Prevotella丰度在自闭症、过敏及多发性硬化患者中显著下降,而在局部和全身炎症明显的患者中丰度较高,如细菌性阴道病、肥胖、炎症性肠病、牙周炎、类风湿性关节炎等 [51] 。载脂蛋白E靶向替代(APOE-targeted replacement, APEO-TR)转基因小鼠肠道菌群中Prevotellaceae、Ruminococcaceae及几种产丁酸细菌丰度较正常小鼠下降 [52] 。
6.8. 嗜黏蛋白阿克曼氏菌Akkermansia muciniphila
Akkermansia muciniphila是人类肠道中疣微菌门(Verrucomicrobia)的唯一代表,是可以分解黏蛋白的一种革兰阴性菌。研究表明,粪便样本测序表明该菌的丰度在代谢性疾病、AD、PD [53] 和结直肠癌患者中显著增加。另有研究发现人类粪便中Akkermansia的丰度与内侧颞叶萎缩正相关 [53] 。Akkermansia muciniphila灌胃后显著增加了AD小鼠肠道微生物群落的多样性 [54] ,并降低了厚壁菌门与拟杆菌门的比值,而这一比例曾被证明与炎症增加有关 [55] 。一项通过肠道菌群预测PD早期进展的随机森林模型表明, Akkermansia丰度增加以及Faecalibacterium和Blautia丰度下降预示着PD快速进展。
6.9. 瘤胃球菌Ruminococcaceae
Ruminococcaceae是厚壁菌门毛螺菌科的一种革兰氏阳性厌氧细菌,可为肠道上皮细胞提供70%的能量。一项横断面研究证实了肠道菌群中的瘤胃球菌与多个代谢综合征相关 [56] 。研究发现地中海生酮饮食 [57] 能增加产丁酸菌Ruminococcaceae的丰度,延缓AD发展。
6.10. 丁酸单胞菌Butyricimonas
Butyricimonas属拟杆菌门厌氧菌,是产丁酸细菌之一。在未经治疗的多发性硬化患者中,该菌数量减少。一项针对AD患者粪便16S rRNA基因结果表明与健康组相比,AD组中产丁酸细菌Prevotella、Butyricimonas丰度下降,Akkermansia、Dorea、Blautia丰度增加 [53] 。研究发现,PD患者肠道中该菌丰度显著高于健康对照组 [26] 。
6.11. 丁酸弧菌Butyrivibrio
Butyrivibrio是厚壁菌门梭状芽孢杆菌目毛螺菌科的一种产丁酸的厌氧菌。与野生型AD小鼠相比,AD小鼠Butyrivibrio丰度较低 [58] 。粪便菌群宏基因组测序结果表明,与健康组相比,PD患者肠道菌群中毛螺菌科显著丰度显著下降,主要包括Butyrivibrio、假丁酸弧菌(Pseudobutyrivibrio)、粪球菌(Coprococcus)以及Blautia [59] 。
6.12. 丁酸球菌Butyricicoccus
Butyricicoccus是厚壁菌门梭状芽胞杆菌目的厌氧菌。一项针对AD患者粪便16S rRNA基因结果表明,与健康组相比,Butyricicoccus、Faecalibacterium丰度与简易智力状况表(MMSE)正相关 [53] 。MMSE是认知障碍评分量表,MMSE评分越低认知障越严重。
6.13. 粪肠球菌Enterococcus faecalis
Enterococcus faecalis属于厚壁菌门肠球菌科,是过氧化氢阴性的革兰阳性球菌,其产物天然抑菌物质可以改善肠道微环境。Enterococcus faecalis可能促进AD病理进展 [60] 。
6.14. 颤螺菌属Oscillospira和Dorea
Oscillospira属于厚壁菌门瘤胃球菌科,是厌氧的革兰阳性细菌属,与肥胖、消瘦、胆结石及慢性便秘有关。研究表明,Blautia和Dorea丰度与MMSE负相关 [53] 。
6.15. 粪球菌属Coprococcus
Coprococcus属厚壁菌门毛螺菌科,是不运动、严格厌氧的革兰阳性菌,在抑郁、PD、AD、多发性硬化患者粪便中丰度较低 [61] 。
7. 小结
肠道微生物失调在神经系统疾病发生发展中有重要作用,而产丁酸菌可以通过重塑肠道菌群改善黏膜通透性延缓疾病进展。随着脑肠轴的提出,研究人员相继发现肠心轴、肠肺轴、肠淋巴轴、肠肝轴等,提示我们肠道微生物群通过特定轴影响人体不同方面,饮食、环境、情绪及睡眠等诱因能引起肠道微生物失平衡出现一系列相关症状。AD和PD患者肠道菌群多样性不同,多数BAPB在AD和PD中均下降,某些BAPB只与PD或者AD有关,有趣的是一些BAPB在AD患者中减少而在PD患者中可能升高。目前对AD和PD的菌群干预治疗仍仅限于成熟细菌,对其它有积极作用的BAPB需进一步在动物体内验证并明确具体机制,为神经变性疾病提供新的靶标及依据。
文章引用
田 格,张李娜. 肠道内产丁酸细菌与神经变性疾病的相关性研究进展
Research Progress on the Correlation between Butyric Acid Producing Bacteria in Intestine and Neurodegenerative Diseases[J]. 临床医学进展, 2024, 14(02): 2474-2482. https://doi.org/10.12677/ACM.2024.142347
参考文献
- 1. Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533. https://doi.org/10.1371/journal.pbio.1002533
- 2. Holzapfel, W.H., Haberer, P., Snel, J., et al. (1998) Overview of Gut Flora and Probiotics. International Journal of Food Microbiology, 41, 85-101. https://doi.org/10.1016/S0168-1605(98)00044-0
- 3. (2021) 2021 Alzheimer’s Disease Facts and Figures. Alz-heimer’s & Dementia: The Journal of the Alzheimer’s Association, 17, 327-406. https://doi.org/10.1002/alz.12328
- 4. Kumar, A., Sidhu, J., Goyal, A., et al. (2023) Alzheimer Disease. StatPearls, Treasure Island.
