Advances in Clinical Medicine
Vol. 11  No. 11 ( 2021 ), Article ID: 46452 , 5 pages
10.12677/ACM.2021.1111739

生活方式及饮食对结直肠癌患者病情影响的相关性分析

李金1,徐贺1,杨金煜2*

1青海大学研究生院,青海 西宁

2青海省人民医院,青海 西宁

收稿日期:2021年10月8日;录用日期:2021年11月5日;发布日期:2021年11月12日

摘要

结直肠癌(Colorectal cancer, CRC)的发病率随着年龄和饮食以及生活方式的改变而发生变化,在过去的移民研究和近些年的广泛流行病学证据都证明了这一点。CRC发病率的全球特异性强烈暗示了环境暴露的病因学参与,特别是人们的生活方式和饮食。已确定缺乏运动、肥胖和一些饮食因素(红肉/加工肉类)与CRC呈正相关,而健康的生活方式(积极运动、多食蔬菜)则呈负相关。相关研究证据表明,导致能量过剩的生活方式和饮食成分通过代谢功能障碍、炎症、氧化应激、细菌失调和肠道屏障完整性破坏与CRC增加有关,而与风险降低相关的成分则明显相反。本文将回顾有关生活方式和饮食因素在CRC病因学中的现有证据及其在CRC发展中的潜在机制。

关键词

结直肠癌,饮食,生活方式,肥胖

Correlation Analysis of Lifestyle and Diet on the Disease of Colorectal Cancer Patients

Jin Li1, He Xu1, Jinyu Yang2*

1Graduate School of Qinghai University, Xining Qinghai

2Qinghai Provincial People’s Hospital, Xining Qinghai

Received: Oct. 8th, 2021; accepted: Nov. 5th, 2021; published: Nov. 12th, 2021

ABSTRACT

Colorectal cancer (CRC) incidence changes with time and by variations in diet and lifestyle, as evidenced historically by migrant studies and recently by extensive epidemiologic evidence. The worldwide heterogeneity in CRC incidence is strongly suggestive of etiological involvement of environmental exposures, particularly lifestyle and diet. It is established that physical inactivity, obesity and some dietary factors (red/processed meats) are positively associated with CRC, while healthy lifestyle habits show inverse associations. Mechanistic evidence shows that lifestyle and dietary components that contribute to energy excess are linked with increased CRC via metabolic dysfunction, inflammation, oxidative stress, bacterial dysbiosis and breakdown of gut barrier integrity while the reverse is apparent for components associated with decreased risk. This chapter will review the available evidence on lifestyle and dietary factors in CRC etiology and their underlying mechanisms in CRC development.

Keywords:Colorectal Cancer, Diet, Lifestyle, Obesity

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

结直肠癌(Colorectal cancer, CRC)的发病率在全球范围内差异很大。总体而言,它的发病率在男性中处在前五名之内,在女性中则可以排入前三,2018年全球估计有超过180万例诊断 [1];世界各地区的CRC发病率差异很大,在过去几十年中发生了显著变化;随着经济发展,人们饮食上开始偏向于高脂肪、高蛋白的肉类以及精加工谷类,而对于蔬菜水果及粗加工的谷类摄入相对较少;在日常生活中锻炼相对减少,从而导致肥胖率的上升;同时人民富裕程度的增加和人口老龄化加重 [2]。事实上,观察到的结直肠癌发病率随时间的变化和生活方式的变化在历史上已经在移民研究中得到了证明,最近的大量流行病学证据也证明了这一点 [3]。尽管高收入国家的发病率似乎已经稳定下来,但欠发达国家的发病率预计在未来半世纪将大幅上升,这可能是由于持续的经济发展和营养转型、生活方式的西方化和人口老龄化 [2]。根据世界癌症研究基金会/美国癌症研究所(World Cancer Research Fund/American Institute for Cancer Research, WCRF/AICR)专家小组最近的一项综述和最近的多中心临床研究结果显示,加工肉类、红肉和酒精饮料的摄入增加,吸烟,缺乏运动、体重远超正常值等会增加CRC的发生,而大量食用非精加工谷物、富含膳食纤维的食品、乳制品和钙补充剂则能降低患CRC的风险 [4]。据估计,结直肠癌的遗传率在7%到35%之间,其中可能有广泛的遗传易感个体,这些人具有多个低风险因素 [5] [6]。短期和长期的饮食和生活方式暴露对肠道微生物群的影响,以及它对结肠健康的影响,长期以来一直受到怀疑,但现在才刚刚开始探索。结直肠癌的发生是复杂的、多因素的和多机制的,可能涉及环境和遗传因素的相互作用,尽管许多关于结直肠癌病因的相互作用仍不清楚。影响CRC发展的生活方式,如肥胖、缺乏运动或饮酒,也可能影响治疗效果和总体存活率,但这方面需要更多的研究。环境因素参与了绝大多数CRC的病因,这意味着这种疾病很可能是可以通过合理的饮食和健康的生活方式选择来预防的。

