Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 80485 , 7 pages
10.12677/ACM.2024.142348

MIF在非酒精性脂肪性肝病中的研究进展

阿依古扎丽·阿不力提浦1,2*,霍梦含1,2*,杜国利1,2#

1新疆医科大学第一附属医院内分泌科,新疆 乌鲁木齐

2中亚地区高发疾病发病机制防治国家重点实验室,新疆 乌鲁木齐

收稿日期:2024年1月5日;录用日期:2024年1月31日;发布日期:2024年2月5日

摘要

随着代谢性疾病患病率逐渐的增加,非酒精性脂肪性肝病(NAFLD)正在成为肝脏相关疾病和死亡的主要原因,目前NAFLD全球患病率约为30%,但目前还没有FDA批准用于治疗NAFLD的药物。NAFLD疾病的谱系从肝脏脂肪变性延伸到非酒精性脂肪性肝炎(NASH)。据统计大约20%的NAFLD患者可进展为NASH,从而进一步发展为肝纤维化、肝硬化或肝细胞癌(HCC)。继发于NASH的肝硬化已成为肝移植的第二大适应症,其患病率预计将逐年上升,并在未来超过所有其他移植适应症。因此,NAFLD已成为一个全球性的健康问题,造成了重大的社会经济负担。巨噬细胞迁移抑制因子(MIF)是一种多效性细胞因子,通过巨噬细胞对炎症的反应,抑制巨噬细胞的迁移,促进细胞因子的积累、增殖、活化和分泌,从而在炎症、自身免疫性疾病和肿瘤等疾病的发病机制中发挥关键作用。在过去的30年中,即使在肝病管理取得重大进展之后,全世界仍有数百万人患有急性或慢性肝病。越来越多的研究发现MIF在代谢相关性肝病中起着非常重要的作用。因此,本文旨在全面综述MIF作为多效性细胞因子在NAFLD中的作用、分子机制及临床证据,以期为今后的相关研究提供参考。

关键词

非酒精性脂肪性肝病(NAFLD),巨噬细胞迁移抑制因子(MIF),非酒精性脂肪性肝炎(NASH),脂质代谢紊乱,炎症

Research Progress of MIF in Nonalcoholic Fatty Liver Disease

Ayiguzhali·Abulitipu1,2*, Menghan Huo1,2*, Guoli Du1,2#

1Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

2State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi Xinjiang

Received: Jan. 5th, 2024; accepted: Jan. 31st, 2024; published: Feb. 5th, 2024

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease worldwide, affecting 30% of the world’s population. Cirrhosis secondary to nonalcoholic steatohepatitis (NASH) has become the second leading indication for liver transplantation, and its prevalence is expected to increase annually and surpass all other transplant indications in the future. As a result, NAFLD has become a global health problem with a significant socioeconomic burden. Macrophage migrate on inhibitory factor (MIF) is a pleiotropic cytokine that plays a key role in the pathogenesis of diseases such as inflammation, autoimmune diseases, and tumors by inhibiting macrophage migration and promoting cytokine accumulation, proliferation, activation, and secretion through macrophage response to inflammation. Over the past 30 years, millions of people around the world have suffered from acute or chronic liver disease, even after significant advances in liver disease management.

Keywords:Nonalcoholic Fatty Liver Disease (NAFLD), Macrophage Migration Inhibitory Factor (MIF), Nonalcoholic Steatohepatitis (NASH), Disorders of Lipid Metabolism, Inflammation