- 5. Armstrong, M.J. and Okun, M.S. (2020) Diagnosis and Treatment of Parkinson Disease: A Re-view. JAMA, 323, 548- 560. https://doi.org/10.1001/jama.2019.22360
- 6. Ye, H., Robak, L.A., Yu, M., et al. (2023) Genetics and Pathogenesis of Parkinson’s Syndrome. Annual Review of Pathology, 18, 95-121. https://doi.org/10.1146/annurev-pathmechdis-031521-034145
- 7. Xie, A., Ensink, E., Li, P., et al. (2022) Bacteri-al Butyrate in Parkinson’s Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Movement Disorders, 37, 1644-1653. https://doi.org/10.1002/mds.29128
- 8. Kim, S.Y., Chae, C.W., Lee, H.J., et al. (2020) Sodium Butyr-ate Inhibits High Cholesterol-Induced Neuronal Amyloidogenesis by Modulating NRF2 Stabilization-Mediated ROS Levels: Involvement of NOX2 and SOD1. Cell Death & Disease, 11, Article No. 469. https://doi.org/10.1038/s41419-020-2663-1
- 9. Braak, H., Del, Tredici, K., Rüb, U., et al. (2003) Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiology of Aging, 24, 197-211. https://doi.org/10.1016/S0197-4580(02)00065-9
- 10. Sun, M.F., Zhu, Y.L., Zhou, Z.L., et al. (2018) Neuroprotec-tive Effects of Fecal Microbiota Transplantation on MPTP-Induced Parkinson’s Disease Mice: Gut Microbiota, Glial Reaction and TLR4/TNF-α Signaling Pathway. Brain, Behavior, and Immunity, 70, 48-60. https://doi.org/10.1016/j.bbi.2018.02.005
- 11. Chen, S.J., Chen, C.C., Liao, H.Y., et al. (2022) Association of Fe-cal and Plasma Levels of Short-Chain Fatty Acids with Gut Microbiota and Clinical Severity in Patients with Parkinson Disease. Neurology, 98, E848-E858. https://doi.org/10.1212/WNL.0000000000013225
- 12. Xu, R.C., Miao, W.T., Xu, J.Y., et al. (2022) Neuroprotec-tive Effects of Sodium Butyrate and Monomethyl Fumarate Treatment through GPR109A Modulation and Intestinal Bar-rier Restoration on PD Mice. Nutrients, 14, Article No. 4163. https://doi.org/10.3390/nu14194163
- 13. Chang, S.C., Shen, M.H., Liu, C.Y., et al. (2020) A Gut Butyrate-Producing Bacterium Butyricicoccus Pullicaecorum Regulates Short-Chain Fatty Acid Transporter and Receptor to Reduce the Progression of 1,2-Dimethylhydrazine- Associated Col-orectal Cancer. Oncology Letters, 20, Article No. 327. https://doi.org/10.3892/ol.2020.12190
- 14. Jung, T.H., Park, J.H., Jeon, W.M., et al. (2015) Butyrate Modulates Bacterial Adherence on LS174T Human Colorectal Cells by Stimu-lating Mucin Secretion and MAPK Signaling Pathway. Nutrition Research and Practice, 9, 343-349. https://doi.org/10.4162/nrp.2015.9.4.343
- 15. Sharma, S., Taliyan, R. and Singh, S. (2015) Beneficial Effects of Sodium Butyrate in 6-OHDA Induced Neurotoxicity and Behavioral Abnormalities: Modulation of Histone Deacetylase Activity. Behavioural Brain Research, 291, 306- 314. https://doi.org/10.1016/j.bbr.2015.05.052
