Advances in Clinical Medicine
Vol. 12  No. 03 ( 2022 ), Article ID: 49288 , 6 pages
10.12677/ACM.2022.123248

肿瘤突变负荷在肝癌中的应用进展

张爱绮,龚建平

重庆医科大学附属第二医院,重庆

收稿日期:2022年2月9日;录用日期:2022年3月2日;发布日期:2022年3月14日

摘要

肝细胞肝癌(Hepatocellular carcinoma, HCC)作为一种常见的消化系统恶性肿瘤,预后较差。肿瘤突变负荷(Tumor Mutational Burden, TMB)是指编码区的体细胞非同义突变的总数,表示为肿瘤中每兆碱基的突变(突变/Metabase,突变/Mb)。关于基因突变及肿瘤突变负荷的研究在肝癌的发生发展中能为预后、治疗等方面提供进一步指导。作为新兴治疗评价及肿瘤预后的生物学标志物之一,本文就TMB在肝细胞肝癌患者的免疫治疗疗效中的预测价值、预后价值、肿瘤微环境及应用进展等方面进行综述。

关键词

肿瘤突变负荷,肝细胞肝癌,免疫治疗,肝癌预后,生物指标

Advances in the Application of Tumor Mutation Burden in Hepatocellular Carcinoma

Aiqi Zhang, Jianping Gong

The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Feb. 9th, 2022; accepted: Mar. 2nd, 2022; published: Mar. 14th, 2022

ABSTRACT

Hepatocellular carcinoma (HCC) is a common malignant tumor of digestive system with poor prognosis. Tumor mutational burden (TMB) refers to the total number of non-synonymous mutations in the coding region of the somatic cells, which is expressed as mutations per Megabyte in the tumor (mutation/Mb). The study of gene mutation and tumor mutational burden can provide further guidance for the prognosis and treatment of HCC. As one of the biomarkers for the evaluation of emerging therapies and the prognosis of tumors, this paper reviewed the predictive value, prognostic value, tumor microenvironment and application progress of TMB in the therapeutic effect of immunotherapy for HCC patients.

Keywords:Tumor Mutational Burden, Hepatocellular Carcinoma, Immune Therapy, Prognosis, Biomarker

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景

肝细胞癌(HCC)是原发性肝肿瘤中发病率居首位和第四位世界上常见的癌症相关死亡原因,它通常是一种侵袭性或转移性癌症 [1]。目前,HCC的诊断主要通过计算机断层扫描(CT)和磁共振成像(MRI)扫描、超声、活组织病检等进行诊断,确诊时多为晚期,并且HCC患者确诊后的存活率通常很差。基于肿瘤的分期和大小,治疗手段多为手术切除,动脉导管化疗栓塞,射频消融,肝移植等。近年来,免疫疗法在治疗HCC方面取得了巨大成功。免疫疗法是使用药物促进免疫细胞在肿瘤微环境中浸润,导致T或B淋巴细胞杀死肿瘤细胞,主要包括肿瘤疫苗、生物疗法、CAR-T细胞和免疫检查点抑制剂(PD-1、CTLA-7)。不管从肿瘤间还是肿瘤内的角度看,HCC被认为是具有高度异质性的恶性疾病。鉴于其高度异质性和病因在不同患者之间存在很大差异,作为广泛使用的临床分类的肿瘤–淋巴结转移(TNM)分期在预测总生存期和临床结果方面几乎没有效果。因此,必须生成用于预后预测和治疗反应评估的强大工具,进一步促进精确和个体化治疗。

肿瘤突变负荷(Tumor Mutational Burden, TMB)是指肿瘤基因组平均1 Mb碱基范围内所含体细胞蛋白编码区的点突变、插入缺失和其他基因突变的数量。TMB是新建立的免疫检查点抑制剂(Imune Check Point Inhibitors, ICPI)治疗结果的独立预测因子,可预测肿瘤组织对ICPI的敏感性。它也是预测程序性细胞死亡蛋白-1 (PD-1)抑制剂疗效的生物标志物之一 [2] [3]。本文就肿瘤突变负荷在肝细胞肝癌中的应用进展作综述。

