Advances in Clinical Medicine
Vol. 12  No. 08 ( 2022 ), Article ID: 54449 , 8 pages
10.12677/ACM.2022.1281036

2型糖尿病患者人体成分变化的研究进展

张鹏霞,王卓亚*

青海大学附属医院,青海 西宁

收稿日期:2022年7月3日;录用日期:2022年8月1日;发布日期:2022年8月8日

摘要

2型糖尿病(type 2 diabetes mellitus, T2DM)是一种慢性代谢性疾病,随着生活水平的提高,生活方式的改变,T2DM的发病率正在逐年增加,已成为威胁人类健康的主要疾病之一。T2DM患者的人体成分改变可能会导致许多不良健康后果,如心血管疾病、肌肉减少症和骨质疏松症等,严重影响患者生活质量。通过人体成分分析测量T2DM患者人体成分含量及构成比特点,针对T2DM患者提供个体化诊疗措施,为防治T2DM以及降低合并症的发生率提供重要依据。本文通过整理国内外相关文献,对T2DM患者人体成分变化的研究进展做一综述。

关键词

2型糖尿病,人体成分,胰岛素抵抗,脂肪质量,瘦体重,肌少症

Research Progress of Body Composition Changes in Type 2 Diabetes Patients

Pengxia Zhang, Zhuoya Wang*

Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Jul. 3rd, 2022; accepted: Aug. 1st, 2022; published: Aug. 8th, 2022

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, and with the improvement of living standards and changes in lifestyle, the incidence of T2DM is increasing year by year and has become one of the major diseases threatening human health. Changes in body composition in patients with T2DM may lead to many adverse health consequences, such as cardiovascular disease, sarcopenia and osteoporosis, which seriously affect patients’ quality of life. Body composition analysis was used to measure the body composition content and composition ratio characteristics of T2DM patients, providing individual diagnosis and treatment measures for T2DM patients, providing individual diagnosis and treatment measures for T2DM patients, providing an important basis for the prevention and treatment of T2DM and reducing the incidence of complications. This article reviews the research progress of body composition changes in T2DM patients by reviewing relevant literatures.

Keywords:Type2 Diabetes Mellitus, Body Composition, Insulin Resistance, Fat Mass, Lean Body Mass, Sarcopenia

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病是一种以持续高血糖为特征的慢性代谢性疾病,其发病率和死亡率均较高。据统计,我国糖尿病患病人数位居全球首位,且以2型糖尿病(type 2 diabetes mellitus, T2DM)为主,约占90%以上 [1] 。T2DM可引起许多慢性并发症(心血管疾病、肌少症、骨质疏松和骨折等),具有很高的致残率和致死率。近年来,随着社会经济的发展,生活节奏的加快,饮食结构和生活方式(如久坐)的改变,导致人体内多余营养的储存和人体成分的变化,造成肥胖症的发病率也呈直线上升趋势。研究表明肥胖是导致T2DM的重要原因 [2] 。肥胖通常用体重指数(body mass index, BMI)来衡量。研究表明,人体成分的差异,如脂肪质量和脂肪分布的差异,对健康有不同的影响 [3] [4] ,尤其是内脏脂肪与胰岛素抵抗和葡萄糖耐受性密切相关,内脏脂肪增多可预测糖尿病的发生。而BMI只能测量是否超重,不能评估脂肪含量的多少,不能具体量化总脂肪质量、局部脂肪质量(如内脏脂肪质量)及测量体内脂肪分布,这是至关重要的限制 [5] 。因此,在评估T2DM病情及可能发生的并发症风险时,还应该考虑BMI以外的人体成分指标。由于人体成分可能因个人和性别而异,因此具有相同BMI水平的人可能有不同的人体成分,也有不同的患病风险 [6] 。那么T2DM状态下人体成分变化的特点是什么?近年来有不少研究表明,T2DM患者人体成分变化与非糖尿病人群之间有明显差异,如脂肪分布异常、总脂肪量增加、肌肉量或骨密度降低 [7] [8] [9] ,最终导致T2DM患者心血管疾病、肌少症、骨质疏松症和骨折的风险增加,严重影响了人们的身心健康。本文通过整理国内外文献,对T2DM患者人体成分变化的研究进展进行综述。

2. 人体成分的测量方法

人体成分通常被用作评估营养状况、运动能力和身体健康的重要参考指标 [10] 。人体成分主要包括水分、蛋白质、脂肪和无机质等,其均衡是维持健康状态最基本的条件。通过人体成分的测定可较准确地反映人体肌肉、脂肪及骨骼的重量进而判定一个人的人体组成成分是否合理 [11] 。

