Advances in Clinical Medicine
Vol. 14  No. 04 ( 2024 ), Article ID: 85571 , 11 pages
10.12677/acm.2024.1441290

1,25(OH)2D3通过稳定线粒体DNA对GCDC诱导的HiBECs凋亡的作用研究

李永新,王战,高炜泽,鲁文龙,刘明军*

青岛大学附属医院,山东 青岛

收稿日期:2024年3月27日;录用日期:2024年4月21日;发布日期:2024年4月28日

摘要

目的:探讨骨化三醇(1,25(OH)2D3)对甘氨鹅脱氧胆酸盐(GCDC)诱导的人肝内胆管上皮细胞(HiBECs)凋亡的影响,并初步阐明其潜在的作用机制。方法:采用1 nM GCDC处理HiBECs建立原发性胆汁性胆管炎细胞模型,并采用不同浓度(0.1 nM、1 nM、10 nM、100 nM) 1,25(OH)2D3处理12 h。流式细胞术检测细胞凋亡水平,ELISA检测细胞培养液中炎症因子IL-6和IL-8水平,qPCR检测PDC-E2、PGC-1α、NrF-1和NrF-2的mRNA相对表达水平,Western blot检测细胞内Bcl-2、PDC-E2表达水平。结果:1 mM GCDC可以降低HiBECs细胞增殖活性,诱导HiBECs凋亡,提高细胞培养液中IL-6和IL-8水平,上调PDC-E2蛋白表达,下调Bcl-2蛋白表达,抑制COX-1、PGC-1α、NrF-1和NrF-2 mRNA相对表达水平。可以提高GCDC诱导的HiBECs细胞增殖活性,抑制GCDC诱导HiBECs细胞凋亡,降低细胞培养液中IL-6和IL-8水平,下调PDC-E2蛋白表达水平,提高COX-1、PGC-1α、NrF-1和NrF-2 mRNA相对表达水平。结论:1,25(OH)2D3可抑制诱导HiBECs细胞凋亡,其作用机制可能与线粒体DNA稳定有关。

关键词

原发性胆汁性胆管炎,1,25(OH)2D3,线粒体DNA,细胞凋亡

The Role of 1,25(OH)2D3 on GCDC-Induced Apoptosis in HiBECs by Stabilising Mitochondrial DNA

Yongxin Li, Zhan Wang, Weize Gao, Wenlong Lu, Mingjun Liu*

The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Mar. 27th, 2024; accepted: Apr. 21st, 2024; published: Apr. 28th, 2024

ABSTRACT

Objective: To investigate the effects of osteotriol (1,25(OH)2D3) on Glycochenodeoxycholate (GCDC)-induced apoptosis of human intrahepatic biliary epithelial cells (HiBECs) and to preliminarily elucidate its potential mechanism of action. Methods: Primary biliary cholangitis cell model was established by treating HiBECs with 1 nM GCDC and treated with different concentrations (0.1 nM, 1 nM, 10 nM, 100 nM) of 1,25(OH)2D3 for 12 h. The apoptosis level was detected by flow cytometry, the levels of the inflammatory factors IL-6 and IL-8 were detected by ELISA in the cell culture fluid, and qPCR was performed to detect the relative mRNA expression levels of PDC-E2, PGC-1α, NrF-1 and NrF-2 were detected by qPCR, and the intracellular expression levels of Bcl-2 and PDC-E2 were detected by Western blot. Results: 1 mM GCDC could reduce the proliferative activity of HiBECs cells, induce apoptosis of HiBECs, increase the levels of IL-6 and IL-8 in the cell culture medium, up-regulate the expression of PDC-E2 protein, down-regulate the expression of Bcl-2 protein, and inhibit the relative expression levels of COX-1, PGC-1α, NrF-1, and NrF-2 mRNA. It can increase the proliferative activity of GCDC-induced HiBECs cells, inhibit GCDC-induced apoptosis of HiBECs cells, reduce the levels of IL-6 and IL-8 in the cell culture medium, down-regulate the level of PDC-E2 protein expression, and increase the level of COX-1, PGC-1α, NrF-1 and NrF-2 mRNA relative expression. Conclusion: 1,25(OH)2D3 can inhibit the induction of apoptosis in HiBECs, and its mechanism of action may be related to mitochondrial DNA stabilisation.