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着代谢性疾病患病率逐渐的增加,非酒精性脂肪性肝病(NAFLD)正在成为肝脏相关疾病和死亡的主要原因,目前NAFLD全球患病率约为30%,但目前还没有FDA批准用于治疗NAFLD的药物 [1] [2] 。NAFLD疾病的谱系从肝脏脂肪变性延伸到非酒精性脂肪性肝炎(NASH)。据统计大约20%的NAFLD患者可进展为NASH,从而进一步发展为肝纤维化、肝硬化或肝细胞癌(HCC) [3] 。继发于NASH的肝硬化已成为肝移植的第二大适应症,其患病率预计将逐年上升,并在未来超过所有其他移植适应症 [4] 。作为肝病比较早期的疾病表现,单纯的NAFLD不会引起严重的身体反应,但由NAFLD进展恶化为更严重的NASH、肝纤维化、肝硬化甚至肝癌则是一大难题。目前在临床阶段表现优秀的靶点大多集中在对代谢的调控,如THR-β激动剂和GLP-1激动剂等,但仍没有用于治疗NASH的特批药物。对减重效果显著的GLP-1激动剂也在最近报道出,可能会增加胰腺炎、肠梗阻和胃轻瘫的风险 [4] 。因此,探索NAFLD疾病的发病机制,开发更为有效的治疗方法十分重要。巨噬细胞迁移抑制因子(MIF)是一种多效性细胞因子,通过巨噬细胞对炎症的反应,抑制巨噬细胞的迁移,促进细胞因子的积累、增殖、活化和分泌,从而在炎症、自身免疫性疾病和肿瘤等疾病的发病机制中发挥关键作用。越来越多的研究发现MIF在代谢相关性肝病中起着非常重要且复杂的作用。本文旨在全面综述MIF作为多效性细胞因子在NAFLD中的作用、分子机制及临床证据,以期为今后的相关研究提供参考。

2. NAFLD及NASH概述

NASH的发病是一个复杂的过程,其发病机制主要归因于三个方面的系统紊乱:脂肪代谢、炎症、纤维化。作为一种系统性的疾病,NASH中肠道和脂肪组织也从多方面影响其进程。就基础的脂肪代谢而言,肝脏中脂肪来源主要有三种方式:(1) 脂肪组织分泌到血清中的游离的脂肪酸可以直接进入肝脏。因此脂肪细胞的功能障碍是NAFLD的一大诱因,对于先天性脂肪营养不良症的患者,由于其脂肪组织的缺乏,迫使肝脏储存多余的脂肪酸,导致严重的胰岛素抵抗;(2) 胃肠道从饮食中吸收从头合成(de novo lipogenesis, DNL)的脂质。食物中的单糖和双糖,特别是广泛存在的果糖,蔗糖和高果糖玉米糖能够促进肝脏的脂肪从头合成,进一步加剧NAFLD的进展;(3) 肝脏自身的脂肪酸池(fatty acid pool)循环生成的脂肪酸。通过以上方式产生的脂肪酸主要通过线粒体的β-氧化和再酯化方式转化为甘油三酯(TG)代谢,以降低肝脏中过多的脂肪酸的堆积。其中再酯化形成甘油三酯会进一步代谢为极低密度脂蛋白(VLDL),分泌到肝脏外或形成脂滴汇入脂肪酸池被肝脏重新利用 [5] 。当肝脏中脂肪酸代谢负荷时,过多的脂肪酸堆积导致脂毒性,进一步诱发内质网应激、氧化应激和炎症,这些应激活动导致肝细胞的凋亡以及多种炎症因子和趋化因子的分泌,进一步活化肝脏中的免疫细胞(Kuffer cell)和肝星状细胞(HSC),促进肝脏炎症环境的形成。同时,星状细胞的活化使得肌成纤维细胞产生更多的胶原,促进纤维化的形成 [5] 。另外,骨骼肌的胰岛素抵抗通过将摄入的葡萄糖从骨骼肌糖原合成转移到肝脏,促进肝脏的DNL和高甘油三酯血症,进一步促进NAFLD的发展。

目前NASH的药物开发也主要从脂肪代谢、炎症、纤维化这三方面着手,针对特定的单个或多个靶点调节疾病进程。代谢方面的干预包括影响胰岛素敏感度、肝脏脂肪从头合成、线粒体对脂肪酸的利用以及通过肝–肠轴影响胆汁酸循环等;细胞损伤和炎症方面主要靶向炎症细胞的浸润和相关的炎症信号通路;纤维化方面则主要通过减少胶原的形成和靶向胶原的降解来实现 [6] 。此外,由于NASH疾病的复杂性,联合用药可能是未来NASH的标准疗法。通过把几个机理互补的药物在一起用,可能提高其有效率,同时降低其副作用(通过调整每个单药的剂量)。联合用药的原则包括:(1) 将机制不同的药物进行联合,如ACC1/2和DGAT2的抑制剂联用。(2) 根据疾病不同表征进行联用,如FXR激动剂和THR-β激动剂。(3) 小分子联用,如FXR激动剂和CCR2/5抑制剂(tropifexor + cenicrivorioc) (Pedrosa et al., 2020)。(4) 小分子和大分子的联用,如FXR激动剂和ACC抑制剂加上GLPR激动剂 [7] 。(5) 大分子的双靶点药物,LY3298176是GIP和GLP1受体的双激动剂,目前已被用来治疗2型糖尿病 [5] 。NASH作为一类复杂的系统性的疾病,联合用药的收益风险比例可能更高。