2. TMB作为肝癌免疫治疗生物标志物的依据

TMB的概念是基于一个假设:肿瘤特异性突变导致新抗原的形成,从而产生强大的免疫反应,因此,具有较高突变水平的恶性肿瘤能够“产生”更高数量的新抗原 [4] [5]。基于这些前提,在单个癌症的基因组中报告的非同义突变的数量被称为TMB [6]。肿瘤中的高TMB,即非同义单核苷酸变异,被认为可以产生更多的新抗原,从而促进肿瘤特异性T细胞应答的高频率和多样性,从而使免疫治疗更加有效 [7]。在包括HCC在内的多种肿瘤中,较高的TMB预示着PD-1/PD-L1抑制剂的良好结局。目前基于生物信息学技术的发展及全球数据共享的广泛应用,可利用外显子组测序技术、靶向二代测序等方法可测得肿瘤标本的TMB。

3. TMB与肝癌临床分子生物学关系

3.1. TMB与肝癌临床特征研究

目前,多个临床研究分析了肝癌组织中TMB表达情况,并进一步评估了TMB表达与临床病理关系。研究表明,HCC通常具有低(<5突变/Mb) TMB,极少发生超突变,并且在癌中处于TMB谱的中低端,值范围为0.42至65.6突变/Mb,中值范围为2.56至5突变/Mb [8] [9] [10] [11]。Wang [12] 等利用下一代测序(NGS)的450 panel基因测序在160个中国HCC标本中确定了TMB值,中位TMB为5.4突变/Mb (范围,0~28.4突变/Mb),75% TMB为7.7突变/Mb。HCC的前四分之一被归类为TMB高,即TMB值高于7.7突变/Mb被认为是TMB高(TMB-High),而TMB值低于7.7突变/Mb被认为是TMB低(TMB-Low)。此外,根据Tang和同事的报告 [13],HCC的TMB分布也描述了不同种族的差异,发现中国HCC患者的TMB高于西方受试者,比例分别为9.3%和1%。Wong [14] 和他的同事发表的一份报告通过对新鲜和存档样本进行定向下一代测序来评估29例HCC患者的TMB。值得注意的是,与存档样本相比,新鲜样本的TMB水平较低(中位数分别为2.51个突变/Mb和958.39个突变/Mb),似乎是评估TMB的最佳肿瘤DNA来源。对突变负荷的进一步研究 [15] 表明,高负荷突变的生存率与年龄(P < 0.001)和性别(P < 0.004)相关。Liu等 [16] 研究了来自TCGA数据库376名HCC患者的体细胞突变数据,发现前10位突变基因分别为TP53 (28%)、TTN (25%)、CTNNB1 (24%)、MUC16 (16%)、ABL (11%)、PCLO (11%)、MUC4 (10%)、RYR2 (10%)、ABCA13 (9%)和APOB。C>T转换是HCC中最常见的单核苷酸变异(Single Nucleotide Variation, SNV)形式,较高的TMB还与肿瘤分期(p = 0.035)、病理分期(p = 0.020)和T分期(p = 0.027)相关。

3.2. TMB与肝癌分子生物学相关性研究

尽Wang等 [12] 研究认为我国HCC患者最常发生突变的基因为TP53 (56.5%)、TERT (45.2%)和CTNNB1 (22.6%),主要通过调控P53通路、Wnt通路和端粒修复通路导致HCC的发生和发展,并在细胞外基质相关通路中富集。TP53 突变可能导致染色体/基因组突变不稳定性从而提高TMB值。一项纳入374例肿瘤TCGA数据中 [15],通过对TMB中差异表达基因的分析筛选出632个上调基因和979个下调基因,发现五个蛋白SQSTM1、ME1、BAMBI和PTTG1可以作为HCC预后的独立危险因素。但以上结果均为TMB与肝癌生物分子相关性研究,均未能进一步阐明具体机制,未来有待进一步基础研究。HCC病例中的TMB处于TMB谱的低端,需要进一步研究确定遗传改变和分子亚型,并可能对肝硬化、前驱病变和HCC之间的生物学和发病机制产生更深入的了解。

4. TMB在HCC预后及免疫治疗方面的预测价值

肿瘤突变负荷(TMB)与各种恶性肿瘤的预后相关,但在肝细胞癌(HCC)中其相关性有相反的结果。Xie [17] 通过多个数据库和全外显子组测序研究TMB的结果表明,高TMB组的预后比低TMB组差。免疫相关基因突变频率高、TMB高的患者在根治性治疗后容易出现预后较差和复发的情况。然而Xu [18] 等的研究结果表明与低TMB患者相比,高TMB患者的中位生存时间更长。另外有不同的结论提示在HCC患者中TMB值较低,TMB与预后无明显相关性 [19] [20] [21] 因此,TMB在HCC中的预测价值尚不确定。Yang的研究 [22] 同样认为TMB与HCC患者的总生存期无关,甚至提出是TP53新抗原可能通过调节抗肿瘤免疫来影响预后。