- 16. Fernando, W., Martins, I.J., Morici, M., et al. (2020) Sodium Butyrate Reduces Brain Amyloid-β Levels and Improves Cognitive Memory Performance in an Alzheimer’s Disease Transgenic Mouse Model at an Early Disease Stage. Journal of Alz-heimer’s Disease: JAD, 74, 91-99. https://doi.org/10.3233/JAD-190120
- 17. Huang, F., Wang, M., Liu, R., et al. (2019) CDT2-Controlled Cell Cycle Reentry Regulates the Pathogenesis of Alzheimer’s Disease. Alzheimer’s & Demen-tia: The Journal of the Alzheimer’s Association, 15, 217-231. https://doi.org/10.1016/j.jalz.2018.08.013
- 18. La Rosa, F., Clerici, M., Ratto, D., et al. (2018) The Gut-Brain Axis in Alzheimer’s Disease and Omega-3. A Critical Overview of Clinical Trials. Nutrients, 10, Article No. 1267. https://doi.org/10.3390/nu10091267
- 19. Keogh, C.E., Kim, D.H.J., Pusceddu, M.M., et al. (2021) Myelin as a Regulator of Development of the Microbiota-Gut-Brain Axis. Brain, Behavior, and Immunity, 91, 437-450. https://doi.org/10.1016/j.bbi.2020.11.001
- 20. Marizzoni, M., Cattaneo, A., Mirabelli, P., et al. (2020) Short-Chain Fatty Acids and Lipopolysaccharide as Mediators between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Dis-ease. Journal of Alzheimer’s Disease: JAD, 78, 683-697. https://doi.org/10.3233/JAD-200306
- 21. Wood, H. (2019) New Models Show Gut-Brain Transmission of Parkinson Disease Pathology. Nature Reviews Neurology, 15, Article No. 491. https://doi.org/10.1038/s41582-019-0241-x
- 22. Kim, S., Kwon, S.H., Kam, T.I., et al. (2019) Transneuronal Propagation of Pathologic Alpha-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neu-ron, 103, 627-641e7. https://doi.org/10.1038/s41582-019-0241-x
- 23. Hu, S., Tan, J., Qin, L., et al. (2021) Mo-lecular Chaperones and Parkinson’s Disease. Neurobiology of Disease, 160, Article ID: 105527. https://doi.org/10.1016/j.nbd.2021.105527
- 24. Ji, S., Wang, C., Qiao, H., et al. (2020) Decreased Penetrance of Parkinson’s Disease in Elderly Carriers of Glucocerebrosidase Gene L444P/R Mutations: A Community-Based 10-Year Longitudinal Study. Movement Disorders, 35, 672- 678. https://doi.org/10.1002/mds.27971
- 25. Caputi, V. and Giron, M.C. (2018) Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson’s Disease. International Journal of Molecular Sciences, 19, Article No. 1689. https://doi.org/10.3390/ijms19061689
- 26. Lin, C.H., Chen, C.C., Chiang, H.L., et al. (2019) Altered Gut Microbiota and Inflammatory Cytokine Responses in Patients with Parkinson’s Disease. Journal of Neuroinflammation, 16, Article No. 129. https://doi.org/10.1186/s12974-019-1528-y
- 27. Munoz-Delgado, L., Macias-Garcia, D., Jesus, S., et al. (2021) Peripheral Immune Profile and Neutrophil-TO-Lym- phocyte Ratio in Parkinson’s Disease. Movement Disorders, 36, 2426-2430. https://doi.org/10.1002/mds.28685