2. 饮食与结直肠癌的相关性

2.1. 红肉和加工肉制品

红肉是指富含脂肪及高蛋白的肉类,如牛肉、猪肉等。我国是肉类消费大国,肉类的消费量约占全球消费总量的四分之一 [7]。近期有研究表明,每天摄入100 g红肉和加工肉类会增加12%的CRC风险 [4]。目前的证据表明,加工肉制品与CRC之间的关系比红肉更加密切,这可能是由于保存方法(烟熏、腌制)导致的致癌作用。然而,试图定义这种关联机制的实验研究并不一致,也没有定论 [8]。据推测,以下因素可能与结直肠癌风险增加相关,因为它们含有N-亚硝基化合物(NOCs;来自肉类腌制)、杂环胺(HCA)和多环芳烃(PAH;来自肉类熏制)以及其他由高温烹饪产生的肉类衍生致癌物。最近的研究发现高血红素铁摄入量与结直肠癌风险增高有关 [9]。血红素铁在蛋白氧化中起到高度催化且刺激活性氧形成的作用,这可能会导致较大的细胞损伤。但要将这些作为将食用红肉和加工肉类与结直肠癌发病联系起来的确凿潜在机制,还需要做大量的工作。

2.2. 富含纤维的饮食

膳食纤维作为不被消化吸收的多糖聚合体存在于果蔬类、粗加工谷豆等食物中,但其优于其他种类食物的吸水性,赋予了膳食纤维降低结直肠癌患病风险的作用 [4]。饮食纤维对预防结直肠癌有益的潜在机制包括,能与肠道内有害及致癌物质结合并促其排出,从而减少潜在的有毒致癌物和结肠上皮之间的接触时间。同时可以调节胆汁代谢。此外,来源于饮食纤维的可发酵底物可以促进微生物组的多样性,增加有益菌的生物量,从而降低肠道通透性,减少结肠细胞暴露于结肠环境中的有害化合物 [10]。例如,膳食纤维在人体肠道内经过肠道菌群酵解产生短链脂肪酸(short-chain fatty acids, SCFAs)。SC-FAs可以影响代谢信号通路和肠道炎症,从而发挥预防肿瘤发生的作用 [11]。

2.3. 乳制品,钙和维生素D

WCRF/AICR专家小组还得出结论,有着“强有力的证据”将较高的乳制品消费与低CRC风险联系起来 [4],这种关联在很大程度上归因于乳制品内的钙含量 [12]。钙被认为能够与结肠环境中的游离脂肪酸和胆汁酸等化合物结合,限制了它们的潜在致癌作用,但它也被证明可以抑制细胞增殖,诱导分化和凋亡,并抑制DNA损伤。维生素D时常与钙相关联,维生素D是维持机体正常运行的一种脂溶性维生素,它的主要功能是维持机体内的钙磷平衡;而近些年来,它在肿瘤产生与发展中所起到的作用也逐渐引起人们的关注,国内外大量研究均表明 [13] [14],维生素D摄入量越少,发生结直肠癌(CRC)的概率越大,并且在女性人群中这种负相关更加显著,维生素D3作为维生素D的活性代谢产物,血浆中25-(OH)D3的水平也与CRC呈负相关 [15] [16]。基于维生素D提出的抗肿瘤作用机制(即通过减少血管生成来调节细胞生长、分化和凋亡,以及抗炎和免疫调节特性),这种潜在的性别差异的生物学解释尚不清楚,但可能暗示了男性和女性之间可能的病因差异。