3. MIF概述

巨噬细胞迁移抑制剂(MIF)作为先天免疫信号通路的上游调节因子,在促炎和致癌过程中发挥多功能作用 [5] [8] 。MIF最初被认为是一种仅由免疫细胞产生的细胞因子,但越来越多的研究表明,MIF是一种几乎普遍表达的蛋白质 [9] ,在肝脏的肝细胞和非实质细胞中表达 [10] 。不同的MIF信号转导和靶细胞效应是由与受体的高亲和力相互作用介导的 [9] [11] 。CD74 (MHC II类不变链,Ii)作为MIF的高亲和力受体,在不同的疾病背景下具有多种生物学功能。CD74调节T细胞和B细胞发育、树突状细胞(DC)运动、巨噬细胞炎症和胸腺选择 [12] 。虽然CD74在细胞内缺乏信号转导结构域,但它可以通过蛋白多糖CD44介导下游信号传导 [9] 。MIF的促炎、抗凋亡和促肿瘤等作用不仅涉及MIF介导的CD74依赖性细胞外信号调节激酶(ERK)和丝裂原活化蛋白激酶(MAPK)信号传导的调节,还包括血浆磷脂酶A2 (cPLA2)的激活、P53依赖性基因的抑制、肿瘤相关蛋白c-Jun激活结构域结合蛋白1 (JAB1)活性的调节,此外,还涉及CD74和上游激酶Src信号传导介导的蛋白激酶B (Akt)通路和磷脂酰肌醇-3激酶(PI3K) [13] [14] 。MIF激活MAPK信号包括持续激活ERK1/2、cPLA2、环氧合酶2 (COX2)和前列腺素E2 (PGE2) [15] ,抑制p53依赖性基因的表达,从而抑制与氧化还原应激相关的细胞凋亡 [16] 。MIF可以通过PI3K依赖性通路快速直接作用于Akt信号通路,也可以通过自分泌作用促进Akt信号通路。值得注意的是,MIF介导的Akt激活和细胞凋亡抑制可以独立于p53发生 [16] 。MIF可以抵消糖皮质激素对巨噬细胞脂多糖促炎细胞因子分泌的抑制作用,增加促炎细胞因子如白细胞介素-1 (IL-1)、白细胞介素-2 (IL-2)、白细胞介素-6 (IL-6)、白细胞介素-8 (IL-8)、干扰素c (IFN-c)和肿瘤坏死因子α (TNF-α)的分泌 [17] 。MIF的趋化因子功能使其能够在炎症性疾病的细胞募集中发挥作用。该功能基于与CXC家族趋化因子受体2和4 (CXCR2和CXCR4)的高亲和力非同源相互作用 [11] [18] 。

4. MIF影响NAFLD的可能机制

脂质代谢紊乱、炎症、纤维化均NAFLD发病过程中起关键作用。脂质代谢紊乱在NAFLD的进展过程中起关键的始动作用,过多的TG在肝脏内聚集,导致肝脏脂质沉积。肝脏脂质沉积与胰岛素抵抗、氧化应激、线粒体功能障碍、肠道菌群失调以及遗传易感性等多因素共同参与疾病的发展进程,最终诱发NASH、肝纤维化甚至肝硬化、肝癌等肝脏疾病,造成对肝脏的多重打击 [5] 。本文从MIF与肝脏脂质代谢及肝细胞炎症损伤、肝纤维化、肝癌3个方面的关系分别阐述MIF影响非酒精性脂肪性肝病的可能机制。