Keywords:Primary Biliary Cholangitis, 1,25(OH)2D3, Mitochondrial DNA, Apoptosis

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

原发性胆汁性胆管炎(Primary Biliary Cholangitis, PBC)是一种免疫介导的慢性胆汁性肝病。线粒体抗原作为PBC的自身免疫抗原,最重要的亚单位是丙酮酸脱氢酶复合体E2亚基(Pyruvate dehydrogenase complex E2, PDC-E2) [1] 。针对PDC-E2产生的抗线粒体抗体(Anti-mitochondrial antibody, AMA)是PBC的血清学标志,可见于90%的PBC患者,常用作该病的重要实验室诊断指标 [2] 。

人肝内胆管上皮细胞(Human Intrahepatic biliary epithelial cells, HiBECs)是肝细胞的重要组成部分,也是PBC的靶细胞,其损伤机制是研究PBC发病机制的关键 [3] 。甘氨鹅脱氧胆酸盐(Glycochenodeoxycholate, GCDC)作为胆汁酸的重要组成部分,可以诱导肝细胞和胆管上皮细胞凋亡,采取GCDC诱导凋亡可更好的模拟PBC疾病状态。因此大多数研究采取GCDC诱导肝内胆管上细胞凋亡来构建PBC细胞研究模型 [4] [5] 。

线粒体是能量细胞器,依靠呼吸链电子传递,将氧和糖代谢产物转化为三磷酸腺苷(ATP)。在胆汁淤积性疾病中,线粒体功能障碍和氧化应激相互作用,是诱导细胞死亡的重要因素 [6] 。过氧化物酶激活受体γ激活剂-1α (peroxidase-activated receptor gamma activator-1α, PGC-1α)是线粒体生物合成和功能的主要调节因子,可以增强核呼吸因子(nuclear respiratory factor, NRF)-1和NRF-2的表达和线粒体转录因子A (mitochondrial transcription factor A, TFAM)的转录活性,促进线粒体调节蛋白的转录及生物生成,提供能量代谢,对细胞产生保护作用 [7] 。越来越多的证据表明,胆汁酸损害肝细胞线粒体功能,导致胆汁淤积 [8] 。当机体处于高水平氧化应激时,线粒体DNA (mtDNA)容易受到氧化损伤,促进细胞凋亡 [9] [10] 。因此,防止胆管上皮细胞线粒体功能障碍可以改善肝功能,减少胆汁淤积 [11] 。

维生素D是一种类固醇激素,具有多种生物效应,包括钙磷平衡 [12] 、骨代谢 [13] 、免疫调节 [14] [15] 、细胞增殖和分化以及多种组织的转录调节 [16] 。有研究发现许多肝脏疾病,都检测到血清维生素D水平过低,包括原发性胆汁性胆管炎(PBC) [17] 、自身免疫性肝炎 [18] 、慢性乙型肝炎 [19] [20] 、慢性丙型肝炎 [21] [22] 和非酒精性脂肪肝(NAFLD) [23] [24] 。

尽管维生素D具有调节肝损伤和抑制细胞凋亡的作用,但目前维生素D在PBC肝内胆管上皮细胞的作用和具体潜在机制尚未明确。因此,本研究采用维生素D的活性形式,作用于PBC细胞模型,检测其对HiBECs凋亡的影响,并进一步探讨是否通过稳定mtDNA来抑制HiBECs凋亡,为PBC的治疗研究提供更多的基础资料。

2. 材料与方法

2.1. 实验细胞

HiBECs购自智立中特(武汉)生物科技有限公司。将细胞培养在含10%胎牛血清、1%青霉素、链霉素的DMEM培养基中,放置于37℃、5% CO2饱和湿度的培养箱中培养。每2天换液1次,待细胞融合度达到80%以上时,进行细胞传代。

2.2. 主要试剂及仪器

DMEM培养基购于青岛赛尚科贸有限公司,GCDC购于大连美仑生物技术有限公司,Annexin V-FITC/PI细胞凋亡检测试剂盒、BCA试剂盒、逆转录试剂盒、实时定量试剂盒购于翌圣生物科技(上海)股份有限公司,CCK-8增强型细胞活力检测试剂盒、TBST Buffer (10×)购于武汉伊莱瑞特生物科技股份有限公司,胎牛血清、实时荧光定量PCR仪购于美国Thermo公司,抗PDC-E2抗体、抗Bcl-2抗体购于美国Abcam公司。自动酶标仪(ELX800酶标仪)购于美国Bio Tek公司。

2.3. 细胞分组与处理

将HiBECs分为:① 对照组(NC):正常HiBECs;② GCDC组:1 mM GCDC处理HiBECs建立PBC细胞模型;③ GCDC + 低、中、高浓度(GCDC + VD-L、GCDC + VD-M、GCDC + VD-H):采用1、10、100 nM与1 mM GCDC共同处理人肝内胆管上皮细胞12 h。