3. 生活方式与结直肠癌关系的流行病学证据及其潜在机制

3.1. 饮食模式

最近,研究由特定食物或生活习惯组合产生的饮食模式和饮食风险评分越来越引起人们的兴趣 [17]。其中,地中海饮食(Mediterranean diet, MD)引起了最多的关注,地中海饮食结构强调新鲜蔬果、植物性蛋白食物、优质脂质食物等为主要营养来源,限制红酒、乳制品、贮铁质肉类等食物,长期坚持该饮食习惯可降低CRC的发病风险 [18] [19] [20]。相比之下,西方饮食习惯与结直肠癌风险的增加有关。此外,坚持健康的饮食和生活方式也可能与诊断后生存率的提高有关 [21]。

3.2. 吸烟

多项队列研究及系统综述结果显示,吸烟是多系统肿瘤发病的危险行为因素,更是CRC发病预后不良的危险因素。多项最新的多中心临床研究发现,相比不吸烟人群,吸烟者的CRC发病率要高出15%,尤其与直肠癌发病更为密切 [22];且CRC的发病率与每日吸烟量、吸烟年限及累计吸烟量呈剂量反应关系 [23];此外,被动吸烟与男性CRC发病的相关性更为显著。

3.3. 超重、肥胖及缺乏运动

肥胖可对机体多系统、多脏器造成不同程度的损伤 [24]。近年来众多研究发现,相比正常体重人群,肥胖人群的乳腺癌、卵巢癌、结直肠癌、食管癌以及肾癌等疾病的发病率及病死率明显增加;早些时候对近10万例大肠癌病例进行的大规模流行病学荟萃分析的数据显示,体重指数每增加5个单位,总体癌症风险增加18%,男性的相关性高于女性,结肠癌与直肠癌的相关性也高于女性 [25]。最近的荟萃分析也观察到了类似的发现,特别是与腹型肥胖的关联 [26]。需要进一步的研究来确定腹型肥胖是否是超重和肥胖的独立结直肠癌危险因素。到目前为止,这方面的研究还很少。荟萃分析的结果还表明,与其他人群相比,亚洲人群中与肥胖有关的结直肠癌风险较高 [26],进一步强调了需要更深入地了解不同人群中的结直肠癌病因。

与超重和肥胖相反,体力活动与结直肠癌发病率以及结直肠癌确诊后死亡的风险呈负相关。虽然体力活动被认为是成年人体重增加的主要预防因素,但还需要进一步的流行病学和机械学研究,以确定其与结直肠癌风险的反向关联是否独立于肥胖的结直肠癌的促进效应,以及在多大程度上与结直肠癌风险负相关。有趣的是,久坐不动的生活方式与结直肠癌的风险呈正相关,与体力活动无关,而且在结肠癌方面可能比直肠癌更强 [27]。

4. 讨论与展望

大量研究表明,CRC的发生机制尚未阐明,但其危险因素是多方面的,而在结肠癌发病的过程中,饮食结构和生活行为起到重要作用。目前普遍认为CRC的发生与过量的脂质、肉类食物摄入、吸烟、低摄入膳食纤维及缺乏运动有密切的关系。区别于种族、性别、年龄、遗传等因素,饮食和生活方式是可以通过健康干预实现人为改变。这篇简短的综述总结了一些现有的研究证据,将饮食和生活方式与CRC发病联系起来,其中大部分可能是零星的,因此非常符合促进合理饮食习惯、增加体力活动、减肥、戒烟等公共卫生战略。目前,鉴于人口老龄化社会的逐步推进,以及物质生活丰富造成的饮食结构失衡,我国CRC发病人数逐渐升高并趋向低龄化,严重危害着人民生命健康,加重社会负担,只有从“大卫生观”角度出发,把防癌意识深入人心,养成健康的饮食习惯,建立良好的生活方式,才能从一级预防层面有效减低CRC的发病率。

文章引用

李 金,徐 贺,杨金煜,牛婷玉,李小凤,刘玲娇. 糖尿病患者骨折风险评估方法的研究进展
Research Progress of Assessment of Fracture Risk in Diabetic Patients[J]. 临床医学进展, 2021, 11(11): 5032-5038. https://doi.org/10.12677/ACM.2021.1111740

