Advances in Clinical Medicine
Vol. 11  No. 09 ( 2021 ), Article ID: 45295 , 7 pages
10.12677/ACM.2021.119597

活性氧在眼科疾病的研究现状和进展

张雯洁1,2,3,刘静雯3,卢怡洁3,秦波1,3*

1暨南大学,广东 广州

2暨南大学附属第一医院眼科,广东 广州

3暨南大学附属深圳爱尔眼科医院,广东 深圳

收稿日期:2021年8月14日;录用日期:2021年9月6日;发布日期:2021年9月18日

摘要

活性氧(reactive oxygen species, ROS)是在氧化磷酸化过程中产生的,在细胞及组织的增殖、分化及凋亡等方面发挥着重要作用。大量研究表明,ROS与视网膜母细胞瘤、葡萄膜黑色素瘤、年龄相关性黄斑变性、年龄相关性白内障、干眼症、翼状胬肉等眼部相关疾病的发生、发展密切相关。本文主要针对ROS的作用机制及在眼部相关疾病中的研究现况进行阐述,为进一步研究眼部相关疾病及治疗提供参考依据。

关键词

视网膜母细胞瘤,年龄相关性白内障,年龄相关性黄斑变性,活性氧,眼科疾病

Research Status and Progress of Reactive Oxygen Species in Ophthalmic Diseases

Wenjie Zhang1,2,3, Jingwen Liu3, Yijie Lu3, Bo Qin1,3*

1Jinan University, Guangzhou Guangdong

2Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou Guangdong

3Shenzhen Aier Eye Hospital Affiliated to Jinan University, Shenzhen Guangdong

Received: Aug. 14th, 2021; accepted: Sep. 6th, 2021; published: Sep. 18th, 2021

ABSTRACT

Reactive oxygen species (ROS) is produced in the process of oxidative phosphorylation, and plays an important role in proliferation, differentiation and apoptosis of cells and tissues. A large number of studies have shown that ROS is closely related to the occurrence and development of eye related diseases such as Retinoblastoma, Uveal Melanoma, Age-Related Macular Degeneration, Age- Related Cataract, Dry Eye and Pterygium. In this article, the mechanism of ROS and the research status of ROS in eye related diseases were expounded, so as to provide reference for further research on ophthalmic diseases and treatment.

Keywords:Retinoblastoma, Age-Related Cataract, Age-Related Macular Degeneration, Reactive Oxygen Species, Ophthalmic Disease

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

线粒体是协调细胞功能和新陈代谢的关键细胞器。线粒体与细胞通讯是通过活性氧(reactive oxygen species, ROS)信号传递 [1]。ROS主要来源于白细胞,特别是巨噬细胞和中性粒细胞。白细胞可表达还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adeninedinucleotidephosphate, NAPDH)氧化酶。NADPH氧化酶和线粒体是生物系统中ROS的两个主要来源 [2]。Zou等 [3] [4] 研究表明,ROS在细胞及组织的增殖、分化及凋亡等方面发挥着重要作用。维持ROS有益的生物学功能和人类疾病之间的平衡,是未来眼部疾病研究的一个难题。本文主要针对ROS的研究现状进行综述,以期为ROS的研究提供参考依据。

2. ROS概述

ROS是在氧化磷酸化过程中产生的,在氧化磷酸化过程中,电子通过电子传输链(electron transport chain, ETC)传递,从而产生能够氧化和产生ATP的质子梯度。最终,氧被传输的电子直接还原,产生ROS [5]。ROS通过蛋白质修饰来微调众多信号通路,以适应营养和氧化环境的变化 [6]。Saure等 [7] 研究证实ROS参与了关键信号转导通路的调节,在生理条件下,适量的ROS是维持细胞生长和分化所必需的。ROS含量的变化影响细胞的清除能力,组织中的ROS含量通常相对较低,然而,ROS的持续增加会导致暂时的失衡,这会损伤氧化还原调节。线粒体产生ROS的速率在多种病理条件下增加,包括缺氧、衰老和线粒体呼吸的化学抑制 [8] [9]。研究表明,ROS的持续产生可能导致转导信号和基因表达的持续变化,从而导致氧化应激 [10]。Saccà等 [11] 研究表明氧化应激会造成脂质过氧化、脱氧核糖核酸损伤、蛋白质氧化等,从而改变或损害细胞的新陈代谢和活力,甚至导致细胞坏死或凋亡。Valko等 [12] [13] [14] 研究证实ROS在神经退行性疾病和致盲疾病(如白内障、糖尿病性视网膜疾病、眼部恶性肿瘤)中起到一个特别重要的作用。随着研究的深入,ROS影响的信号通路逐渐被证实,但由于ROS调控眼部疾病机制的复杂性,其作用及机制尚有待进一步探索及论证。