4.1. MIF与肝脂质代谢及肝细胞炎症损伤

MIF在能量代谢中起重要作用,在脂肪组织和肝脏等代谢活性组织中表达 [19] 。抑制或敲低MIF或其受体CD74可以改善葡萄糖耐量和胰岛素抵抗,甚至可以改善高脂肪饮食(HFD)诱导的肝脂肪变性 [20] 。肥胖期间MIF浓度的调节可能有助于控制肥胖相关疾病的发展 [21] 。Finucane及其同事建立了脂肪肝小鼠模型,发现MIF缺陷小鼠的甘油三酯含量,体重和肝脏重量明显低于对照组。他们还证明,MIF缺乏可降低空腹血浆丙氨酸氨基转移酶(ALT)水平和脂肪组织炎症,从而减少肝损伤 [21] 。内脏白色脂肪组织(vWAT)中的MIF mRNA水平与体脂百分比呈正相关 [22] 。Lars Verschuren等人证明,MIF缺乏虽然不影响肥胖和脂质危险因素,但特异性地减少了肝脏中的WAT和炎症,导致MIF敲除小鼠的血清淀粉样蛋白A (SAA)和CRP水平显着降低 [23] 。巨噬细胞M1、M2极化在NAFLD的发病机制和治疗靶点中起重要作用。MIF在肥胖相关疾病发生过程中可促进M1巨噬细胞的极化和积累,并延缓肥胖相关的脂肪组织炎症 [20] 。

尽管许多研究支持MIF在NAFLD发展中的促炎作用,但也存在相互矛盾的结论,即MIF对体重增加或脂肪组织扩张的分布没有直接影响。也就是说,仅缺乏MIF不足以改变与HFD诱导的肥胖相关的葡萄糖稳态或炎症变化 [24] 。Conine等人发现无论是否缺乏MIF,HFD诱导的小鼠体重增加或肝脂积累没有差异 [24] 。Akyildiz等人研究了MIF-173 G/C基因多态性对NAFLD的影响,发现健康对照组和NAFLD患者在基因型或C等位基因频率上没有差异。当受试者根据NAFLD评分(脂肪变性/交界性NASH/NASH)或纤维化分期进行分层时,NAFLD患者组的基因型或C等位基因频率没有差异 [25] 。

与上述结论不同的是,最近有研究表明MIF对NAFLD或NASH具有潜在的保护作用 [26] 。红景天是一种天然草本植物 [27] ,红景天苷作为其活性成分之一,可以通过调节脂质积累和炎症反应对NAFLD或NASH发挥保护作用 [27] 。在HFD小鼠中,补充红景天可增强肌肉组织中的自噬,诱导与运动相当的益处。Liu等人证明,摄入红景天可以通过促进MIF/AMPK (AMP活化蛋白激酶)信号通路及其下游脂肪吞噬作用和脂质代谢来减少脂质积累 [28] 。

4.2. MIF与肝纤维化

研究发现,在NAFLD的进展中,MIF有助于肝纤维化的发生。在NASH患者中,纤维化标志物的表达与MIF、其受体CD74和自然杀伤T (NKT)I型细胞的标志物密切相关 [29] 。事实上,NKT细胞积累已被证明在慢性病毒性肝炎和原发性胆汁性肝硬化中具有促纤维化作用,在慢性四氯化碳治疗模型中具有抗纤维化作用 [30] 。这些不同的特征可能部分是由于NKT子集的明显优势。NKT细胞最近被分为两个亚群,I型和II型NKT细胞。I型NKT细胞主要发挥炎症功能,其促纤维化反应和刺猬(Hh)通路、骨桥蛋白表达以及中性粒细胞和单核细胞的干扰素γ依赖性募集与肝星状细胞的活化有关 [31] 。此外,I型NKT细胞通过FAS配体(FASL)诱导肝细胞凋亡,进一步加重肝损伤。相比之下,II型NKT细胞保护肝脏免受损害,并逆转I型NKT的促炎作用 [32] 。在使用基于蛋氨酸和胆碱缺乏饮食(MCD)的肝炎模型的研究中,流式细胞术分析表明,MIF基因的缺陷导致肝内I型NKT细胞水平显着降低。用重组小鼠MIF刺激原代NKT细胞,发现与I型NKT细胞表型相关的基因表达显著增加。结果表明,MIF使NKT细胞的极化易向促炎和促纤维化I型表型转变 [29] [32] 。MIF会加剧NASH诱导的与MCD相关的纤维化 [29] 。Akyildiz等人发现,与非NAFLD患者相比,NAFLD患者肝活检中的MIF表达增加。与单纯脂肪变性患者相比,NASH患者肝细胞和单核细胞(MNCs)的MIF染色也有所增加。虽然肝细胞MIF表达与纤维化阶段无关,但MNC MIF染色阳性与纤维化风险增加3.6倍相关 [25] 。