2.4. CCK-8

CCK-8法检测处理对细胞活力的影响。将生长状态良好HiBECs消化后接种于96孔板中,待细胞生长至约70%融合度时进行分组处理,同时设置空白组,培养12 h。每孔加入10 μL CCK-8试剂,继续培养1.5 h,用自动酶标仪在450 nm下检测吸光度,并计算细胞增殖活性。细胞存活率 = (处理组OD值 − 空白对照组OD值)/(处理组OD值 − 空白对照组OD值) × 100%。

2.5. 酶联免疫吸附试验(ELISA)

收集各组细胞培养液,采用ELISA试剂盒检测细胞培养液中IL-6及IL-8水平。

2.6. 流式细胞术

根据生产商的说明书(上海翌圣生物科技有限公司),使用Annexin V-FITC测定法通过流式细胞仪测量细胞凋亡。简单地说,收获细胞,用PBS冲洗两次,在2500 r-min−1、4℃下离心5 min,弃去上清液。将细胞重悬于400 μL含有5 μL FITV和10 μL PI的1 × 结合缓冲液中,室温暗处孵育15 min。孵育后1小时内用流式细胞仪分析样本。

2.7. qPCR

采用TRIzol法从细胞中提取总RNA,采用逆转录试剂盒将总RNA逆转成cDNA,再采取荧光定量PCR试剂盒以cDNA为模板进行PCR扩增。PCR条件:95℃预变形30 s,95℃变性3 s,60℃退火/延伸20 s,共40个循环。以GAPDH为内参,采用2ΔΔCT法计算各组细胞中mRNA相对表达水平。实验中使用的引物序列见表1

Table 1. qPCR primer information

表1. qPCR引物信息

2.8. Western Blot

用含有蛋白酶抑制剂和磷酸酶抑制剂的放射免疫共沉淀测定(RIPA)裂解缓冲液在冰上裂解6孔板中的细胞10分钟。收集上清液,用BCA试剂盒测定蛋白质样品的浓度。各蛋白样品经SDS-PAGE分离,电印迹到PVDF膜上。然后用一抗封闭,4℃孵育过夜。洗膜后加入二抗室温孵育1 h。采用ECL显影液于显影仪显影。用Image J软件进行密度分析。

2.9. 统计学

本实验结果数据利用Graphpad Prism 10.0软件进行统计分析和作图。正态分布的数据利用两独立样本T检验或单因素方差分析,非正态分布的数据利用Wilcoxon秩和检验及Kruskal-Wallis秩和检验。P < 0.05代表差异有统计学意义。

3. 结果

3.1. PBC细胞模型建立

PBC的病理特征是HiBECs凋亡性损伤,HiBECs凋亡后,PDC-E2暴露诱导胆管上皮产生自身免疫损伤的靶抗原。因此,需要检测HiBECs凋亡率和PDC-E2的表达水平,来验证PBC细胞模型是否构建成功。采用1 nM的GCDC作用于HiBECs 12 h后,采用qPCR法检测PDC-E2 mRNA相对表达量,结果发现PDC-E2 mRNA水平相较于NC组表达升高约2.3倍(P < 0.05) (见图1(a)),Western Blot结果显示PDC-E2蛋白表达水平升高约2.1倍(P < 0.01) (见图1(b)、图1(c))。同时采用流式细胞术检测细胞凋亡百分情况,结果显示正常的早期凋亡细胞在12.01%,而应用了GCDC诱导后的细胞凋亡率明显增加,达到31.78% (见图1(d))。以上证明了PBC细胞模型成功建立,可以用于后续研究。

(a) 正常HiBECs组和GCDC组PDC-E2 mRNA相对表达水平;(b) 正常HiBECs组和GCDC组PDC-E2蛋白表达水平;(c) PDC-E2蛋白的定量分析;(d) 流式细胞术检测HiBECs凋亡率。

Figure 1. Establishment of the PBC cell model

图1. PBC细胞模型的建立

3.2. 1,25(OH)2D3对正常HiBEC细胞增殖活性的影响

为筛选出对HiBECs合适浓度,采用CCK-8法检测不同浓度1,25(OH)2D3对正常HiBECs增殖水平的影响。不同浓度(1 nM、10 nM、100 nM、300 nM) 1,25(OH)2D3处理正常HiBECs 12 h,实验结果表明,当1,25(OH)2D3浓度达到300 nM时,HiBECs增殖活性受到明显抑制(P < 0.05) (见图2(a)),而采用1 nM、10 nM、100 nM 1,25(OH)2D3处理对HiBECs增殖活性无明显抑制作用(P > 0.05) (见图3(a))。因此,本研究后续研究中,分别以1 nM、10 nM、100 nM作为维生素D的低、中、高浓度(GCDC + VD-L、GCDC + VD-M、GCDC + VD-H)进行实验。