经过几十年的研究,科学家运用物理学、化学、生物学和人类学等种种技术,创造出了多种活体测定人体成分组成的方法。主要有以下几种方法:皮褶厚度法、水下称重法、计算机断层扫描法(computerized tomography, CT)以及核磁共振法(magnetic resonance imaging, MRI)、双能X线吸收法(dual-energy x-ray aborptionmetry, DEXA)等。然而这些测量方法或者误差大,或者操作复杂,或者设备昂贵,且有些方法在测试过程中对人体有一定的辐射或者需要其他的特殊要求,因此仅适用于实验研究或大型医院等特定环境,不适用于普通大众 [12] 。相比之下,生物电阻抗分析法(bioelectrical impedance analysis, BIA)不仅能获得可靠的人体成分测量结果,还具有无创性、便携性、相对低成本和技术友好性等优点,是目前应用最广泛的人体成分分析方法 [13] 。人体分为脂肪组织和非脂肪组织,脂肪组织因含脂质多,电阻大,导电性差,非脂肪组织因含电解质和水分较多,电阻小,导电性好。BIA是一种利用人体瘦组织是良导体而脂肪是绝缘体的特性,通过向人体导入微弱交流电,得出不同电阻和电抗,从而区分出水分、肌肉、矿物质等不同人体成分 [14] 。BIA最早是由Lukaski [15] 等于1985年研制的一种人体成分分析仪,随着技术的进步,由单频发展为多频,可以更精确地定量分析人体组织成分 [16] 。多频生物电阻抗技术采用从低频到高频多个不同频率多次测量人体阻抗的技术,分别使用了1 kHz、5 kHz、50 kHz、250 kHz、500 kHz、1000 kHz,六个不同频率对人体进行多次阻抗测量,低频的电流无法穿过细胞膜,可以反映细胞外水分状态,而高频电流可以穿透细胞膜反映细胞内水分状态,从而获得更加准确的数据结果。在临床上广泛用于人体成分的测量。

3. T2DM患者的人体成分变化

人体成分包括有脂肪质量、体脂百分比、瘦体重、肌肉质量和骨量等 [17] 。目前有许多研究表明 [3] [4] [13] ,T2DM与非糖尿病人群之间人体成分存在差异,但结果不尽一致。以下总结了T2DM患者脂肪质量、瘦体重及肌肉量变化的国内外研究进展。

3.1. 脂肪质量

研究表明T2DM患者脂肪质量和脂肪分布较正常人存在差异。就总体脂肪而言,Baltadjiev AG等人对169名男性T2DM患者进行了人体成分评估,结果表明T2DM患者的体脂含量大于对照组 [18] 。Choi等人发现患有T2DM的男性和绝经后女性的体脂百分比更高 [19] 。就脂肪的区域分布而言,T2DM患者脂肪组织的区域分布呈现出特征性的模式——Choi等人发现T2DM患者躯干和手臂脂肪均较非糖尿病患者高,且躯干脂肪每增加1 kg,男性患糖尿病的比例增加15%,女性增加19%。手臂脂肪每增加1 kg同样也增加了男女患糖尿病的风险。相反,腿部脂肪每增加1 kg,男性糖尿病患病率减少51%,而女性减少44% [19] 。由此可见,T2DM患者脂肪异位分布,且以躯干(腹部)为主。

胰岛素抵抗是T2DM发生的关键。脂肪组织以自分泌、旁分泌、内分泌等途径分泌多种脂肪细胞因子,通过直接或间接的作用调节胰岛素敏感性、胰岛素分泌及葡萄糖稳态过程 [20] 。当脂肪细胞因子分泌异常时,抑制胰岛素信号传导通路,使胰岛素的生物学效应下降,从而导致胰岛素作用的靶组织及靶器官产生胰岛素抵抗 [21] 。对于T2DM患者腹部脂肪异常分布过程产生的肥大功能失调的脂肪细胞,是引起胰岛素差异性的重要原因。机制为:① 功能失调的肥大脂肪细胞具有高度分解性,能够增加脂肪酸的释放以及导致脂肪因子分泌受损(如瘦素和抵抗素增加,脂联素减少等),最终导致胰岛素抵抗。② 该细胞能够增加炎性细胞因子的分泌,如肿瘤坏死因子-α (tumor necrosis factor-alpha, TNF-α)和白细胞介素-6 (interleukin-6, IL-6)和单核细胞趋化蛋白-1 (monocyte chemoattractant protein-1, MCP-1)等,导致局部和全身低度炎症和胰岛素信号传送系统的损害 [22] 。③ 脂肪酸的增多,导致胰岛素清除率降低和高胰岛素血症,促进胰岛素抵抗的发生、发展 [23] 。因此,过多的脂肪组织会释放炎症物质,最终导致更高的胰岛素抵抗,并发展成T2DM [24] [25] 。脂肪在全身堆积,腹部器官中的脂肪产生脂肪酸和其他物质,促进血液中炎症物质的释放,阻断肝脏中的胰岛素代谢和周围组织中的胰岛素敏感性。这会导致胰岛素抵抗增加,从而限制血糖控制 [26] 。可见对于相同体脂总量的人群,脂肪分布不同,患T2DM的风险不同。