3. ROS与眼部相关疾病

3.1. ROS与眼部恶性肿瘤

ROS的增加是恶性细胞的属性之一,与“癌症”的形成有关。Zhang等 [15] [16] [17] 研究表明,ROS的增加通过不同的机制导致癌细胞的细胞毒性,细胞周期阻滞、凋亡和自噬。为了抵消ROS升高的潜在毒性反应,癌细胞存在促进氧化还原稳态的关键途径,例如NADPH和谷胱甘肽合成的磷酸戊糖途径 [18] [19]。Tahmasebi等 [20] 研究发现在癌症中ROS的产生导致基因组不稳定和DNA损伤,从而导致耐药性和复发率的增加。然而,Moloney等 [21] [22] [23] 研究发现,如果ROS水平急剧增加到有毒的浓度,例如通过活性氧诱导剂,导致氧化应激增加,氧化应激会导致肿瘤细胞无法修复的损伤,适应能力不足,并最终导致肿瘤细胞凋亡。眼睛的原发性恶性肿瘤是一种相对罕见的疾病,葡萄膜黑色素瘤和儿童视网膜母细胞瘤加在一起,全世界每年大约有15,000例 [24]。视网膜母细胞瘤(Retinoblastoma, Rb)是儿童最常见的原发性眼内恶性肿瘤,它是一种与体细胞突变或生殖系突变相关的恶性肿瘤 [25]。葡萄膜黑色素瘤(Uveal Melanoma, UM)是成人最常见的原发性眼内恶性肿瘤。目前,这种恶性肿瘤最广泛使用的治疗是肿瘤切除、放射治疗和眼球剜除术等 [26]。Vandhana等 [27] 研究表明与非肿瘤性视网膜相比,氧化剂诱导的RB肿瘤细胞的ROS水平增加了32~56倍,因此ROS升高导致肿瘤侵袭性增加。然而,Tahmasebi等 [20] [28] [29] 研究表明,持续增加ROS并随后激活半胱天冬酶(半胱天冬酶-3/7)可杀死RB细胞,促进RB细胞凋亡。Yan等 [30] 研究发现用扁塑藤素(一种天然三萜类奎宁化合物)抑制UM-1 (葡萄膜黑色素瘤)细胞的迁移和侵袭,导致ROS迅速升高,线粒体膜电位降低,诱导肿瘤细胞聚集在G0/G1期,最终导致细胞凋亡。由于肿瘤侵袭和转移是肿瘤治疗中最常见的问题,深入了解ROS介导肿瘤与肿瘤微环境相互作用的分子机制将有助于制定治疗策略,尽管这相当具有挑战性。

3.2. ROS与年龄相关性眼病

ROS在细胞正常代谢过程中不断产生,并在细胞信号传递中发挥重要作用。ROS的正常水平由细胞抗氧化系统控制,包括抗氧化酶、小分子量抗氧化剂和DNA修复蛋白 [31]。然而,在一些条件下超过细胞的抗氧化能力,导致氧化应激,这是年龄相关性眼病的发病原因之一 [32]。在眼前段,氧化应激主要与年龄相关性白内障有关,而在眼后段,氧化应激主要与年龄相关性黄斑变性相关 [33]。