- 28. Jensen, M.P., Jacobs, B.M., Dobson, R., et al. (2021) Lower Lymphocyte Count Is Associated with Increased Risk of Parkinson’s Disease. Annals of Neurology, 89, 803-812. https://doi.org/10.1002/ana.26034
- 29. Liscovitch, N. and French, L. (2014) Differential Co-Expression between α-Synuclein and IFN-γ Signaling Genes across Development and in Parkinson’s Disease. PLOS ONE, 9, e115029. https://doi.org/10.1371/journal.pone.0115029
- 30. Breyner, N.M., Michon, C., De, Sousa, C.S., et al. (2017) Mi-crobial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway. Frontiers in Microbiology, 8, Article No. 114. https://doi.org/10.3389/fmicb.2017.00114
- 31. Miquel, S., Leclerc, M., Martin, R., et al. (2015) Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii. MBio, 6, e00300-15. https://doi.org/10.1128/mBio.00300-15
- 32. Ueda, A., Shinkai, S., Shiroma, H., et al. (2021) Identification of Faecalibacterium prausnitzii Strains for Gut Microbiome-Based Intervention in Alzheimer’s-Type Dementia. Cell Re-ports Medicine, 2, Article ID: 100398. https://doi.org/10.1016/j.xcrm.2021.100398
- 33. Unger, M.M., Spiegel, J., Dillmann, K.U., et al. (2016) Short Chain Fatty Acids and Gut Microbiota Differ between Patients with Parkinson’s Disease and Age-Matched Controls. Parkinsonism & Related Disorders, 32, 66-72. https://doi.org/10.1016/j.parkreldis.2016.08.019
- 34. Duncan, S.H., Hold, G.L., Barcenilla, A., et al. (2002) Rose-buria intestinalis sp. Nov., a Novel Saccharolytic, Butyrate-Producing Bacterium from Human Faeces. International Journal of Systematic and Evolutionary Microbiology, 52, 1615-1620. https://doi.org/10.1099/00207713-52-5-1615
- 35. Verhaar, B.J.H., Hendriksen, H.M.A., De, Leeuw, F.A., et al. (2021) Gut Microbiota Composition Is Related to AD Pathology. Frontiers in Immunology, 12, Article ID: 794519. https://doi.org/10.3389/fimmu.2021.794519
- 36. Lu, H., Xu, X., Fu, D., et al. (2022) Butyrate-Producing Eubac-terium Rectale Suppresses Lymphomagenesis by Alleviating the TNF-Induced TLR4/MyD88/NF-κB Axis. Cell Host & Microbe, 30, 1139-1150.E7. https://doi.org/10.1016/j.chom.2022.07.003
- 37. Zhuang, Z., Yang, R., Wang, W., et al. (2020) Associations be-tween Gut Microbiota and Alzheimer’s Disease, Major Depressive Disorder, and Schizophrenia. Journal of Neuroin-flammation, 17, Article No. 288. https://doi.org/10.1186/s12974-020-01961-8
- 38. Bedarf, J.R., Hildebrand, F., Coelho, L.P., et al. (2017) Func-tional Implications of Microbial and Viral Gut Metagenome Changes in Early Stage L-DOPA-Naïve Parkinson’s Disease Patients. Genome Medicine, 9, Article No. 39. https://doi.org/10.1186/s13073-017-0428-y
- 39. Hiippala, K., Barreto, G., Burrello, C., et al. (2020) Novel Odori-bacter Splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in Vitro. Frontiers in Mi-crobiology, 11, Article ID: 575455. https://doi.org/10.3389/fmicb.2020.575455