肿瘤突变负荷(TMB)代表了体细胞编码错误,例如碱基替换、缺失或每百万碱基的插入,基于众多研究,已被称为预测对免疫检查点抑制剂 反应性的有希望的指标。发现高TMB可促进抗原形成和随后的免疫细胞浸润,从而增强免疫反应,从而提高免疫治疗效果。然而并非所有具有高TMB的肿瘤都对免疫检查点抑制剂有预期的反应。已经表明,T细胞浸润肿瘤微环境并引发特定免疫反应的能力不仅取决于TMB,还取决于肿瘤内异质性和构成肿瘤微环境的低频亚克隆突变的比例。肿瘤内高异质性导致T细胞对肿瘤新抗原的识别效率低下,因为它们的频率和空间异质性被稀释。迄今为止,已有多项研究关注 TMB与免疫治疗在包括HCC在内的多种癌症中的相关性。

在最近一项关于SHR-1210 (抗PD-1抗体)联合阿帕替尼(VEGFR2抑制剂)治疗晚期HCC的研究中 [23],与那些低TMB患者相比,具有高TMB (>7.2突变/Mb)的HCC患者对治疗反应良好。Chan的研究 [24] 表明,与传统化疗药物相比,接受纳武单抗治疗的高TMB (≥243个错义突变)患者的PFS和OS显着改善。在另一项针对17例HCC病例的研究中,Ang [8] 等人显示疾病进展、保持稳定或对免疫检查点抑制剂有反应的患者之间的TMB没有显着差异。其他研究 [25] [26] 表明,较高的TMB与根治性肝切除术后的肿瘤复发有关,以及显着较差的总体和无进展生存。虽然TMB被认为是免疫治疗的良好预测指标,但在临床实践中存在局限性。TMB高的患者出现免疫无反应,而TMB低的患者免疫效果好。未来,我们需要许多前瞻性试验来研究TMB如何与PD-L1表达水平有效结合,共同预测免疫检查点抑制剂的疗效。此外,需要进一步探索HLA基因型和其他种系变异如何影响TMB的作用和对免疫检查点抑制剂的反应。

5. TMB与HCC中肿瘤微环境及免疫浸润的关系

TMB与免疫浸润之间的关系因不同类型的癌症而异,集中在TMB与HCC免疫浸润的研究有限。Liu等 [16] 使利用TCGA中HCC队列和GEO数据集发现高TMB是HCC的良好预后预测因子。其中高TMB组的调节性T细胞(Tregs)、静息树突状细胞和嗜酸性粒细胞的浸润水平较高,中性粒细胞的密度在高TMB组中显示出较低的浸润水平。Yin [27] 等通过小提琴图比较高TMB组和低TMB组的免疫浸润细胞后发现高TMB组记忆B细胞、CD8+ T细胞和CD4+ T、记忆激活T细胞更丰富。肿瘤免疫浸润分析显示,Th2、Th17和Tgd的浸润在高TMB组中上调,而Tr1、MAIT和DC的浸润在低TMB组中上调。对HCC中TMB的广泛研究表明,较高的TMB与不良预后之间存在相关性。这些HCC表现出富含免疫的微环境,并且往往是炎症驱动的,这使得它们成为免疫检查点抑制剂的候选者。目前正在临床实践中使用用于低、中和高TMB截止值的静态泛癌截止值。然而,TMB的前景可能会发生变化,因为它在未来 [28] 朝着组织特异性和百分位值的方向发展。

6. 小结与展望

尽管肝癌免疫疗法取得了巨大成功,但只有一小部分患者从中受益。以往的研究表明,TMB高的患者伴有明显的免疫细胞浸润,通常会从免疫治疗中受益。因此,迫切需要生物标志物来预测免疫治疗的效果。随着下一代测序的实施,在肝细胞肝癌中发现了包括TERT、CTNNB1、TP53、AXIN1、ARID1A和ARID1B等基因驱动突变。基于这些突变和表观遗传学改变,进一步的分子亚分类被提出,虽然这些突变是非药物性的,但它们可能会潜在地影响免疫治疗的反应。目前TMB还有高TMB定义无相关标准,检测方法无同一评估方法,缺乏进一步临床数据支持等局限性存在,临床需要更多的前瞻性研究以提高TMB作为组织诊断生物标志物的准确性,不同的分析方法也存在冲突结论,未来需要通过大量临床数据或临床试验来验证。相信随着TMB作为免疫治疗反应生物标志物的势头不断增强,并且标准化方法开始出现以实现临床应用,在可预见的未来,通过TMB检测来辅助指导治疗将成为精准医学的新风向。