参考文献

  1. 1. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492

  2. 2. Brenner, H. and Chen, C. (2018) The Colorectal Cancer Epidemic: Challenges and Opportunities for Primary, Secondary and Tertiary Prevention. British Journal of Cancer, 119, 785-792. https://doi.org/10.1038/s41416-018-0264-x

  3. 3. Hughes, L.A.E., Simons, C.C.J.M., van den Brandt, P.A., et al. (2017) Lifestyle, Diet, and Colorectal Cancer Risk According to (Epi)genetic Instability: Current Evidence and Future Directions of Molecular Pathological Epidemiology. Current Colorectal Cancer Reports, 13, 455-469. https://doi.org/10.1007/s11888-017-0395-0

  4. 4. Vieira, A.R., et al. (2017) Foods and Beverages and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies, an Update of the Evidence of the WCRF-AICR Continuous Update Project. Annals of Oncology, 28, 1788-1802. https://doi.org/10.1093/annonc/mdx171

  5. 5. Lichtenstein, P., et al. (2000) Environmental and Heritable Factors in the Causation of Cancer: Analyses of Cohorts of Twins from Sweden, Denmark, and Finland. New England Journal of Medicine, 343, 78-85. https://doi.org/10.1056/NEJM200007133430201

  6. 6. Graff, R.E., Mller, S., Passarelli, M.N., et al. (2017) Familial Risk and Heritability of Colorectal Cancer in the Nordic Twin Study of Cancer. Clinical Gastroenterology and Hepatology, 15, 1256-1264. https://doi.org/10.1016/j.cgh.2016.12.041

  7. 7. 程广燕, 刘珊珊, 杨祯妮, 等. 中国肉类消费特征及2020年预测分析[J]. 中国农村经济, 2015(2): 76-82.

  8. 8. Turner, N.D. and Lloyd, S.K. (2017) Association between Red Meat Consumption and Colon Cancer: A Systematic Review of Experimental Results. Experimental Biology & Medicine, 242, 813-839. https://doi.org/10.1177/1535370217693117

  9. 9. Cascella, M., Bimonte, S., Barbieri, A., et al. (2018) Dissecting the Mechanisms and Molecules Underlying the Potential Carcinogenicity of Red and Processed Meat in Colorectal Cancer (CRC): An Overview on the Current State of Knowledge. Infectious Agents & Cancer, 13, 3. https://doi.org/10.1186/s13027-018-0174-9

  10. 10. Kieffer, D.A., Martin, R.J. and Adams, S.H. (2016) Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 7, 1111-1121. https://doi.org/10.3945/an.116.013219

  11. 11. Matthews, G.M., Howarth, G.S. and Butler, R.N. (2012) Short-Chain Fatty Acids Induce Apoptosis in Colon Cancer Cells Associated with Changes to Intracellular Redox State and Glucose Metabolism. Chemotherapy, 58, 102-109. https://doi.org/10.1159/000335672

  12. 12. Thorning, T.K., Raben, A., et al. (2016) Milk and Dairy Products: Good or Bad for Human Health? An Assessment of the Totality of Scientific Evidence. Food & Nutrition Research, 60, 32527. https://doi.org/10.3402/fnr.v60.32527

  13. 13. Razak, S., Afsar, T., Almajwal, A., et al. (2019) Growth Inhibition and Apoptosis in Colorectal Cancer Cells Induced by Vitamin D-Nanoemulsion (NVD): Involvement of Wnt/β-Catenin and Other Signal Transduction Pathways. Cell & Bioscience, 9, 15-38. https://doi.org/10.1186/s13578-019-0277-z

  14. 14. Ferrer-Mayorga, G., Gómez-López, G., Barbáchano, A., et al. (2017) Vitamin D Receptor Expression and Associated Gene Signature in Tumour Stromal Fibroblasts Predict Clinical Outcome in Colorectal Cancer. Gut, 66, 1449-1462. https://doi.org/10.1136/gutjnl-2015-310977

  15. 15. Jung, S., et al. (2014) Predicted 25(OH)D Score and Colorectal Cancer Risk According to Vitamin D Receptor Expression. Cancer Epidemiology Biomarkers & Prevention, 23, 1628-1637. https://doi.org/10.1158/1055-9965.EPI-14-0229

  16. 16. 常晋瑞, 曹健, 牛利刚. 维生素D3与结直肠癌相关性的研究[J]. 肿瘤防治研究, 2016, 43(4): 291-294.