- 40. Xing, C., Wang, M., Ajibade, A.A., et al. (2021) Microbiota Reg-ulate Innate Immune Signaling and Protective Immunity against Cancer. Cell Host & Microbe, 29, 959-974.E7. https://doi.org/10.1016/j.chom.2021.03.016
- 41. Avagliano, C., Coretti, L., Lama, A., et al. (2022) Dual-Hit Model of Parkinson’s Disease: Impact of Dysbiosis on 6-Hydroxydopamine-Insulted Mice—Neuroprotective and An-ti-Inflammatory Effects of Butyrate. International Journal of Molecular Sciences, 23, Article No. 6367. https://doi.org/10.3390/ijms23126367
- 42. Liu, X., Mao, B., Gu, J., et al. (2021) Blautia—A New Functional Ge-nus with Potential Probiotic Properties? Gut Microbes, 13, Article ID: 1875796. https://doi.org/10.1080/19490976.2021.1875796
- 43. Wang, Y.J., Abdugheni, R., Liu, C., et al. (2021) Blautia in-testinalis Sp. Nov., Isolated from Human Feces. International Journal of Systematic and Evolutionary Microbiology, 71. https://doi.org/10.1099/ijsem.0.005005
- 44. Guo, X., Tang, P., Hou, C., et al. (2022) Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence from Feces, Blood, and Brain. Fron-tiers in Microbiology, 13, Article ID: 875101. https://doi.org/10.3389/fmicb.2022.875101
- 45. Liu, M., Xie, W., Wan, X., et al. (2020) Clostridium butyricum Protects Intestinal Barrier Function via Upregulation of Tight Junction Proteins and Activation of the Akt/MTOR Signal-ing Pathway in a Mouse Model of Dextran Sodium Sulfate-Induced Colitis. Experimental and Therapeutic Medicine, 20, Article No. 10. https://doi.org/10.3892/etm.2020.9138
- 46. Akhtar, A. and Sah, S.P. (2020) Insulin Signaling Pathway and Related Molecules: Role in Neurodegeneration and Alzheimer’s Disease. Neurochemistry International, 135, Article ID: 104707. https://doi.org/10.1016/j.neuint.2020.104707
- 47. Hu, M., Chen, Y., Deng, F., et al. (2022) D-Mannose Regulates Hepatocyte Lipid Metabolism via PI3K/Akt/MTOR Signaling Pathway and Ameliorates Hepatic Steatosis in Alcoholic Liver Disease. Frontiers in Immunology, 13, Article ID: 877650. https://doi.org/10.3389/fimmu.2022.877650
- 48. Huang, T.T., Lampert, E.J., Coots, C., et al. (2020) Targeting the PI3K Pathway and DNA Damage Response as a Therapeutic Strategy in Ovarian Cancer. Cancer Treatment Reviews, 86, Article ID: 102021. https://doi.org/10.1016/j.ctrv.2020.102021
- 49. Sun, J., Xu, J., Yang, B., et al. (2020) Effect of Clostridium butyr-icum against Microglia-Mediated Neuroinflammation in Alzheimer’s Disease via Regulating Gut Microbiota and Metabo-lites Butyrate. Molecular Nutrition & Food Research, 64, e1900636. https://doi.org/10.1002/mnfr.201900636
- 50. Sun, J., Li, H., Jin, Y., et al. (2021) Probiotic Clostridium butyricum Ameliorated Motor Deficits in a Mouse Model of Parkinson’s Disease via Gut Microbiota-GLP-1 Pathway. Brain, Be-havior, and Immunity, 91, 703-715. https://doi.org/10.1016/j.bbi.2020.10.014