3.3. 1,25(OH)2D3对PBC细胞分泌细胞因子的影响

我们通过ELISA检测细胞培养液中的IL-6、IL-8促炎细胞因子,结果发现,与NC组相比较,应用GCDC诱导的PBC细胞的培养液中促炎细胞因子IL-6 (P < 0.01) (见图3(a))、IL-8 (P < 0.05) (见图3(b))浓度均显著升高。应用1,25(OH)2D3处理后,GCDC + VD-L组、GCDC + VD-M和GCDC + VD-H组IL-6浓度均呈浓度梯度性下降(见图3(a))。与GCDC组相比,GCDC + VD-H组的IL-8浓度出现下降(P < 0.05) (见图3(b))。

(a) 1,25(OH)2D3对正常HiBECs增殖活性的影响;(b) 1,25(OH)2D3对PBC细胞增殖活性的影响。#P < 0.05, ##P < 0.01 vs. NC组. *P < 0.05, **P < 0.01, ***P < 0.001 vs. GCDC组。ΔP < 0.05 vs. GCDC + VD-L组。GCDC + VD-L组:GCDC + 1 nM 1,25(OH)2D3;GCDC + VD-M组:GCDC + 10 nM 1,25(OH)2D3;GCDC + VD-H组:GCDC + 100 nM 1,25(OH)2D3

Figure 2. The effect of 1,25(OH)2D3 on the proliferation of HiBECs

图2. 1,25(OH)2D3对HiBECs增殖的影响

(a) 各组培养基中IL-6水平;(b) 各组培养液中IL-8水平。#P < 0.05, ##P < 0.01 vs. NC组。*P < 0.05, **P < 0.01, ***P < 0.001 vs. GCDC组。ΔP < 0.05 vs. GCDC + VD-L组。GCDC + VD-L组:GCDC + 1 nM 1,25(OH)2D3;GCDC + VD-M组:GCDC + 10 nM 1,25(OH)2D3;GCDC + VD-H组:GCDC + 100 nM 1,25(OH)2D3

Figure 3. The effect of 1,25(OH)2D3 on IL-6 and IL-8 in cell culture fluid

图3. 1,25(OH)2D3对细胞培养液中IL-6、IL-8的影响

3.4. 1,25(OH)2D3对PBC细胞凋亡率的影响

早期凋亡细胞为膜联蛋白V-FITC阳性和PI阴性。如图5(a)所示,与对照组相比,GCDC组早期细胞凋亡增加,而维生素处理部分逆转了GCDC诱导的HIBEC凋亡,差异具有统计学意义(P < 0.05) (见图4(a))。检测凋亡相关标志物的表达。结果发现,与对照组相比,PDC-E2 mRNA及蛋白表达上升,而Bcl-2蛋白表达下调。与GCDC组相比,应用1,25(OH)2D3后的PDC-E2 mRNA及蛋白表达水平下降,而Bcl-2蛋白表达上调(见图4(b)、图4(c))。

3.5. 1,25(OH)2D3对细胞mtDNA的影响

COX1用于测定mtDNA拷贝数,PGC-1α、NRF1、NRF2和TFAM作为参与线粒体生物合成的转录

(a) 维生素D对HiBECs凋亡率的影响;(b) 维生素D对PBC细胞增殖活性的影响;(c) 各组培养基中IL-6水平;(d) PDC-E2蛋白的定量分析;(e) Bcl-2蛋白的定量分析。#P < 0.05, ##P < 0.01 vs. NC组。*P < 0.05, **P < 0.01, ***P < 0.001 vs. GCDC组。ΔP < 0.05 vs. GCDC + VD-L组。GCDC + VD-L组:GCDC + 1 nM 1,25(OH)2D3;GCDC + VD-M组:GCDC + 10 nM 1,25(OH)2D3;GCDC + VD-H组:GCDC + 100 nM 1,25(OH)2D3