3.2. 瘦体重

骨骼肌和肌肉是瘦体重的主要组成部分,是胰岛素作用和胰岛素抵抗的主要组织靶点。就瘦体重的分布而言,S Heshka等人在研究中发现瘦体重分布遵循与脂肪区域分布相似的模式:躯干瘦体重分布较多,腿部较少。就瘦体重总体而言,Park和同事利用健康ABC研究的数据首次在一项大型观察性队列研究中表明,在3年的随访期内,患有T2DM的男性和女性患者比没有T2DM的男性和女性腿部瘦体重减少更多 [27] 在健康ABC研究的一篇后续文章中,与无T2DM的参与者相比,T2DM患者在5年的随访期间,通过测量发现四肢瘦体重过度减少 [28] 。后来相关研究结果也证明了上述观点,未经治疗的糖尿病患者的总瘦体重和四肢瘦体重损失比血糖正常的男性更大 [29] 。而也有研究表明瘦体重的变化与T2DM风险无关 [30] 。瘦体重与T2DM的关系还需进行更多的临床研究来明确。

3.3. 肌肉量

肌少症是一种与增龄相关的进行性、全身肌肉量减少和/或肌肉强度下降或肌肉生理功能减退的综合征 [31] 。随着人口老龄化的加剧,肌少症的发病率随之增加。研究表明肌少症不仅是增龄引起的骨骼肌退行性变化,也可以继发于营养不良、缺乏运动、肿瘤或内分泌等疾病 [32] 。近年来,越来越多的学者认识到T2DM与肌少症的联系。研究证实,T2DM增加了肌少症的发病风险,甚至在T2DM早期就出现肌肉质量和功能的明显下降 [33] 。有研究表明,低骨骼肌质量与T2DM患者血糖控制不佳相关 [34] 。Lee JS等人在研究中发现,经过4年的随访,男性T2DM患者四肢肌肉丢失量是非糖尿病人群的2倍,而女性T2DM四肢肌肉丢失量是非糖尿病人群的1.8倍 [35] 。健康ABC的观察性研究也发现经过6年随访的老年糖尿病患者的大腿肌肉质量下降速度比非糖尿病患者快2倍 [36] 。

有研究表明肌肉质量减少是T2DM的独立风险因素 [37] 。T2DM患者导致肌肉量减少机制包括:① 胰岛素抵抗;生理情况下胰岛素与其受体结合后激活其信号转导通路中的下游成分,包括磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase, PI3K)及蛋白激酶B (protein kinase B, PKB/Akt),引起下游效应,完成细胞内胰岛素信号的传导 [38] 。骨骼肌是胰岛素刺激下葡萄糖摄取的主要部位,骨骼肌中胰岛素抵抗是T2DM高血糖的主要原因,是介导T2DM和肌少症的重要因素。胰岛素抵抗时,PI3K/Akt通路受到抑制,肌蛋白合成减少,从而导致骨骼肌萎缩 [39] 。另外,胰岛素抵抗时,肌肉PI3K活性的降低激活了胱天蛋白酶–3和泛素–蛋白酶体系统导致肌蛋白分解增加,引起肌肉量减少,肌力下降,进而导致肌少症的发生 [40] 。② 脂质沉积;T2DM患者脂肪异位堆积于肝脏、骨骼肌等,骨骼肌中胰岛素受体底物(insulin receptor substrate,IRS)对胰岛素诱导的葡萄糖和脂质代谢至关重要,IRS的磷酸化状态在胰岛素代谢的过程中起着关键作用 [41] 。在T2DM患者体内,大量沉积于骨骼肌的脂质会诱导脂质中间产物(如二酰甘油和神经酰胺)的积累,通过激活蛋白激酶C,增加IRS-1丝氨酸磷酸化,而引起胰岛素抵抗 [42] 。另外,大量沉积于骨骼肌的脂肪组织还可以通过增强转录因子的表达,激活肌肉环状指基因1,从而导致肌肉组织中蛋白质的水解 [43] 。③ 氧化应激;长期高血糖状态下,体内活性氧类生成增多,机体抗氧化能力减弱,氧化能力远大于抗氧化能力,从而导致体内氧化应激的产生 [44] 。Bitar等 [45] 的研究显示,T2DM骨骼肌中氧化应激水平的升高,可诱导肌肉生长抑制素表达增加,肌纤维蛋白分解增加,肌量减少。Jang等 [46] 在抗氧基因敲除小鼠实验中发现,抗氧基因敲除后,骨骼肌中钙蛋白酶和胱天蛋白酶–3水平升高,诱导肌蛋白的降解。④ 炎症;T2DM患者长期处于低度炎症状态,体内多伴有TNF-α、IL-6、IL-8等炎症因子水平的升高 [47] 。炎症因子可通过激活各通路(转录因子、核因子等),诱导肌蛋白分解增加,进而促进肌少症的发生 [48] [49] 。⑤ 晚期糖基化终末产物的积累(advanced glycation end products, AGEs);AGEs是还原糖与蛋白质氨基经过非酶促反应生成的化合物 [50] 。在持续高血糖状态下,内源性AGEs加速积累、AGEs受体数量增加,AGEs与其受体结合后可激活烟酰胺腺嘌呤二核苷酸氧化酶,增加细胞内活性氧类的生成,从而导致慢性肌纤维损伤 [51] 。目前该机制尚未明确,还需大量研究明确。