然而,在肝纤维化的发生和发展中,MIF也具有复杂的、部分的甚至双重作用,在考虑将MIF作为慢性肝病患者治疗干预的靶点时具有特别重要的意义。例如,Heinrichs D等人发现在肝毒素诱导的肝纤维化和高脂肪饮食诱导的脂肪肝变性中MIF具有抗纤维化作用 [33] 。MIF通过CD74/AMP激酶信号通路对肝星状细胞(HSC)活化发挥直接抑制作用,该功能是其在肝毒素诱导的纤维化模型中起保肝作用的关键驱动因素。此外,肝细胞中CD74/AMP激酶信号转导的MIF激活改善了HFD诱导的脂肪肝变性 [34] [35] 。在特定情况下,特定的肝内MIF受体表达模式可能是不同疾病模型中MIF介导结果的关键决定因素。然而,这需要进一步的调查和研究,以确定有效和稳定的参数来预测MIF靶向策略(激动剂或拮抗剂)的结果,为治疗不同病因和临床实践阶段的慢性肝损伤个体患者提供临床依据。

5. 小结

NAFLD是代谢综合征在肝脏的表现,目前尚无较好的早期检测方法及有效的治疗手段。相关动物实验及人体研究发现MIF与肝脂肪变性之间密切相关,是NAFLD的危险因素,与肝脏脂代谢异常、炎症损伤及肝纤维化的进展均有一定的相关性。但也有研究表明在NAFLD的发生和发展中,MIF具有保护作用,这在考虑将MIF作为慢性肝病患者治疗干预的靶点时具有特别重要的意义。目前对于该细胞因子与发病机制的研究还不十分明确,该领域已发表的研究成果多以小样本的横断面研究为主,可能存在偏倚及不能完全排除混杂因素的影响,在未来需要更多的基础实验和临床研究来评估MIF在NAFLD中的调控机制、诊断甚至治疗中的作用。

文章引用

阿依古扎丽·阿不力提浦,霍梦含,杜国利. MIF在非酒精性脂肪性肝病中的研究进展
Research Progress of MIF in Nonalcoholic Fatty Liver Disease[J]. 临床医学进展, 2024, 14(02): 2483-2489. https://doi.org/10.12677/ACM.2024.142348

参考文献

  1. 1. Han, S.K., Baik, S.K. and Kim, M.Y. (2023) Non-Alcoholic Fatty Liver Disease: Definition and Subtypes. Clinical and Molecular Hepatology, 29, S5-S16. https://doi.org/10.3350/cmh.2022.0424

  2. 2. Rong, L., Zou, J., Ran, W., Qi, X., Chen, Y., Cui, H. and Guo, J, (2022) Advancements in the Treatment of Non-Alcoholic Fatty Liver Disease, (NAFLD). Frontiers in Endocrinology (Lausanne), 13, Article ID: 1087260. https://doi.org/10.3389/fendo.2022.1087260

  3. 3. Zhou, J., Zhou, F., Wang, W., Zhang, X.-J., Ji, Y.-X., Zhang, P., She, Z.-G., Zhu, L., Cai, J. and Li, H. (2020) Epidemiological Features of NAFLD from 1999 to 2018 in China. Hepa-tology, 71, 1851-1864. https://doi.org/10.1002/hep.31150

  4. 4. Sodhi, M., Rezaeianzadeh, R., Kezouh, A. and Etminan, M. (2023) Risk of Gastrointestinal Adverse Events Associated with Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA, 330, 1795-1797. https://doi.org/10.1001/jama.2023.19574

  5. 5. Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. https://doi.org/10.1038/s41591-018-0104-9

  6. 6. Vuppalanchi, R., Noureddin, M., Alkhouri, N. and Sanyal, A.J. (2021) Therapeutic Pipeline in Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 18, 373-392. https://doi.org/10.1038/s41575-020-00408-y