图4. 1,25(OH)2D3对HiBECs细胞凋亡率的影响

因子,是mtDNA增殖标志物。通过qPCR检测,结果发现与NC组相比,GCDC的处理显著降低了PGC-1α (P < 0.01,见图5(a))、Nrf-1 (P < 0.01) (见图5(b)),Nrf-2 (P < 0.01) (见图5(c))和TFAM (P < 0.05) (见图5(d))、COX1 (P < 0.01) (见图5(e))的mRNA水平。而1,25(OH)2D3的干预逆转了GCDC的负面影响,使Nrf-1 (P < 0.01) (图5(b)),Nrf-2 (P < 0.01) (图5(b))和TFAM (P < 0.05) (图5(d))、COX1 (P < 0.05) (图5(e)) mRNA表达明显升高。

(a) qPCR检测各组COX1 mRNA表达水平。(b) qPCR检测各组PGC-1α mRNA表达水平。(c) qPCR检测各组Nrf-1 mRNA表达水平。(d) qPCR检测各组Nrf-2 mRNA表达水平。(e) qPCR检测各组TFAM mRNA水平。#P < 0.05,##P < 0.01 vs. NC组。*P < 0.05,**P < 0.01,***P < 0.001 vs. GCDC组。ΔP < 0.05 vs. GCDC + VD-L组。GCDC + VD-L组:GCDC + 1 nM 1,25(OH)2D3;GCDC + VD-M组:GCDC + 10 nM 1,25(OH)2D3;GCDC + VD-H组:GCDC + 100 nM 1,25(OH)2D3

图5. 1,25(OH)2D3对GCDC诱导的HiBECs mtDNA的影响

4. 讨论

在本研究中,我们建立了GCDC诱导的PBC细胞模型,以检测1,25(OH)2D3在PBC中的功能。近年来的研究表明维生素D对PBC有保护作用 [25] [26] [27] 。然而,大多数研究主要集中在血清中维生素D水平与PBC疾病进展的关系上,少数研究探讨了1,25(OH)2D3在PBC细胞模型中的影响及其机制。本研究首次发现1,25(OH)2D3可通过稳定mtDNA,调节线粒体代谢抑制GCDC诱导的HiBECs凋亡,可能是治疗PBC的潜在靶点。

首先本研究选择了人胆汁内主要毒性成分GCDC诱导人肝内胆管上皮细胞凋亡,PBC特异性自身抗体PDC-E2表达升高,细胞凋亡率增加,证明我们成功构建了PBC细胞模型,并且通过CCK-8实验确定了维生素D的合适作用剂量范围。实验结果显示GCDC诱导的HiBEC细胞增殖活性显著降低,细胞培养液中炎症因子IL-6、IL-8水平升高,同时HiBEC凋亡水平也显著增加。而维生素D提高了GCDC诱导的HiBEC细胞增殖活性,降低了细胞培养液中IL-6和IL-8水平,并且可以通过稳定mtDNA影响线粒体功能,抑制GCDC诱导的HiBEC凋亡,说明了维生素D对GCDC诱导的HiBEC具有保护作用。。这些结果提示维生素D可能是治疗PBC的一种选择。

以往的一些研究发现,维生素D可抑制细胞凋亡,在多种疾病中发挥治疗和预防作用。维生素D能减少顺铂诱导的人肾小管上皮细胞凋亡 [28] ,保护胃黏膜上皮细胞免受幽门螺旋杆菌诱导的凋亡 [29] ,改善链脲佐菌素诱导的大鼠胰腺组织凋亡和氧化应激 [30] 。维生素D对慢性肝胆疾病 [31] [32] [33] ,尤其是自身免疫性肝病(AILD)有保护作用。自身免疫性肝病(AILD)患者血清维生素D水平普遍降低,补充血清维生素D可减轻肝损伤和肝纤维化程度 [27] [34] [35] 。与之前研究结果一致,本研究发现维生素D减少PBC的HiBEC凋亡,在PBC中发挥保护作用。

线粒体功能障碍与肝胆汁淤积症有关。线粒体功能障碍与肝胆汁淤积症有关 [36] 。有毒胆盐积累会导致慢性损伤,如线粒体损伤、ROS增加和细胞凋亡,从而导致肝功能异常。研究发现,PGC-1α在维持线粒体和能量代谢平衡方面具有重要功能 [36] 。PGC-1α主导线粒体DNA复制和细胞氧化代谢,其表达水平是线粒体基因表达的限制因素 [37] 。此外,PGC-1α与NrFs (如NrF-1和NrF-2)共同作用,提高TFAM的表达来控制线粒体的生物生成 [38] [39] 。迄今为止,很少有研究报道1,25(OH)2D3通过线粒体途径对细胞凋亡具有保护作用。而我们的研究也发现,GCDC处理HiBEC通过抑制线粒体DNA稳定性、降低PGC-1α表达诱导细胞凋亡。维生素D通过激活PGC-1α,增加NrF-1,NrF-2表达,稳定mtDNA,并减少促炎细胞因子,减少HiBEC的细胞凋亡。