3.4. 相位角

相位角(phase angle, PA)是利用BIA技术测量出来的一项人体成分分析参数,通过电阻和电抗之间的关系计算的 [52] 。低PA与多种慢性疾病的不良预后有关,也可作为临床营养不良的指标 [53] [54] 。近年来国内外将PA已应用于各类癌症 [55] [56] [57] 、慢性阻塞性肺疾病 [58] 、肾衰竭 [59] 、急性白血病 [60] 、外科手术 [61] [62] 等疾病的营养评估和预后方面。一项研究表明肌肉数量和质量均与PA独立正相关,PA越高,表明肌肉数量和质量越高 [63] 。而T2DM患者肌肉量减少,那么PA与T2DM有无关联,能否成为评估T2DM患者的营养状况及预后的指标,目前国内外尚无该方面相关的研究结果,需进一步行临床试验研究。

4. 使用BIA测量T2DM患者人体成分的益处

T2DM患者的管理不止在血糖控制方面,还应根据影响血糖控制的个体特征因素和人体成分变化进行个体化管理。BIA通过多个不同频率多次测量人体阻抗的技术可以精确测量人体细胞内、外液和总体水分、脂肪组织、瘦体组织和内脏脂肪面积等,不仅可以反映机体构成和营养状况,还能反映疾病的严重程度。BIA作为评估T2DM和T2DM风险并发症(如肌肉减少症、局部肥胖)的临床工具,由于其无创、安全、便携、操作简单、成本低廉等优点 [64] ,在临床中可以随时监测不同T2DM患者身体水分、蛋白质、肌肉量、骨质量、体脂率、体重指数、腰臀比等指标,随时指导患者的饮食及运动方式。近年来,BIA作为一种新技术,具有简单性、低成本、在床旁使用的快速性以及高互操作性的特点 [65] ,用于许多医院住院部及门诊的T2DM患者测量人体成分。当今新型冠状病毒流行期间,T2DM患者居在家里,减少外出,这种特殊时期的生活方式,使许多T2DM患者的血糖控制欠佳,且T2DM患者长期处于高血糖状态,机体防御感染的能力偏低,为避免交叉感染,很多T2DM患者对到医院就诊心存顾虑,其就诊和复诊成为难题。在此期间,基层社区医院使用BIA可以了解T2DM患者人体成分及血糖控制情况,并依据测得相关指标的差异给患者提供个体化控制病情、预防并发症等的措施,既可以减少T2DM患者交叉感染的风险,又能做到及时就诊及复诊,随时监测病情变化。目前尚未见我国基层社区医院使用BIA对T2DM病情管理和预测预后的相关研究及报道。总之,BIA在指导T2DM管理和预防并发症中发挥着越来越重要的作用。

T2DM患者由于体内代谢的改变、营养摄入的减少等原因,引起人体成分改变,从而导致心血管疾病、肌少症和骨质疏松等并发症,给患者生活造成一定影响。因此,在T2DM的管理中,不论是从血糖控制方面还是从提高患者生活质量方面,T2DM患者都需更早的监测人体成分变化,根据脂肪质量及分布、瘦体重、肌肉量等成分差异,评估T2DM患者的病情,预测患者可能发生的并发症,指导患者合理的饮食习惯及正确的运动方式,向患者提供个体化治疗方案及预防措施,及时有效地控制疾病的病情,并且延缓该疾病慢性并发症的发生。目前国内外对T2DM患者人体成分变化的研究逐渐增多,PA与细胞内外水分对T2DM患者的疾病控制与并发症是否有关有待进一步研究,人体成分分析在评估T2DM患者的病情及预测并发症方面越来越重要。

文章引用

张鹏霞,王卓亚. 2型糖尿病患者人体成分变化的研究进展
Research Progress of Body Composition Changes in Type 2 Diabetes Patients[J]. 临床医学进展, 2022, 12(08): 7181-7188. https://doi.org/10.12677/ACM.2022.1281036

参考文献

  1. 1. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.