- 51. Sharma, G., Garg, N., Hasan, S., et al. (2022) Prevotella: An Insight into Its Characteristics and Associated Virulence Factors. Microbial Pathogenesis, 169, Article ID: 105673. https://doi.org/10.1016/j.micpath.2022.105673
- 52. Tran, T.T.T., Corsini, S., Kellingray, L., et al. (2019) APOE Genotype Influences the Gut Microbiome Structure and Function in Humans and Mice: Relevance for Alzheimer’s Dis-ease Pathophysiology. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Bi-ology, 33, 8221-8231. https://doi.org/10.1096/fj.201900071R
- 53. Li, B., He, Y., Ma, J., et al. (2019) Mild Cognitive Impairment Has Similar Alterations as Alzheimer’s Disease in Gut Microbiota. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 15, 1357-1366. https://doi.org/10.1016/j.jalz.2019.07.002
- 54. Megur, A., Baltriukienė, D., Bukelskienė, V., et al. (2020) The Mi-crobiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? Nutrients, 13, Article No. 37. https://doi.org/10.3390/nu13010037
- 55. He, X., Yan, C., Zhao, S., et al. (2022) The Preventive Effects of Probi-otic Akkermansia Muciniphila on D-Galac- tose/AlCl3 Mediated Alzheimer’s Disease-Like Rats. Experimental Geron-tology, 170, Article ID: 111959. https://doi.org/10.1016/j.exger.2022.111959
- 56. Grahnemo, L., Nethander, M., Coward, E., et al. (2022) Cross-Sectional Associations between the Gut Microbe Ruminococcus gnavus and Features of the Metabolic Syndrome. The Lancet Diabetes & Endocrinology, 10, 481-483. https://doi.org/10.1016/S2213-8587(22)00113-9
- 57. Nagpal, R., Neth, B.J., Wang, S., et al. (2019) Modified Mediterranean-Ketogenic Diet Modulates Gut Microbiome and Short-Chain Fatty Acids in Association with Alzheimer’s Disease Markers in Subjects with Mild Cognitive Impairment. EBioMedicine, 47, 529-542. https://doi.org/10.1016/j.ebiom.2019.08.032
- 58. Liu, M., Hu, R., Guo, Y., et al. (2020) Influence of Lactobacillus reuteri SL001 on Intestinal Microbiota in AD Model Mice and C57BL/6 Mice. Chinese Journal of Biotechnology, 36, 1887-1898.
- 59. Vascellari, S., Palmas, V., Melis, M., et al. (2020) Gut Microbiota and Metabolome Alterations Asso-ciated with Parkinson’s Disease. mSystems, 5, e00561-20. https://doi.org/10.1128/mSystems.00561-20
- 60. Underly, R., Song, M.S., Dunbar, G.L., et al. (2015) Expression of Alzheimer-Type Neurofibrillary Epitopes in Primary Rat Cortical Neurons Following Infection with Enterococcus faecalis. Frontiers in Aging Neuroscience, 7, Article No. 259. https://doi.org/10.3389/fnagi.2015.00259
- 61. Gerhardt, S. and Mohajeri, M.H. (2018) Changes of Colonic Bacte-rial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases. Nutrients, 10, Article No. 708. https://doi.org/10.3390/nu10060708
NOTES
*通讯作者。