  17. 17. Tabung, F.K., Brown, L.S. and Fung, T.T. (2017) Dietary Patterns and Colorectal Cancer Risk: A Review of 17 Years of Evidence (2000-2016). Current Colorectal Cancer Reports, 13, 440-454. https://doi.org/10.1007/s11888-017-0390-5

  18. 18. Donovan, M.G., Selmin, O.I. and Doetschman, T.C. (2017) Mediterranean Diet: Prevention of Colorectal Cancer. Frontiers in Nutrition, 4, 59. https://doi.org/10.3389/fnut.2017.00059

  19. 19. Cheng, E., Um, C.Y., Prizment, A.E., et al. (2018) Evolutionary-Concordance Lifestyle and Diet and Mediterranean Diet Pattern Scores and Risk of Incident Colorectal Cancer in Iowa Women. Cancer Epidemiology, Biomarkers & Prevention, 27, 1195-1202. https://doi.org/10.1158/1055-9965.EPI-17-1184

  20. 20. 朱晓芸, 马如超, 于红刚. 地中海饮食与结直肠癌相关性Meta分析[J]. 中国食物与营养, 2018, 24(8): 53-58.

  21. 21. Pre-Diagnostic Concordance with the WCRF/AICR Guidelines and Survival in European Colorectal Cancer Patients: A Cohort Study. BMC Medicine, 13, 107. https://doi.org/10.1186/s12916-015-0332-5

  22. 22. Cheng, J., Chen, Y., Wang, X., et al. (2015) Meta-Analysis of Prospective Cohort Studies of Cigarette Smoking and the Incidence of Colon and Rectal Cancers. European Journal of Cancer Prevention, 24, 6-15. https://doi.org/10.1097/CEJ.0000000000000011

  23. 23. Tsoi, K.K., Pau, C.Y., Wu, W.K., et al. (2009) Cigarette Smoking and the Risk of Colorectal Cancer: A Meta-Analysis of Prospective Cohort Studies. Clinical Gastroenterology and Hepatology, 7, 682-688. https://doi.org/10.1016/j.cgh.2009.02.016

  24. 24. 张静, 陈佩杰, 肖卫华. 肥胖导致骨骼肌胰岛素抵抗炎症因子的介导作用及运动的改善效应[J]. 中国运动医学杂志, 2020, 39(3): 226-231.

  25. 25. Ning, Y., Wang, L. and Giovannucci, E.L. (2010) A Quantitative Analysis of Body Mass Index and COLORECTAL cancer: Findings from 56 Observational Studies. Obesity Reviews, 11, 19-30. https://doi.org/10.1111/j.1467-789X.2009.00613.x

  26. 26. Dong, Y., Zhou, J., Zhu, Y., Luo, L., He, T., Hu, H., et al. (2017) Abdominal Obesity and Colorectal Cancer Risk: Systematic Review and Meta-Analysis of Prospective Studies. Bioscience Reports, 37, BSR20170945. https://doi.org/10.1042/BSR20170945

  27. 27. Cong, Y.J., Gan, Y., Sun, H.L., et al. (2014) Association of Sedentary Behaviour with Colon and Rectal Cancer: A Meta-Analysis of Observational Studies. British Journal of Cancer, 110, 817-826. https://doi.org/10.1038/bjc.2013.709

  28. 28. Yamamoto, M., Yamaguchi, T., Yamauchi, M., et al. (2009) Diabetic Patients Have an Increased Risk of Vertebral Fractures in Dependent of BMD or Diabetic Complications. Journal of Bone and Mineral Research, 24, 702-709. https://doi.org/10.1359/jbmr.081207

  29. 29. Wang, J., You, W., Jing, Z., et al. (2016) Increased Risk of Vertebral Fracture In patients with Diabetes: A Meta-Analysis of Cohort Studies. International Orthopaedics, 40, 1299-1307. https://doi.org/10.1007/s00264-016-3146-y

  30. 30. Shah, V.N., Shah, S. and Snell-Bergeon, J.K. (2015) Type 1 Diabetes and Risk of Fracture: Meta-Analysis and Review of the Literature. Diabetic Medicine, 32, 1134-1142. https://doi.org/10.1111/dme.12734