  2. 2. 提赛米•赛麦, 买买提•依斯热依力, 艾克拜尔•艾力. 肥胖与2型糖尿病关系的研究进展[J]. 中华肥胖与代谢病电子杂志, 2020, 6(2): 130-134.

  3. 3. Ebbert, J.O. and Jensen, M.D. (2013) Fat Depots, Free Fatty Acids, and Dyslipidemia. Nutrients, 5, 498-508. https://doi.org/10.3390/nu5020498

  4. 4. Lee, Y.C., Lee, Y.H., Chuang, P.N., et al. (2020) The Utility of Visceral Fat Level Measured by Bioelectrical Impedance Analysis in Predicting Metabolic Syndrome. Obesity Research & Clinical Practice, 14, 519-523. https://doi.org/10.1016/j.orcp.2020.09.008

  5. 5. Mooney, S.J., Baecker, A. and Rundle, A.G. (2013) Comparison of Anthropometric and Body Composition Measures as Predictors of Components of the Metabolic Syndrome in a Clin-ical Setting. Obesity Research & Clinical Practice, 7, e55-e66. https://doi.org/10.1016/j.orcp.2012.10.004

  6. 6. Kokkinos, P., Myers, J., Faselis, C., et al. (2012) BMI-Mortality Paradox and Fitness in African American and Caucasian men with type 2 diabetes. Diabetes Care, 35, 1021-1027. https://doi.org/10.2337/dc11-2407

  7. 7. Jing, Y., Wang, X., Yu, J., et al. (2020) Follicle-Stimulating Hormone and Estradiol Are Associated with Bone Mineral Density and Risk of Fractures in Men with Type 2 Diabetes Mellitus. Jour-nal of Diabetes, 12, 426-437. https://doi.org/10.1111/1753-0407.13011

  8. 8. Sarodnik, C., Bours, S., Schaper, N.C., et al. (2018) The Risks of Sarcopenia, Falls and Fractures in Patients with Type 2 Diabetes Mellitus. Maturitas, 109, 70-77. https://doi.org/10.1016/j.maturitas.2017.12.011

  9. 9. Anagnostis, P., Gkekas, N.K., Achilla, C., et al. (2020) Type 2 Diabetes Mellitus is Associated with Increased Risk of Sarcopenia: A Systematic Review and Meta-Analysis. Calcified Tissue International, 107, 453-463. https://doi.org/10.1007/s00223-020-00742-y

  10. 10. He, X., Li, Z., Tang, X., et al. (2018) Age- and Sex-Related Differences in Body Composition in Healthy Subjects Aged 18 to 82 Years. Medicine, 97, Article ID: e11152. https://doi.org/10.1097/MD.0000000000011152

  11. 11. 邹凌燕, 赵长峰. 大学生人体成分的测定与分析[J]. 山东大学学报(医学版), 2005, 43(12):1185-1187.

  12. 12. Campa, F., Toselli, S., Mazzilli, M., et al. (2021) Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13, Article No. 1620. https://doi.org/10.3390/nu13051620

  13. 13. Lukaski, H. and Raymond-Pope, C.J. (2021) New Frontiers of Body Composition in Sport. International Journal of Sports Medicine, 42, 588-601. https://doi.org/10.1055/a-1373-5881

  14. 14. Gupta, B., Kant, S. and Mishra, R. (2010) Subjective Global Assessment of Nutritional Status of Chronic Obstructive Pulmonary Disease Patients on Admission. International Journal of Tuber-culosis and Lung Disease, 14, 500-505.

  15. 15. Lukaski, H.C., Johnson, P.E., Bolonchuk, W.W., et al. (1985) Assess-ment of Fat-Free Mass Using Bioelectrical Impedance Measurements of the Human Body. he American Journal of Clin-ical Nutrition, 41, 810-817. https://doi.org/10.1093/ajcn/41.4.810

  16. 16. Mundi, M.S., Patel, J.J. and Martindale, R. (2019) Body Composition Technology: Implications for the ICU. Nutrition in Clinical Practice, 34, 48-58. https://doi.org/10.1002/ncp.10230

  17. 17. Borga, M., West, J., Bell, J.D., et al. (2018) Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. Journal of Investigative Medicine, 66, 1-9. https://doi.org/10.1136/jim-2018-000722

  18. 18. Baltadjiev, A.G. and Baltadjiev, G.A. (2011) Assessment of Body Composition of Male Patients with Type 2 Diabetes by Bioelectrical Impedance Analysis. Folia Medica, 53, 52-57.