  7. 7. Alkhouri, N., Herring, R., Kabler, H., Kayali, Z., Has-sanein, T., Kohli, A., Huss, R.S., Zhu, Y., Billin, A.N., Damgaard, L.H., Buchholtz, K., Kjær, M.S., Balendran, C., My-ers, R.P., Loomba, R. and Noureddin, M. (2022) Safety and Efficacy of Combination Therapy with Semaglutide, Ci-lofexor and Firsocostat in Patients with Non-Alcoholic Steatohepatitis: A Randomised, Open-Label Phase II Trial. Jour-nal of Hepatology, 77, 607-618. https://doi.org/10.1016/j.jhep.2022.04.003

  8. 8. Song, S., Xiao, Z., Dekker, F.J., Poelarends, G.J. and Melgert, B.N. (2022) Macrophage Migration Inhibitory Factor Family Proteins Are Multitasking Cytokines in Tissue Injury. Cellular and Molecular Life Sciences, 79, Article No. 105. https://doi.org/10.1007/s00018-021-04038-8

  9. 9. Leng, L., Metz, C.N., Fang, Y., Xu, J., Donnelly, S., Baugh, J., Delohery, T., Chen, Y., Mitchell, R.A. and Bucala, R. (2003) MIF Sig-nal Transduction Initiated by Binding to CD74. Journal of Experimental Medicine, 197, 1467-1476. https://doi.org/10.1084/jem.20030286

  10. 10. Barnes, M.A., McMullen, M.R., Roychowdhury, S., Pisano, S.G., Liu, X., Stavitsky, A.B., Bucala, R. and Nagy, L.E. (2013) Macrophage Migration Inhibitory Factor Contributes to Etha-nol-Induced Liver Injury by Mediating Cell Injury, Steatohepatitis, and Steatosis. Hepatology, 57, 1980-1991. https://doi.org/10.1002/hep.26169

  11. 11. Bernhagen, J., Krohn, R., Lue, H., Gregory, J.L., Zernecke, A., Koenen, R.R., Dewor, M., Georgiev, I., Schober, A., Leng, L., Kooistra, T., Fingerle-Rowson, G., Ghezzi, P., Kleemann, R., McColl, S.R., Bucala, R., Hickey, M.J. and Weber, C. (2007) MIF Is a Noncognate Ligand of CXC Chemokine Recep-tors in Inflammatory and Atherogenic Cell Recruitment. Nature Medicine, 13, 587-596. https://doi.org/10.1038/nm1567

  12. 12. Su, H., Na, N., Zhang, X. and Zhao, Y. (2017) The Biological Function and Significance of CD74 in Immune Diseases. Inflammation Research, 66, 209-216. https://doi.org/10.1007/s00011-016-0995-1

  13. 13. Lue, H., Thiele, M., Franz, J., Dahl, E., Speckgens, S., Leng, L., Fingerle-Rowson, G., Bucala, R., Lüscher, B. and Bernhagen, J. (2007) Macrophage Migration Inhibitory Factor, (MIF) Promotes Cell Survival by Activation of the Akt Pathway and Role for CSN5/JAB1 in the Control of Autocrine MIF Activity. Oncogene, 26, 5046-5059. https://doi.org/10.1038/sj.onc.1210318

  14. 14. Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., McDonald, C., Chen, Z., Murphy, J.W., Lolis, E., Noble, P., Knudson, W. and Bucala, R. (2006) CD44 Is the Signaling Component of the Macrophage Migration Inhibitory Factor-CD74 Receptor Complex. Immunity, 25, 595-606. https://doi.org/10.1016/j.immuni.2006.08.020

  15. 15. Mitchell, R.A., Metz, C.N., Peng, T. and Bucala, R. (1999) Sustained Mitogen-Activated Protein Kinase, (MAPK) and Cytoplasmic Phospholipase A2 Activation by Macrophage Migration Inhibitory Factor, (MIF). Regulatory Role in Cell Proliferation and Glucocorticoid Action. Journal of Biologi-cal Chemistry, 274, 18100-18106. https://doi.org/10.1074/jbc.274.25.18100

  16. 16. Mitchell, R.A., Liao, H., Chesney, J., Fingerle-Rowson, G., Baugh, J., David, J. and Bucala, R. (2002) Macrophage Migration Inhibitory Factor, (MIF) Sustains Macrophage Proinflamma-tory Function by Inhibiting P53: Regulatory Role in the Innate Immune Response. Proceedings of the National Academy of Sciences of the United States of America, 99, 345-350. https://doi.org/10.1073/pnas.012511599