  31. 31. Rathmann, W. and Kostev, K. (2015) Fracture Risk in Patients with Newly Diagnosed Type 2 Diabetes: A Retrospective Database Analysis in Primary Care. Journal of Diabetes and its Complications, 29, 766-770. https://doi.org/10.1016/j.jdiacomp.2015.05.007

  32. 32. Norris, R. and Parker, M. (2011) Diabetes Mellitus and Hip Fracture: A Study of 5966 Cases. Injury, 42, 1313-1316. https://doi.org/10.1016/j.injury.2011.03.021

  33. 33. Carbonare, L.D. and Giannini, S. (2004) Bone Microarchitecture as an Important Determinant of Bone Strength. Journal of Endocrinological Investigation, 27, 99-105. https://doi.org/10.1007/BF03350919

  34. 34. Neumann, T., Samann, A., Lodes, S., et al. (2011) Glycaemiccontrol Is Positively Associated with Prevalent Fractures but Not with Bone Mineral Density in Patients with Type 1 Diabetes. Diabetic Medicine, 28, 872-875. https://doi.org/10.1111/j.1464-5491.2011.03286.x

  35. 35. Silva, B.C. and Leslie, W.D. (2017) Trabecular Bone Score: A New DXA-Derived Measurement for Fracture Risk Assessment. Endocrinology and Metabolism Clinics of North America, 46, 153-180. https://doi.org/10.1016/j.ecl.2016.09.005

  36. 36. World Health Organization Study Group (1994) Assessment of Fracture Risk and Its Application to Screening for Postmeno-Pausal Osteoporosis: Report of a WHO Study Group [Meeting Held in Rome from 22 to 25 June 1992]. http://apps.who.int/iris/handle/10665/39142

  37. 37. Miller, P.D., Siris, E.S., Barrett-Connor, E., et al. (2002) Prediction of Fracture Risk Inpostmenopausal White Women with Peripheral Bone Densitometry: Evidence from the National Osteoporosis Risk Assessment. Journal of Bone and Mineral Research, 17, 2222-2230. https://doi.org/10.1359/jbmr.2002.17.12.2222

  38. 38. Seeman, E. and Delmas, P.D. (2006) Bone Quality: The Material and Structural Basis of Bonestrength and Fragility. New England Journal of Medicine, 354, 2250-2261. https://doi.org/10.1056/NEJMra053077

  39. 39. Jiang, H., Robinson, D.L., Yates, C.J., Lee, P.V.S. and Wark, J.D. (2020) Peripheral Quantitative Computed Tomography (pQCT)-Based Finite Element Analysis Provides Enhanced Diagnostic Performance in Identifying Non-Vertebral Fracture Patients Compared with Dual-Energy X-Ray Absorptiometry. Osteoporosis International, 31, 141-151. https://doi.org/10.1007/s00198-019-05213-1

  40. 40. Cappellea, S.I., Moreaub, M., Karmalic, R., Iconaruc, L., Baleanuc, F., Kinnardc, V., Paesmansb, M., Rozenbergd, S., Rubinsteine, M., Surquina, M., Blardf, P.-H., Chapurlatg, R., Bodyc, J.J., Bergmannh, P. (2021) Discriminating Value of HR-pQCT for Fractures in Women with Similar FRAX Scores: A Substudy of the Frisbee Cohort. Bone, 143, Article ID: 115613. https://doi.org/10.1016/j.bone.2020.115613https://www.elsevier.com/locate/bone

  41. 41. Snyder, B.D., Cordio, M.A., Nazarian, A., Kwak, S.D., Chang, D.J., Entezari, V. and Zurakowski, D. (2009) Parker LM Noninvasive Prediction of Fracture Risk in Patients with Metastatic Cancer to the Spine. Clinical Cancer Research, 15, 7676-7683. https://doi.org/10.1158/1078-0432.CCR-09-0420

  42. 42. Ishikawa, K., Fukui, T., Nagai, T., et al. (2015) Type 1 Diabetes Patients Have Lower Strength in Femoral Bone Determined by Quantitative Computed Tomography: A Cross-Sectional Study. Journal of Diabetes Investigation, 6, 726-733. https://doi.org/10.1111/jdi.12372