  19. 19. Choi, S.I., Chung, D., Lim, J.S., et al. (2017) Relationship between Regional Body Fat Distribution and Diabetes Mellitus: 2008 to 2010 Korean National Health and Nutrition Examination Surveys. Diabetes & Metabolism Journal, 41, 51-59. https://doi.org/10.4093/dmj.2017.41.1.51

  20. 20. Bluher, M. (2014) Adipokines-Removing Road Blocks to Obesity and Diabetes Therapy. Molecular Metabolism, 3, 230-240. https://doi.org/10.1016/j.molmet.2014.01.005

  21. 21. Booth, A., Magnuson, A., Fouts, J., et al. (2016) Adipose Tis-sue: An Endocrine Organ Playing a Role in Metabolic Regulation. Hormone Molecular Biology and Clinical Investiga-tion, 26, 25-42. https://doi.org/10.1515/hmbci-2015-0073

  22. 22. Stears, A., O'Rahilly, S., Semple, R.K., et al. (2012) Metabolic In-sights from Extreme Human Insulin Resistance Phenotypes. Best Practice & Research Clinical Endocrinology & Metab-olism, 26, 145-157. https://doi.org/10.1016/j.beem.2011.09.003

  23. 23. 刘峰. 2型糖尿病胰岛素抵抗及其机制研究进展[J]. 中国处方药, 2018, 16(8): 17-18.

  24. 24. Han, T.S., Al-Gindan, Y.Y., Govan, L., et al. (2019) Associations of BMI, Waist Cir-cumference, Body Fat, and Skeletal Muscle with Type 2 Diabetes in Adults. Acta Diabetologica, 56, 947-954. https://doi.org/10.1007/s00592-019-01328-3

  25. 25. Tournadre, A., Pereira, B., Dutheil, F., et al. (2017) Changes in Body Composition and Metabolic Profile during Interleukin 6 Inhibition in Rheumatoid Arthritis. Journal of Cachexia, Sarcopenia and Muscle, 8, 639-646. https://doi.org/10.1002/jcsm.12189

  26. 26. Schorr, M., Dichtel, L.E., Gerweck, A.V., et al. (2018) Sex Differences in Body Composition and Association with Cardiometabolic Risk. Biology of Sex Differences, 9, Article No. 28. https://doi.org/10.1186/s13293-018-0189-3

  27. 27. Park, S.W., Goodpaster, B.H., Strotmeyer, E.S., et al. (2007) Accelerated Loss of Skeletal Muscle Strength in Older Adults with Type 2 Diabetes: The Health, Aging, and Body Composition Study. Diabetes Care, 30, 1507-1512. https://doi.org/10.2337/dc06-2537

  28. 28. Park, S.W., Goodpaster, B.H., Lee, J.S., et al. (2009) Excessive Loss of Skeletal Muscle Mass in Older Adults with Type 2 Diabetes. Diabetes Care, 32, 1993-1997. https://doi.org/10.2337/dc09-0264

  29. 29. Lee, C.G., Boyko, E.J., Barrett-Connor, E., et al. (2011) Insulin Sensitizers May Attenuate Lean Mass Loss in Older Men with Diabetes. Diabetes Care, 34, 2381-2386. https://doi.org/10.2337/dc11-1032

  30. 30. Kim, C.H., Kim, H.K., Kim, E.H., et al. (2014) Association between Changes in Body Composition and Risk of Developing Type 2 Diabetes in Koreans. Diabetic Medicine, 31, 1393-1398. https://doi.org/10.1111/dme.12527

  31. 31. 中华医学会骨质疏松和骨矿盐疾病分会. 肌少症共识[J]. 中华骨质疏松和骨矿盐疾病杂志, 2016, 9(3): 215-227.