3.2.1. ROS与年龄相关性白内障

年龄相关性白内障(Age-Related Cataract),是人类失明的主要原因之一,占所有失明原因的47.8% [34]。年龄是白内障的最大风险因素,有时人们认为白内障只是这一衰老过程的放大,事实似乎并非如此。Babizhayev等 [32] 研究发现年龄相关性白内障是由晶状体和晶状体纤维细胞中聚集的蛋白质沉积导致晶状体混浊、光散射和视力下降。上皮细胞线粒体的损伤可能会导致ROS的产生,而ROS的过量产生导致氧化应激会影响晶状体纤维细胞。Kruk等 [35] [36] 研究发现ROS诱导的晶状体细胞损伤可能包括蛋白质氧化、DNA损伤和脂质过氧化,这些都与白内障的发生有关。线粒体的保护和修复作用由还原剂、抗氧化剂和伴侣、抗氧化酶和特定的蛋白质修复系统介导。晶状体含有许多有效的抗氧化剂,包括谷胱甘肽及其相关酶,主要是谷胱甘肽还原酶和谷胱甘肽过氧化物酶 [37]。Brennan等研究 [33] 也发现谷胱甘肽是晶状体、角膜和视网膜抵抗ROS诱导损伤的主要保护剂。因此,选择性抑制ROS是年龄相关性白内障的一种潜在有效的治疗措施。

3.2.2. ROS与年龄相关性黄斑变性

年龄相关性黄斑变性(Age-RelatedMacular Degeneration, AMD)是一种复杂的进行性眼病,是老年人失明和视力丧失的主要原因 [38]。Kauppinen等 [39] [40] 研究发现AMD是一种以视网膜沉积、脂褐素沉积、视网膜色素上皮(Retinal Pigment Epithelium, RPE)的氧化应激和死亡以及光感受器和脉络膜毛细血管的功能障碍,并且随着年龄增长会失明的疾病。Blasiak等 [41] 研究发现过量的ROS会产生氧化应激,氧化应激在衰老中特别重要,因为它可能诱导早衰,也可能导致DNA损伤。He等研究表明 [42] AMD中ROS的产生和积累的因素包括光、饮食、吸烟、光敏剂(即脂褐素)和心血管疾病等。Zheng等 [43] 研究发现ROS的过量产生可能通过p38丝裂原活化蛋白激酶(p38 MAPK)诱导凋亡,此外还增加血管内皮生长因子的产生,导致视网膜血管内皮功能障碍和视网膜毛细血管细胞凋亡。Ruan等 [44] 研究也发现ROS的过量产生使视网膜内皮功能障碍,损害了NO代谢的平衡,影响血管内皮细胞和平滑肌细胞对生理刺激的反应性。由此产生的内皮功能障碍的特征是内皮依赖性血管舒张减少以及促炎因子增多,导致视网膜毛细血管细胞凋亡,导致AMD的发生。大量研究表明降低细胞内ROS的含量可以延缓视网膜色素上皮的衰老,从而延缓AMD的进展 [44] [45] [46]。因此,选择性清除ROS是AMD的一种有前途的治疗策略。

3.3. ROS与眼表疾病

眼表疾病是常见的眼科疾病,它是角结膜正常结构和功能被损害的一类疾病。ROS的外源性来源,如紫外光、可见光、电离辐射、化疗药物和环境毒素等,会导致眼组织的氧化损伤 [10]。人眼经常暴露于这些损伤会使老化的眼睛面临相当大的风险。Uchino等 [47] [48] 研究发现氧化损伤与多种眼表疾病相关,如干眼症、翼状胬肉等。干眼症(Dryeye)是一种泪液和眼表的多因素疾病,导致不适、视觉障碍和泪膜不稳定,并对眼表造成损害 [49]。Wakamatsu等 [50] 研究发现ROS过量产生导致腺泡萎缩、纤维化、细胞膜脂质过氧化、眼表–泪腺单位的炎症细胞浸润,导致干眼的形成。Zheng等 [51] 研究表明ROS的持续上升会使NLRP3炎症小体以及IL-1b的分泌增加,而NLRP3炎症小体的表达增加会触发先天免疫反应,从而导致干眼、Behçet病的进展。翼状胬肉(Pterygium)是一种纤维血管增生的结膜组织侵入角膜的慢性疾病。翼状胬肉的发病机制正在研究中,包括紫外线辐射、免疫炎症过程、病毒感染和遗传因素等 [52]。Tsai等 [53] 研究发现紫外线照射造成ROS增加,对眼表产生氧化损伤,产生8-羟基脱氧鸟苷(8-OHdG)酶,并导致异常细胞生长和血管生成,从而导致翼状胬肉的发展。减少ROS的量来控制氧化应激是预防和治疗眼表疾病的潜在治疗策略。