综上所述,本研究表明GCDC诱导HiBECs凋亡,1,25(OH)2D3通过稳定mtDNA途径参与GCDC诱导的HiBECs的抗凋亡作用。我们的研究结果阐明了1,25(OH)2D3在PBC中发挥保护作用的新机制。然而,该研究仍有一些不可忽视的局限性。目前的研究仅限于体外细胞模型,需要进一步的动物模型和临床实验,以全面阐明维生素D对PBC的治疗作用和机制,为PBC的研究提供理论基础。

5. 结论

本研究结果表明,维生素D可通过减轻线粒体mtDNA损伤,来抑制GCDC诱导的HiBEC凋亡,最终对PBC具有保护作用。这些结果拓展了我们对维生素D在PBC中治疗的认识,并为治疗PBC提供了新的靶点思路。

作者贡献声明

李永新负责文章撰写、实验设计及数据整理;王战负责实验验证、数据分析整理;高炜泽参与数据整理和实验验证;鲁文龙参与数据收集;刘明军负责课题总体设计和文章修改。

利益冲突

本人与其他作者宣称没有任何利益冲突,未接受任何不当的职务或财务利益。

文章引用

李永新,王 战,高炜泽,鲁文龙,刘明军. 1,25(OH)2D3通过稳定线粒体DNA对GCDC诱导的HiBECs凋亡的作用研究
The Role of 1,25(OH)2D3 on GCDC-Induced Apoptosis in HiBECs by Stabilising Mitochondrial DNA[J]. 临床医学进展, 2024, 14(04): 2256-2266. https://doi.org/10.12677/acm.2024.1441290

参考文献

  1. 1. Carey, E.J., Ali, A.H. and Lindor, K.D. (2015) Primary Biliary Cirrhosis. The Lancet, 386, 1565-1575.https://doi.org/10.1016/S0140-6736(15)00154-3

  2. 2. Laschtowitz, A., De Veer, R.C., Van Der, Meer, A.J., et al. (2020) Diagnosis and Treatment of Primary Biliary Cholangitis. United European Gastroenterology Journal, 8, 667-674. https://doi.org/10.1177/2050640620919585

  3. 3. Li, H., Guan, Y., Han, C., Zhang, Y., Liu, Q., Wei, W. and Ma, Y. (2021) The Pathogenesis, Models and Therapeutic Advances of Primary Biliary Cholangitis. Biomedicine & Pharmacotherapy, 140, Article 111754. https://pubmed.ncbi.nlm.nih.gov/34044277/https://doi.org/10.1016/j.biopha.2021.111754

  4. 4. Spiechowicz, M., Zylicz, A., Bieganowski, P., et al. (2007) Hsp70 Is a New Target of Sgt1—An Interaction Modulated by S100A6. Biochemical and Biophysical Research Communications, 357, 1148-1153.https://doi.org/10.1016/j.bbrc.2007.04.073

  5. 5. Rust, C., Wild, N., Bernt, C., et al. (2009) Bile Acid-Induced Apoptosis in Hepatocytes Is Caspase-6-Dependent. The Journal of Biological Chemistry, 284, 2908-2916. https://doi.org/10.1074/jbc.M804585200

  6. 6. Arduini, A., Serviddio, G., Escobar, J., et al. (2011) Mitochondrial Biogenesis Fails in Secondary Biliary Cirrhosis in Rats Leading to Mitochondrial DNA Depletion and Deletions. American Journal of Physiology-Gastrointestinal and Liver Physiology, 301, G119-G127. https://doi.org/10.1152/ajpgi.00253.2010

  7. 7. Pejznochova, M., Tesarova, M., Hansikova, H., et al. (2010) Mitochondrial DNA Content and Expression of Genes Involved in mtDNA Transcription, Regulation and Maintenance during Human Fetal Development. Mitochondrion, 10, 321-329. https://doi.org/10.1016/j.mito.2010.01.006

  8. 8. Heidari, R. and Niknahad, H. (2019) The Role and Study of Mitochondrial Impairment and Oxidative Stress in Cholestasis. In: Vinken, M., Ed., Experimental Cholestasis Research. Methods in Molecular Biology, Vol. 1981, Humana, New York, 117-132. https://doi.org/10.1007/978-1-4939-9420-5_8

  9. 9. Picca, A., Calvani, R., Coelho-Junior, H.J., et al. (2021) Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells, 10, Article 537. https://doi.org/10.3390/cells10030537