  43. 43. Samelson, E.J., Demissie, S., Cupples, L.A., Zhang, X., Xu, H., Liu, C.-T., et al. (2018) Diabetes and Deficits in Cortical Bone Density, Microarchitecture, and Bonesize: Framingham HR-pQCT Study. Journal of Bone and Mineral Research, 33, 54-62. https://doi.org/10.1002/jbmr.3240

  44. 44. Bousson, V., Bergot, C., Sutter, B., et al. (2012) Trabecular Bone Score (TBS): Available Knowledge, Clinical Relevance, and Future Prospects. Osteoporosis International, 23, 1489-1501. https://doi.org/10.1007/s00198-011-1824-6

  45. 45. Aloia, J.F., Mikhail, M., Usera, G., et al. (2015) Trabecular Bone Score (TBS) in Post-Menopausal African American Women. Osteoporosis International, 26, 1155-1161. https://doi.org/10.1007/s00198-014-2928-6

  46. 46. Sritara, C., Thakkinstian, A., Ongphiphadhanakul, B., et al. (2016) Age-Adjusted Dual X-Ray Absorptiometry-Derived Trabecular Bone Score Curve for the Lumbar Spinein Thai Females and Males. Journal of Clinical Densitometry, 19, 494-501. https://doi.org/10.1016/j.jocd.2015.05.068

  47. 47. Leslie, W.D., Krieg, M.-A. and Hans, D. (2013) Clinical Factors Associated with Trabecular Bone Score. Journal of Clinical Densitometry, 16, 374-379. https://doi.org/10.1016/j.jocd.2013.01.006

  48. 48. Hage, R.E., Khairallah, W., Bachour, F., et al. (2014) Influence of Age, Morphological Characteristics, and Lumbar Spine Bone Mineral Density on Lumbar Spinetrabecular Bone Score in Lebanese Women. Journal of Clinical Densitometry, 17, 434-435. https://doi.org/10.1016/j.jocd.2013.03.012

  49. 49. Bazzocchi, A., Ponti, F., Diano, D., et al. (2015) Trabecular Bone Score in Healthy Ageing. British Journal of Radiology, 88, Article ID: 1052. https://doi.org/10.1259/bjr.20140865

  50. 50. Winzenrieth, R., Michelet, F. and Hans, D. (2013)Three-Dimensional (3D) Microarchitecture Correlations with 2D Projection Image Gray-Level Variations Assessed by Trabecular Bone Score Using High-Resolution Computed Tomographic Acquisitions: Effects of Resolution and Noise. Journal of Clinical Densitometry, 16, 287-296. https://doi.org/10.1016/j.jocd.2012.05.001

  51. 51. Silva, B.C., Leslie, W.D., Resch, H., et al. (2014) Trabecular Bone Score: A Noninvasive Analytical Method Based upon the DXA Image. Journal of Bone and Mineral Research, 29, 518-530. https://doi.org/10.1002/jbmr.2176

  52. 52. Nassar, K., Paternotte, S., Kolta, S., et al. (2014) Added Value of Trabecular Bone Scoreover Bone Mineral Density for Identification of Vertebral Fractures in Patients with Areal Bone Mineral Density in the Non-Osteoporotic Range. Osteoporosis International, 25, 243-249. https://doi.org/10.1007/s00198-013-2502-7

  53. 53. Farr, J.N., Drake, M.T., Amin, S., Melton 3rd, L.J., McCready, L.K. and Khosla, S. (2014) In Vivo Assessment of Bone Quality in Postmenopausal Women with Type 2 Diabetes. Journal of Bone and Mineral Research, 29, 787-795. https://doi.org/10.1002/jbmr.2106

  54. 54. Nilsson, A.G., Sundh, D., Johansson, L., Nilsson, M., Mellstrom, D., Rudang, R., Zoulakis, M., Wallander, M., Darelid, A. and Lorentzon, M. (2017) Type 2 Diabetes Mellitus Is Associated with Better Bone Microarchitecture but Lower Bone Material Strength and Poorer Physical Function in Elderly Women: A Population-Based Study. Journal of Bone and Mineral Research, 32, 1062-1071. https://doi.org/10.1002/jbmr.3057