  17. 17. Bach, J.-P., Rinn, B., Meyer, B., Dodel, R. and Bacher, M. (2008) Role of MIF in Inflammation and Tumorigenesis. Oncology, 75, 127-133. https://doi.org/10.1159/000155223

  18. 18. Weber, C., Kraemer, S., Drechsler, M., Lue, H., Koenen, R.R., Kapurniotu, A., Zernecke, A. and Bernhagen, J. (2008) Structural Determinants of MIF Functions in CXCR2-Mediated Inflammatory and Atherogenic Leukocyte Recruitment. Proceedings of the National Academy of Sciences of the United States of America, 105, 16278-16283. https://doi.org/10.1073/pnas.0804017105

  19. 19. Morrison, M.C. and Kleemann, R. (2015) Role of Macrophage Mi-gration Inhibitory Factor in Obesity, Insulin Resistance, Type 2 Diabetes, and Associated Hepatic Co-Morbidities: A Comprehensive Review of Human and Rodent Studies. Frontiers in Immunology, 6, Article No. 308. https://doi.org/10.3389/fimmu.2015.00308

  20. 20. Chan, P.-C., Wu, T.-N., Chen, Y.-C., Lu, C.-H., Wabitsch, M., Tian, Y.-F. and Hsieh, P.-S. (2018) Targetted Inhibition of CD74 Attenuates Adipose COX-2-MIF-Mediated M1 Mac-rophage Polarization and Retards Obesity-Related Adipose Tissue Inflammation and Insulin Resistance. Clinical Science (London), 132, 1581-1596. https://doi.org/10.1042/CS20180041

  21. 21. Finucane, O.M., Reynolds, C.M., McGillicuddy, F.C., Harford, K.A., Morrison, M., Baugh, J. and Roche, H.M. (2014) Macrophage Migration Inhibitory Factor Deficiency Ameliorates High-Fat Diet Induced Insulin Resistance in Mice with Reduced Adipose Inflammation and Hepatic Steatosis. PLOS ONE, 9, e113369. https://doi.org/10.1371/journal.pone.0113369

  22. 22. Alvehus, M., Burén, J., Sjöström, M., Goedecke, J. and Olsson, T. (2010) The Human Visceral Fat Depot Has a Unique Inflammatory Profile. Obesity (Silver Spring), 18, 879-883. https://doi.org/10.1038/oby.2010.22

  23. 23. Verschuren, L., Kooistra, T., Bernhagen, J., Voshol, P.J., Ouwens, D.M., Van Erk, M., De Vries-Van, Der Weij, J., Leng, L., Van Bockel, J.H., Van Dijk, K.W., Fingerle-Rowson, G., Bucala, R. and Kleemann, R. (2009) MIF Deficiency Reduces Chronic Inflammation in White Adipose Tissue and Impairs the De-velopment of Insulin Resistance, Glucose Intolerance, and Associated Atherosclerotic Disease. Circulation Research, 105, 99-107. https://doi.org/10.1161/CIRCRESAHA.109.199166

  24. 24. Conine, S.J. and Cross, J.V. (2014) MIF Deficiency Does Not Alter Glucose Homeostasis or Adipose Tissue Inflammatory Cell Infiltrates During Diet-Induced Obesity. Obesity (Silver Spring), 22, 418-425. https://doi.org/10.1002/oby.20555

  25. 25. Akyildiz, M., Gunsar, F., Nart, D., Sahin, O., Yilmaz, F., Akay, S., Ersoz, G., Karasu, Z., Ilter, T., Batur, Y., Berdeli, A. and Akarca, U. (2010) Macrophage Migration Inhibitory Factor Expres-sion and MIF Gene-173 G/C Polymorphism in Nonalcoholic Fatty Liver Disease. European Journal of Gastroenterolo-gy & Hepatology, 22, 192-198. https://doi.org/10.1097/MEG.0b013e328331a596