文章引用

张爱绮,龚建平. 肿瘤突变负荷在肝癌中的应用进展
Advances in the Application of Tumor Mutation Burden in Hepatocellular Carcinoma[J]. 临床医学进展, 2022, 12(03): 1724-1729. https://doi.org/10.12677/ACM.2022.123248

参考文献

  1. 1. Islami, F., Ward, E.M., Sung, H., et al. (2021) Annual Report to the Nation on the Status of Cancer, Part 1: National Cancer Statistics. JNCI: Journal of the National Cancer Institute, 113, 1648-1669. https://doi.org/10.1093/jnci/djab131

  2. 2. Yarchoan, M., Hopkins, A. and Jaffee, E.M. (2017) Tumor Mutational Burden and Response Rate to PD-1 Inhibition. The New England Journal of Medicine, 377, 2500-2501. https://doi.org/10.1056/NEJMc1713444

  3. 3. Klempner, S.J., Fabrizio, D., Bane, S., et al. (2020) Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. The Oncologist, 25, e147-e159. https://doi.org/10.1634/theoncologist.2019-0244

  4. 4. Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264. https://doi.org/10.1038/nrc3239

  5. 5. Van Den Bulk, J., Verdegaal, E.M. and De Miranda, N.F. (2018) Cancer Immunotherapy: Broadening the Scope of Targetable Tumours. Open Biology, 8, Article ID: 180037. https://doi.org/10.1098/rsob.180037

  6. 6. Merino, D.M., McShane, L.M., Fabrizio, D., et al. (2020) TMB Harmonization Consortium. Establishing Guidelines to Harmonize Tumor Mutational Burden (TMB): In Silico Assessment of Variation in TMB Quantification across Diagnostic Platforms: Phase I of the Friends of Cancer Research TMB Harmonization Project. Journal for ImmunoTherapy of Cancer, 8, e000147. https://doi.org/10.1136/jitc-2019-000147

  7. 7. Snyder, A., Makarov, V., Merghoub, T., et al. (2014) Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. The New England Journal of Medicine, 371, 2189-2199. https://doi.org/10.1056/NEJMoa1406498

  8. 8. Ang, C., Klempner, S.J., Ali, S.M., et al. (2019) Prevalence of Established and Emerging Biomarkers of Immune Checkpoint Inhibitor Response in Advanced Hepatocellular Carcinoma. Oncotarget, 10, 4018-4025. https://doi.org/10.18632/oncotarget.26998

  9. 9. Li, L., Rao, X., Wen, Z., et al. (2020) Implications of Driver Genes Associated with a High Tumor Mutation Burden Identified Using Next-Generation Sequencing on Immunotherapy in Hepatocellular Carcinoma. Oncology Letters, 19, 2739-2748. https://doi.org/10.3892/ol.2020.11372

  10. 10. Mauriello, A., Zeuli, R., Cavalluzzo, B., et al. (2019) High Somatic Mutation and Neoantigen Burden Do Not Correlate with Decreased Progression-Free Survival in HCC Patients Not Undergoing Immunotherapy. Cancers, 11, Article No. 1824. https://doi.org/10.3390/cancers11121824

  11. 11. Wang, X. and Li, M. (2019) Correlate Tumor Mutation Burden with Immune Signatures in Human Cancers. BMC Immunology, 20, Article No. 4. https://doi.org/10.1186/s12865-018-0285-5

  12. 12. Wang, S., Shi, H.S., Liu, T., et al. (2021) Mutation Profile and Its Correlation with Clinicopathology in Chinese Hepatocellular Carcinoma Patients. Hepatobiliary Surgery and Nutrition, 10, 172-179.

  13. 13. Tang, X., Fan, L., Chen, G., Guo, W., Qiu, F., Wang, J., et al. (2018) Higher Level of Tumor Mutational Burden and 11q13 Amplification in Chinese Hepatocellular Carcinoma Patients. Cancer Research, 78, 4349. https://doi.org/10.1158/1538-7445.AM2018-4349

  14. 14. Wong, C.N., Fessas, P., Dominy, K., et al. (2021) Qualification of Tumour Mutational Burden by Targeted Next-Generation Sequencing as a Biomarker in Hepatocellular Carcinoma. Liver International, 41, 192-203.