  55. 55. Furst, J.R., Bandeira, L.C., Fan, W.W., Agarwal, S., Nishiyama, K.K., McMahon, D.J., Dworakowski, E., Jiang, H., Silverberg, S.J. and Rubin, M.R. (2016) Advanced Glycation Endproducts and Bone Material Strength in Type 2 Diabetes. Journal of Clinical Endocrinology & Metabolism, 101, 2502-2510. https://doi.org/10.1210/jc.2016-1437

  56. 56. Armas, L.A., Akhter, M.P., Drincic, A. and Recker, R.R. (2012) Trabecularbone Histomorphometry in Humans with Type 1 Diabetes Mellitus. Bone, 50, 91-96. https://doi.org/10.1016/j.bone.2011.09.055

  57. 57. Hamann, C., Goettsch, C., Mettelsiefen, J., Henkenjohann, V., Rauner, M., Hempel, U., Bernhardt, R., Fratzl-Zelman, N., Roschger, P., Rammelt, S, Günther, K.P. and Hofbauer, L.C. (2011) Delayed Bone Regeneration and Low Bone Mass in a Rat Model of Insulin-Resistant Type 2 Diabetes Mellitus Is Due to Impaired Osteoblast Function. American Journal of Physiology-Endocrinology and Metabolism, 301, E1220-E1228. https://doi.org/10.1152/ajpendo.00378.2011

  58. 58. Abbassy, M.A., Watari, I. and Soma, K. (2010) The Effect of Diabetes Mellitus on Rat Mandibular Bone Formation and Microarchitecture. European Journal of Oral Sciences, 118, 364-369. https://doi.org/10.1111/j.1600-0722.2010.00739.x

  59. 59. Picke, A.K., Gordaliza Alaguero, I., Campbell, G.M., Gluer, C.C., Salbach-Hirsch, J., Rauner, M., Hofbauer, L.C., Hofbauer, C. (2016) Bone Defect Regeneration and Cortical Bone Parameters of Type 2 Diabetic Rats Are Improved by Insulin Therapy. Bone, 82, 108-115. https://doi.org/10.1016/j.bone.2015.06.001

  60. 60. Schwartz, A.V., Vittinghoff, E., Bauer, D.C., Hillier, T.A., Strotmeyer, E.S., Ensrud, K.E., Donaldson, M.G., Cauley, J.A., Harris, T.B., Koster, A., Womack, C.R., Palermo, L. and Black, D.M. (2011) Study of Osteoporotic Fractures (SOF) Research Group, Osteoporotic Fractures in Men(MrOS) Research Group, Health, Aging, and Body Composition(Health ABC) Research Group Association of BMD and FRAX Score with Risk of Fracture in Older Adults with Type 2 Diabetes. JAMA, 305, 2184-2192. https://doi.org/10.1001/jama.2011.715

  61. 61. 张娟, 魏伊函, 鹿艳军, 蒋升. FRAX在新疆2型糖尿病患者群骨折风险预测中的适用性评价[J]. 中国骨质疏松杂志, 2020, 26(1): 94-98.

  62. 62. Starup-Linde, J., Eriksen, S.A., Lykkeboe, S., Handberg, A. and Vestergaard, P. (2014) Biochemical Markers of Bone Turnover in Diabetes Patients—A Meta-Analysis, and a Methodological Study on the Effects of Glucose on Bone Markers. Osteoporosis International 25, 1697-1708. https://doi.org/10.1007/s00198-014-2676-7

  63. 63. Pater, A., Sypniewska, G. and Pilecki, O. (2010) Biochemical Markers of Bone Cell Activity in Children with Type 1 Diabetes Mellitus. Journal of Pediatric Endocrinology and Metabolism, 23, 81-86. https://doi.org/10.1515/JPEM.2010.23.1-2.81

  64. 64. Kanazawa, I., Yamaguchi, T., Yamamoto, M. and Sugimoto, T. (2010) Relationship between Treatments with Insulin and Oral Hypoglycemic Agents versus the Presence of Vertebral Fractures in Type 2 Diabetes Mellitus. Journal of Bone and Mineral Metabolism, 28, 554-560. https://doi.org/10.1007/s00774-010-0160-9

  65. NOTES

    *通讯作者。

期刊菜单