  26. 26. Moon, H.Y., Song, P., Choi, C.S., Ryu, S.H. and Suh, P.-G. (2013) Involvement of Exercise-Induced Macrophage Migration Inhibitory Factor in the Prevention of Fatty Liver Disease. Journal of Endocrinology, 218, 339-348. https://doi.org/10.1530/JOE-13-0135

  27. 27. Hu, M., Zhang, D., Xu, H., Zhang, Y., Shi, H., Huang, X., Wang, X., Wu, Y. and Qi, Z. (2021) Salidroside Activates the AMP-Activated Protein Kinase Pathway to Suppress Nonalcoholic Steatohepatitis in Mice. Hepatology, 74, 3056- 3073. https://doi.org/10.1002/hep.32066

  28. 28. You, B., Dun, Y., Fu, S., Qi, D., Zhang, W., Liu, Y., Qiu, L., Xie, M. and Liu, S. (2021) The Treatment of Rhodiola Mimics Exercise to Resist High-Fat Diet-Induced Muscle Dysfunction via Sirtuin1-Dependent Mechanisms. Frontiers in Pharmacology, 12, Arti-cle ID: 646489. https://doi.org/10.3389/fphar.2021.646489

  29. 29. Heinrichs, D., Brandt, E.F., Fischer, P., Köhncke, J., Wirtz, T.H., Guldiken, N., Djudjaj, S., Boor, P., Kroy, D., Weiskirchen, R., Bucala, R., Wasmuth, H.E., Strnad, P., Trautwein, C., Bernhagen, J. and Berres, M.-L. (2021) Unexpected Pro-Fibrotic Effect of MIF in Non-Alcoholic Steato-hepatitis Is Linked to a Shift in NKT Cell Populations. Cells, 10, Article No. 252. https://doi.org/10.3390/cells10020252

  30. 30. Park, O., Jeong, W.-I., Wang, L., Wang, H., Lian, Z.-X., Gershwin, M.E. and Gao, B. (2009) Diverse Roles of Invariant Natural Killer T Cells in Liver Injury and Fibrosis Induced by Car-bon Tetrachloride. Hepatology, 49, 1683-1694. https://doi.org/10.1002/hep.22813

  31. 31. Syn, W.-K., Agboola, K.M., Swiderska, M., Michelotti, G.A., Liaskou, E., Pang, H., Xie, G., Philips, G., Chan, I.S., Karaca, G.F., Pereira, T.A., Chen, Y., Mi, Z., Kuo, P.C., Choi, S.S., Guy, C.D., Abdelmalek, M.F. and Diehl, A.M. (2012) NKT-Associated Hedgehog and Osteopontin Drive Fibrogenesis in Non-Alcoholic Fatty Liver Disease. Gut, 61, 1323-1329. https://doi.org/10.1136/gutjnl-2011-301857

  32. 32. Kumar, V. (2013) NKT-Cell Subsets: Promoters and Protectors in Inflammatory Liver Disease. Journal of Hepatology, 59, 618-620. https://doi.org/10.1016/j.jhep.2013.02.032

  33. 33. Heinrichs, D., Berres, M.-L., Coeuru, M., Knauel, M., Nellen, A., Fischer, P., Philippeit, C., Bucala, R., Trautwein, C., Wasmuth, H.E. and Bernhagen, J. (2014) Protective Role of Macrophage Migration Inhibitory Factor in Nonalcoholic Steatohepatitis. The FASEB Journal, 28, 5136-5147. https://doi.org/10.1096/fj.14-256776

  34. 34. Heinrichs, D., Knauel, M., Offermanns, C., Berres, M.-L., Nellen, A., Leng, L., Schmitz, P., Bucala, R., Trautwein, C., Weber, C., Bernhagen, J. and Wasmuth, H.E. (2011) Macrophage Mi-gration Inhibitory Factor, (MIF) Exerts Antifibrotic Effects in Experimental Liver Fibrosis via CD74. Proceedings of the National Academy of Sciences of the United States of America, 108, 17444-17449. https://doi.org/10.1073/pnas.1107023108

  35. 35. Thuy, L.T.T. and Kawada, N. (2012) Antifibrotic Role of Macro-phage Migration Inhibitory Factor: Discovery of an Unexpected Function. Hepatology, 55, 1295-1297. https://doi.org/10.1002/hep.25605

  36. NOTES

    *这些作者对本文的贡献相同。

    #通讯作者。

期刊菜单