  15. 15. Zhou, W., Fang, D., He, Y. and Wei, J. (2021) Correlation Analysis of Tumor Mutation Burden of Hepatocellular Carcinoma Based on Data Mining. Journal of Gastrointestinal Oncology, 12, 1117-1131.

  16. 16. Liu, S., Tang, Q., Huang, J., Zhan, M., Zhao, W., Yang, X., Li, Y., Qiu, L., Zhang, F., Lu, L. and He, X. (2021) Prognostic Analysis of Tumor Mutation Burden and Immune Infiltration in Hepatocellular Carcinoma Based on TCGA Data. Aging, 13, 11257-11280. https://doi.org/10.18632/aging.202811

  17. 17. Xie, C., Wu, H.W., Pan, T., et al. (2021) A Novel Panel Based on Immune Infiltration and Tumor Mutational Burden for Prognostic Prediction in Hepatocellular Carcinoma. Aging, 13, 8563-8587. https://doi.org/10.18632/aging.202670

  18. 18. Xu, Q.H., Xu, H., Deng, R.S., et al. (2021) Multi-Omics Analysis Reveals Prognostic Value of Tumor Mutation Burden in Hepatocellular Carcinoma. Cancer Cell Internatinal, 21, Article No. 342. https://doi.org/10.1186/s12935-021-02049-w

  19. 19. Dhanasekaran, R., Nault, J.C., Roberts, L.R., et al. (2019) Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology, 156, 492-509. https://doi.org/10.1053/j.gastro.2018.11.001

  20. 20. Zhu, A.X., Finn, R.S., Edeline, J., et al. (2018) Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Nonrandomised, Open-Label Phase 2 Trial. The Lancet Oncology, 19, 940-952. https://doi.org/10.1016/S1470-2045(18)30351-6

  21. 21. Cheng, A.L., Hsu, C., Chan, S.L., et al. (2020) Challenges of Combination Therapy with Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. Journal of Hepatology, 72, 307-319. https://doi.org/10.1016/j.jhep.2019.09.025

  22. 22. Yang, H.Y., Sun, L.J., Guan, A., et al. (2021) Unique TP53 Neoantigen and the Immune Microenvironment in Long-Term Survivors of Hepatocellular Carcinoma. Cancer Immunology, Immunotherapy, 70, 667-677. https://doi.org/10.1007/s00262-020-02711-8

  23. 23. Xu, J., Zhang, Y., Jia, R., et al. (2019) Anti-PD-1 Antibody SHR-1210 Combined with Apatinib for Advanced Hepatocellular Carcinoma, Gastric, or Esophagogastric Junction Cancer: An Open-Label, Dose Escalation and Expansion Study. Clinical Cancer Research, 25, 515-523. https://doi.org/10.1158/1078-0432.CCR-18-2484

  24. 24. Chan, T.A., Yarchoan, M., Jaffee, E., et al. (2019) Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Annals of Oncology, 30, 44-56. https://doi.org/10.1093/annonc/mdy495

  25. 25. Cai, H., Zhang, Y., Zhang, H., Cui, C., Li, C. and Lu, S. (2020) Prognostic Role of Tumor Mutation Burden in Hepatocellular Carcinoma after Radical Hepatectomy. Journal of Surgical Oncology, 121, 1007-1014. https://doi.org/10.1002/jso.25859

  26. 26. Shrestha, R., Prithviraj, P., Anaka, M., et al. (2018) Monitoring Immune Checkpoint Regulators as Predictive Biomarkers in Hepatocellular Carcinoma. Frontiers in Oncology, 8, Article No. 269. https://doi.org/10.3389/fonc.2018.00269

  27. 27. Yin, L., Zhou, L.Z. and Xu, R.J. (2020) Identification of Tumor Mutation Burden and Immune Infiltrates in Hepatocellular Carcinoma Based on Multi-Omics Analysis. Frontiers in Molecular Biosciences, 7, Article ID: 599142. https://doi.org/10.3389/fmolb.2020.599142

  28. 28. Fernandez, E.M., Eng, K., Beg, S., et al. (2019) Cancer-Specific Thresholds Adjust for Whole Exome Sequencing-Based Tumor Mutational Burden Distribution. JCO Precision Oncology, 3, 1-12. https://doi.org/10.1200/PO.18.00400

期刊菜单