  10. 10. Alexeyev, M., Shokolenko, I., Wilson, G. and LeDoux, S. (2013) The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. Cold Spring Harbor Perspectives in Biology, 5, Article a012641.https://pubmed.ncbi.nlm.nih.gov/23637283/https://doi.org/10.1101/cshperspect.a012641

  11. 11. Saki, M. and Prakash, A. (2017) DNA Damage Related Crosstalk between the Nucleus and Mitochondria. Free Radical Biology and Medicine, 107, 216-227. https://doi.org/10.1016/j.freeradbiomed.2016.11.050

  12. 12. Bouillon, R., Marcocci, C., Carmeliet, G., et al. (2019) Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocrine Reviews, 40, 1109-1151. https://doi.org/10.1210/er.2018-00126

  13. 13. Fleet, J.C. and Schoch, R.D. (2010) Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors. Critical Reviews in Clinical Laboratory Sciences, 47, 181-195.https://doi.org/10.3109/10408363.2010.536429

  14. 14. Walker, V.P. and Modlin, R.L. (2009) The Vitamin D Connection to Pediatric Infections and Immune Function. Pediatric Research, 65, 106-113. https://doi.org/10.1203/PDR.0b013e31819dba91

  15. 15. Holick, M.F. (2007) Vitamin D Deficiency. The New England Journal of Medicine, 357, 266-281.https://doi.org/10.1056/NEJMra070553

  16. 16. Plum, L.A. and DeLuca, H.F. (2010) Vitamin D, Disease and Therapeutic Opportunities. Nature Reviews Drug Discovery, 9, 941-955. https://doi.org/10.1038/nrd3318

  17. 17. Kempinska-Podhorodecka, A., Milkiewicz, M., Wasik, U., et al. (2017) Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. International Journal of Molecular Sciences, 18, Article 289. https://doi.org/10.3390/ijms18020289

  18. 18. Banerjee, A., Athalye, S., Khargekar, N., et al. (2023) Chronic Hepatitis B and Related Liver Diseases Are Associated with Reduced 25-Hydroxy-Vitamin D Levels: A Systematic Review and Meta-Analysis. Biomedicines, 11, Article 135.https://doi.org/10.3390/biomedicines11010135

  19. 19. Chan, H.L.-Y., Elkhashab, M., Trinh, H., et al. (2015) Association of Baseline Vitamin D Levels with Clinical Parameters and Treatment Outcomes in Chronic Hepatitis B. Journal of Hepatology, 63, 1086-1092.https://doi.org/10.1016/j.jhep.2015.06.025

  20. 20. García-Álvarez, M., Pineda-Tenor, D., Jiménez-Sousa, M.A., et al. (2014) Relationship of Vitamin D Status with Advanced Liver Fibrosis and Response to Hepatitis C Virus Therapy: A Meta-Analysis. Hepatology, 60, 1541-1550.https://doi.org/10.1002/hep.27281

  21. 21. Udomsinprasert, W., Jittikoon, J., Sukkho, S., et al. (2020) Decreased Circulating Vitamin D Reflects Adverse Outcomes of Hepatitis C Virus Infection: A Systematic Review and Meta-Analysis. The Journal of Infection, 81, 585-599.https://doi.org/10.1016/j.jinf.2020.06.025

  22. 22. Tao, S., Zhang, H., Zhao, Q., et al. (2020) Correlation of Vitamin D with Inflammatory Factors, Oxidative Stress and T Cell Subsets in Patients with Autoimmune Hepatitis. Experimental and Therapeutic Medicine, 19, 3419-3424.https://doi.org/10.3892/etm.2020.8601

  23. 23. Reda, D., Elshopakey, G.E., Albukhari, T.A., et al. (2023) Vitamin D3 Alleviates Nonalcoholic Fatty Liver Disease in Rats by Inhibiting Hepatic Oxidative Stress and Inflammation via the SREBP-1-C/ PPARα-NF-κB/IR-S2 Signaling Pathway. Frontiers in Pharmacology, 14, Article 1164512. https://doi.org/10.3389/fphar.2023.1164512

  24. 24. Stepan, M.D., Vintilescu Ș.B., Streață, I., et al. (2023) The Role of Vitamin D in Obese Children with Non-Alcoholic Fatty Liver Disease and Associated Metabolic Syndrome. Nutrients, 15, Article 2113.https://doi.org/10.3390/nu15092113

  25. 25. Xu, H., Wu, Z., Feng, F., et al. (2022) Low Vitamin D Concentrations and BMI Are Causal Factors for Primary Biliary Cholangitis: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 1055953.https://doi.org/10.3389/fimmu.2022.1055953