4. ROS与眼部其他疾病

糖尿病性视网膜病变(Diabetic retinopathy, DR)是一种以视网膜损伤和长期糖尿病背景下的视觉缺陷为特征的疾病。糖尿病诱导视网膜中ROS的过度产生 [54]。Castilho等 [55] 研究认为在细胞内,ROS直接作用于蛋白质和脱氧核糖核酸,或间接作为第二信使调节导致糖尿病性视网膜病变发病的各种信号级联。Silva等 [56] 研究也发现ROS过量产生促进微血管并发症、神经退行性变和病理性血管生成,这些都与糖尿病性视网膜病变的发生相关。因此减少ROS的形成在糖尿病性视网膜病变的治疗中尤为重要。Santana-Garrido等 [57] 研究表明ROS的过量产生会导致脂质过度氧化,从而导致视网膜神经节细胞的功能障碍和凋亡,导致青光眼的形成。Iomdina等 [58] 研究也发现SkQ1,一种抗氧化剂,已被证明能逆转兔实验性青光眼的特征。高度近视的特点是随着眼轴长度的延长,眼后壁的拉伸引起各种特殊的并发症,这些并发症往往导致不可逆的视网膜感光器官损害和中心视力丧失 [59]。Francisco等 [60] 研究发现ROS过度产生会改变蛋白质、使有害的脂质过氧化和DNA裂解,从而导致光感受器和其他神经视网膜细胞的退化,从而导致近视的进展。因此对青光眼、高度近视患者及时抗氧化治疗能减轻ROS引起的病理损害。

5. 结论

活性氧的过量产生可导致多种病理过程,包括缺血状态下的细胞损伤、衰老和凋亡,导致氧化还原平衡受损,潜在地减少促生存信号并促进眼部疾病进展。抗氧化剂对部分眼科疾病具有预防和控制发展的效果,但其中有很多原理和机制仍不完善,因此,开发和实施针对活性氧提供保护的疗法对于预防和治疗眼部疾病将是重要的。

基金项目

1) 湖南省临床医疗技术创新引导计划(项目编号:2020SK50107);2) 爱尔眼科医院集团科研基金(项目编号:AF2001D9)。

文章引用

张雯洁,刘静雯,卢怡洁,秦 波. 活性氧在眼科疾病的研究现状和进展
Research Status and Progress of Reactive Oxygen Species in Ophthalmic Diseases[J]. 临床医学进展, 2021, 11(09): 4092-4098. https://doi.org/10.12677/ACM.2021.119597

参考文献

  1. 1. Kowluru, R. (2021) Diabetic Retinopathy and NADPH Oxidase-2: A Sweet Slippery Road. Antioxidants (Basel, Switzerland), 10, 783. https://doi.org/10.3390/antiox10050783

  2. 2. Syed Mortadza, S., Wang, L., Li, D., et al. (2015) TRPM2 Channel-Mediated ROS-Sensitive Ca2+ Signaling Mechanisms in Immune Cells. Frontiers in Immunology, 6, 407. https://doi.org/10.3389/fimmu.2015.00407

  3. 3. Zou, Z., Chang, H., Li, H., et al. (2017) Induction of Reactive Oxygen Species: An Emerging Approach for Cancer Therapy. Apoptosis: An International Journal on Programmed Cell Death, 22, 1321-1335. https://doi.org/10.1007/s10495-017-1424-9

  4. 4. Jin, Y., Huynh, D.T.N., Nguyen, T.L.L., et al. (2020) Therapeutic Effects of Ginsenosides on Breast Cancer Growth and Metastasis. Archives of Pharmacal Research, 43, 773-787. https://doi.org/10.1007/s12272-020-01265-8

  5. 5. Dröge, W. (2002) Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, 82, 47-95. https://doi.org/10.1152/physrev.00018.2001

  6. 6. Shadel, G.S. and Horvath, T.L. (2015) Mitochondrial ROS Signaling in Organismal Homeostasis. Cell, 163, 560-569. https://doi.org/10.1016/j.cell.2015.10.001