  32. 32. Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., et al. (2010) Sar-copenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing, 39, 412-423. https://doi.org/10.1093/ageing/afq034

  33. 33. Guerrero, N., Bunout, D., Hirsch, S., et al. (2016) Premature Loss of Muscle Mass and Function in Type 2 Diabetes. Diabetes Research and Clinical Practice, 117, 32-38. https://doi.org/10.1016/j.diabres.2016.04.011

  34. 34. Srikanthan, P. and Karlamangla, A.S. (2011) Relative Muscle Mass Is Inversely Associated with Insulin Resistance and Prediabetes. Findings from the Third National Health and Nu-trition Examination Survey. The Journal of Clinical Endocrinology & Metabolism, 96, 2898-2903. https://doi.org/10.1210/jc.2011-0435

  35. 35. Lee, J.S., Auyeung, T.W., Leung, J., et al. (2010) The Effect of Diabetes Mellitus on Age-Associated Lean Mass Loss in 3153 Older Adults. Diabetic Medicine, 27, 1366-1371. https://doi.org/10.1111/j.1464-5491.2010.03118.x

  36. 36. Santanasto, A.J., Goodpaster, B.H., Kritchevsky, S.B., et al. (2017) Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. The Journals of Gerontology: Series A, 72, 513-519.

  37. 37. Park, S. and Gu, M.O. (2018) Development and Effects of Combined Ex-ercise Program for Older Adults with Sarcopenia Based on Transtheoretical Model. Journal of Korean Academy of Nursing, 48, 656-668. https://doi.org/10.4040/jkan.2018.48.6.656

  38. 38. 彭阳, 王战建. 肥胖相关慢性炎症与2型糖尿病[J]. 临床荟萃, 2016, 31(4): 458-461.

  39. 39. Wu, H. and Ballantyne, C.M. (2017) Skeletal Muscle Inflammation and Insulin Resistance in Obesity. Journal of Clinical Investigation, 127, 43-54. https://doi.org/10.1172/JCI88880

  40. 40. Ali, S. and Garcia, J.M. (2014) Sarcopenia, Cachexia and Aging: diagnosis, Mechanisms and Therapeutic Options—A Mini-Review. Ger-ontology, 60, 294-305. https://doi.org/10.1159/000356760

  41. 41. Gual, P., Le Marchand-Brustel, Y. and Tanti, J.F. (2005) Positive and Negative Regulation of Insulin Signaling through IRS-1 Phosphorylation. Biochimie, 87, 99-109. https://doi.org/10.1016/j.biochi.2004.10.019

  42. 42. Szendroedi, J., Yoshimura, T., Phielix, E., et al. (2014) Role of Diacylglycerol Activation of PKCtheta in Lipid-Induced Muscle Insulin Resistance in Humans. Proceedings of the Na-tional Academy of Sciences of the United States of America, 111, 9597-9602. https://doi.org/10.1073/pnas.1409229111

  43. 43. Zhu, S., Tian, Z., Torigoe, D., et al. (2019) Aging- and Obesi-ty-Related Peri-Muscular Adipose Tissue Accelerates Muscle Atrophy. PLOS ONE, 14, Article ID: e0221366. https://doi.org/10.1371/journal.pone.0221366

  44. 44. Arab, S.Z., Abbasalipourkabir, R., Mohseni, R., et al. (2019) Investigation of Oxidative Stress Markers and Antioxidant Enzymes Activity in Newly Diagnosed Type 2 Diabetes Pa-tients and Healthy Subjects, Association with IL-6 Level. Journal of Diabetes & Metabolic Disorders, 18, 437-443. https://doi.org/10.1007/s40200-019-00437-8

  45. 45. Bitar, M.S., Nader, J., Al-Ali, W., et al. (2018) Hydrogen Sul-fide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understand-ing Sarcopenic Pathophysiology. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 6825452. https://doi.org/10.1155/2018/6825452

  46. 46. Jang, Y.C., Rodriguez, K., Lustgarten, M.S., et al. (2020) Superox-ide-Mediated Oxidative Stress Accelerates Skeletal Muscle Atrophy by Synchronous Activation of Proteolytic Systems. GeroScience, 42, 1579-1591. https://doi.org/10.1007/s11357-020-00200-5

  47. 47. Chhetri, J.K., de Souto, B.P., Fougere, B., et al. (2018) Chronic Inflammation and Sarcopenia: A Regenerative Cell Therapy Perspective. Experimental Gerontology, 103, 115-123. https://doi.org/10.1016/j.exger.2017.12.023

  48. 48. Tazawa, R., Uchida, K., Fujimaki, H., et al. (2019) Elevated Lep-tin LEVELS Induce Inflammation through IL-6 in Skeletal Muscle of Aged Female Rats. BMC Musculoskeletal Disor-ders, 20, Article No. 199. https://doi.org/10.1186/s12891-019-2581-5

  49. 49. Thoma, A. and Lightfoot, A.P. (2018) NF-κB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. In: Xiao, J., Ed., Muscle Atrophy, Vol. 1088, Springer, Singapore, 267-279. https://doi.org/10.1007/978-981-13-1435-3_12