  26. 26. Wang, Z., Peng, C., Wang, P., et al. (2020) Serum Vitamin D Level Is Related to Disease Progression in Primary Biliary Cholangitis. Scandinavian Journal of Gastroenterology, 55, 1333-1340.https://doi.org/10.1080/00365521.2020.1829030

  27. 27. Ebadi, M., Ip, S., Lytvyak, E., et al. (2022) Vitamin D Is Associated with Clinical Outcomes in Patients with Primary Biliary Cholangitis. Nutrients, 14, Article 878. https://doi.org/10.3390/nu14040878

  28. 28. Jiang, S., Zhang, H., Li, X., et al. (2021) Vitamin D/VDR Attenuate Cisplatin-Induced AKI by Down-Regulating NLRP3/Caspase-1/GSDMD Pyroptosis Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 206, Article 105789. https://doi.org/10.1016/j.jsbmb.2020.105789

  29. 29. Zhao, S., Zhong, Y., Xu, X. and Wan, D. (2022) 1α, 25-Dihydroxyvitamin D3 Protects Gastric Mucosa Epithelial Cells against Helicobacter pylori-Infected Apoptosis through a Vitamin D Receptor-Dependent c-Raf/MEK/ERK Pathway. Pharmaceutical Biology, 60, 801-809. https://doi.org/10.1080/13880209.2022.2058559

  30. 30. Fathi, F.E.Z.M., Sadek, K.M., Khafaga, A.F., et al. (2022) Correction to: Vitamin D Regulates Insulin and Ameliorates Apoptosis and Oxidative Stress in Pancreatic Tissues of Rats with Streptozotocin-Induced Diabetes. Environmental Science and Pollution Research International, 29, 90230. https://doi.org/10.1007/s11356-022-22427-9

  31. 31. Grünhage, F., Hochrath, K., Krawczyk, M., et al. (2012) Common Genetic Variation in Vitamin D Metabolism Is Associated with Liver Stiffness. Hepatology, 56, 1883-1891. https://doi.org/10.1002/hep.25830

  32. 32. Petta, S., Cammà, C., Scazzone, C., et al. (2010) Low Vitamin D Serum Level Is Related to Severe Fibrosis and Low Responsiveness to Interferon-Based Therapy in Genotype 1 Chronic Hepatitis C. Hepatology, 51, 1158-1167.https://doi.org/10.1002/hep.23489

  33. 33. Tourkochristou, E., Tsounis, E.P., Tzoupis, H., et al. (2023) The Influence of Single Nucleotide Polymorphisms on Vitamin D Receptor Protein Levels and Function in Chronic Liver Disease. International Journal of Molecular Sciences, 24, Article 11404. https://doi.org/10.3390/ijms241411404

  34. 34. Ebadi, M., Rider, E., Tsai, C., et al. (2023) Prognostic Significance of Severe Vitamin D Deficiency in Patients with Primary Sclerosing Cholangitis. Nutrients, 15, Article 576. https://doi.org/10.3390/nu15030576

  35. 35. Hochrath, K., Stokes, C.S., Geisel, J., et al. (2014) Vitamin D Modulates Biliary Fibrosis in ABCB4-Deficient Mice. Hepatology International, 8, 443-452. https://doi.org/10.1007/s12072-014-9548-2

  36. 36. Mihaylov, S.R., Castelli, L.M., Lin, Y.-H., et al. (2023) The Master Energy Homeostasis Regulator PGC-1α Exhibits an MRNA Nuclear Export Function. Nature Communications, 14, Article No. 5496.https://doi.org/10.1038/s41467-023-41304-8

  37. 37. Rubalcava-Gracia, D., García-Villegas, R. and Larsson, N.-G. (2023) No Role for Nuclear Transcription Regulators in Mammalian Mitochondria? Molecular Cell, 83, 832-842. https://doi.org/10.1016/j.molcel.2022.09.010

  38. 38. Ongwijitwat, S., Liang, H.L., Graboyes, E.M., et al. (2006) Nuclear Respiratory Factor 2 Senses Changing Cellular Energy Demands and Its Silencing Down-Regulates Cytochrome Oxidase and Other Target Gene mRNAs. Gene, 374, 39-49. https://doi.org/10.1016/j.gene.2006.01.009

  39. 39. Scarpulla, R.C. (2008) Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function. Physiological Reviews, 88, 611-638. https://doi.org/10.1152/physrev.00025.2007

  40. NOTES

    *通讯作者。

期刊菜单