  50. 50. Yamamoto, M. and Sugimoto, T. (2016) Advanced Glycation End Products, Diabetes, and Bone Strength. Current Osteoporosis Reports, 14, 320-326. https://doi.org/10.1007/s11914-016-0332-1

  51. 51. Riuzzi, F., Sorci, G., Sagheddu, R., et al. (2018) RAGE in the Pathophysiology of Skeletal Muscle. Journal of Cachexia, Sarcopenia and Muscle, 9, 1213-1234. https://doi.org/10.1002/jcsm.12350

  52. 52. Alves, F.D., Souza, G.C., Aliti, G.B., et al. (2015) Dynamic Changes in Bioelectrical Impedance Vector Analysis and Phase Angle in Acute Decompensated Heart Failure. Nutrition, 31, 84-89. https://doi.org/10.1016/j.nut.2014.05.004

  53. 53. Pena, N.F., Mauricio, S.F., Rodrigues, A., et al. (2019) Association between Standardized Phase Angle, Nutrition Status, and Clinical Outcomes in Surgical Cancer Patients. Nutrition in Clinical Practice, 34, 381-386. https://doi.org/10.1002/ncp.10110

  54. 54. de Blasio, F., Di Gregorio, A., de Blasio, F., et al. (2018) Malnutrition and Sarcopenia Assessment in Patients with Chronic Obstructive Pulmonary Disease According to International Diagnostic Criteria, and Evaluation of Raw BIA Variables. Respiratory Medicine, 134, 1-5. https://doi.org/10.1016/j.rmed.2017.11.006

  55. 55. 周红, 邓明珍, 李亚玲, 缪艳, 罗稀, 韩泳涛. 初诊食管癌患者生物电阻抗相位角与营养状况的关系研究[J]. 肿瘤预防与治疗, 2020, 33(9): 775-780.

  56. 56. 沈泓妤, 方乐平, 许菊青, 王琳, 樊卫飞. 相位角水平与老年晚期肺癌病人的营养指标及预后的相关性研究[J]. 实用老年医学, 2020, 34(10): 1038-1041.

  57. 57. 肖慧娟, 张明, 齐玉梅, 韩涛, 王昕. 相位角与原发性肝癌患者营养状况及临床结局的关系[J]. 肿瘤防治研究, 2021, 48(5): 503-507.

  58. 58. 程玉婷, 徐蕾, 姜金霞, 潘丽娜. 慢性阻塞性肺疾病急性加重期患者相位角与营养状况及住院时间的相关性研究[J]. 中国临床医生杂志, 2021, 49(10): 1177-1180.

  59. 59. 肖晓芬, 王晓慧, 王静, 彭清平. 老年慢性肾脏病4-5期非透析患者相位角及相关因素[J]. 中国老年学杂志, 2021, 41(10): 2114-2117.

  60. 60. Yates, S.J., Lyerly, S., Manuel, M., et al. (2020) The Prognostic Value of Standardized Phase Angle in Adults with Acute Leukemia: A Prospective Study. Cancer Medicine 9, 2403-2413. https://doi.org/10.1002/cam4.2835

  61. 61. Morisawa, T., Saitoh, M., Takahashi, T., et al. (2021) Association of Phase Angle with Hospital-Acquired Functional Decline in Older Patients Undergoing Cardiovascular Surgery. Nutrition, 91-92, Article ID: 111402. https://doi.org/10.1016/j.nut.2021.111402

  62. 62. Roccamatisi, L., Gianotti, L., Paiella, S., et al. (2021) Preoperative Standardized Phase Angle at Bioimpedance Vector Analysis Predicts the Outbreak of Antimicrobial-Resistant Infections after Major Abdominal Oncologic Surgery: A Prospective Trial. Nutrition, 86, Article ID: 111184. https://doi.org/10.1016/j.nut.2021.111184

  63. 63. Akamatsu, Y., Kusakabe, T., Arai, H., et al. (2022) Phase Angle from Bioelectrical Impedance Analysis Is a Useful Indicator of Muscle Quality. Journal of Cachexia, Sarcopenia and Muscle, 13, 180-189. https://doi.org/10.1002/jcsm.12860

  64. 64. Andreoli, A., Garaci, F., Cafarelli, F.P., et al. (2016) Body Composition in Clinical Practice. European Journal of Radiology, 85, 1461-1468. https://doi.org/10.1016/j.ejrad.2016.02.005

  65. 65. Thibault, R. and Pichard, C. (2012) The Evaluation of Body Composition: A Useful Tool for Clinical Practice. Annals of Nutrition and Metabolism, 60, 6-16. https://doi.org/10.1159/000334879

  66. NOTES

    *通讯作者。

期刊菜单