  7. 7. Sauer, H., Wartenberg, M. and Hescheler, J. (2001) Reactive Oxygen Species as Intracellular Messengers during Cell Growth and Differentiation. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 11, 173-186. https://doi.org/10.1159/000047804

  8. 8. Lesnefsky, E.J., Moghaddas, S., Tandler, B., et al. (2001) Mitochondrial Dysfunction in Cardiac Disease: Ischemia— Reperfusion, Aging, and Heart Failure. Journal of Molecular and Cellular Cardiology, 33, 1065-1089. https://doi.org/10.1006/jmcc.2001.1378

  9. 9. Chen, Q., Vazquez, E.J., Moghaddas, S., et al. (2003) Production of Reactive Oxygen Species by Mitochondria: Central Role of Complex III. The Journal of Biological Chemistry, 278, 36027-36031. https://doi.org/10.1074/jbc.M304854200

  10. 10. Saccà, S., Roszkowska, A. and Izzotti, A. (2013) Environmental Light and Endogenous Antioxidants as the Main Determinants of Non-Cancer Ocular Diseases. Mutation Research, 752, 153-171. https://doi.org/10.1016/j.mrrev.2013.01.001

  11. 11. Saccà, S.C., Cutolo, C.A., Ferrari, D., et al. (2018) The Eye, Oxidative Damage and Polyunsaturated Fatty Acids. Nutrients, 10, 668. https://doi.org/10.3390/nu10060668

  12. 12. Valko, M., Leibfritz, D., Moncol, J., et al. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001

  13. 13. Klump, K.E. and Mcginnis, J.F. (2014) The Role of Reactive Oxygen Species in Ocular Malignancy. Advances in Experimental Medicine and Biology, 801, 655-659. https://doi.org/10.1007/978-1-4614-3209-8_82

  14. 14. Van Reyk, D., Gillies, M. and Davies, M. (2003) The Retina: Oxidative Stress and Diabetes. Redox Report: Communications in Free Radical Research, 8, 187-192. https://doi.org/10.1179/135100003225002673

  15. 15. Zhang, D., Gao, C., Li, R., et al. (2017) TEOA, a Triterpenoid from Actinidia eriantha, Induces Autophagy in SW620 Cells via Endoplasmic Reticulum Stress and ROS-Dependent Mitophagy. Archives of Pharmacal Research, 40, 579-591. https://doi.org/10.1007/s12272-017-0899-9

  16. 16. Jeon, H., Huynh, D.T.N., Baek, N., et al. (2021) Ginsenoside-Rg2 Affects Cell Growth via Regulating ROS-Mediated AMPK Activation and Cell Cycle in MCF-7 Cells. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 85, Article ID: 153549. https://doi.org/10.1016/j.phymed.2021.153549

  17. 17. Wu, Q., Deng, J., Fan, D., et al. (2018) Ginsenoside Rh4 Induces Apoptosis and Autophagic Cell Death through Activation of the ROS/JNK/p53 Pathway in Colorectal Cancer Cells. Biochemical Pharmacology, 148, 64-74. https://doi.org/10.1016/j.bcp.2017.12.004

  18. 18. Yang, L., Moss, T., Mangala, L.S., et al. (2014) Metabolic Shifts toward Glutamine Regulate Tumor Growth, Invasion and Bioenergetics in Ovarian Cancer. Molecular Systems Biology, 10, 728. https://doi.org/10.1002/msb.20134892

  19. 19. Li, L., Fath, M.A., Scarbrough, P.M., et al. (2015) Combined Inhibition of Glycolysis, the Pentose Cycle, and Thioredoxin Metabolism Selectively Increases Cytotoxicity and Oxidative Stress in Human Breast and Prostate Cancer. Redox Biology, 4, 127-135. https://doi.org/10.1016/j.redox.2014.12.001

  20. 20. Tahmasebi, G., Eslami, E., Naserzadeh, P., et al. (2020) Role of Mitochondria and Lysosomes in the Selective Cytotoxicity of Cold Atmospheric Plasma on Retinoblastoma Cells. Iranian Journal of Pharmaceutical Research: IJPR, 19, 203-215.

  21. 21. Pelicano, H., Carney, D. and Huang, P. (2004) ROS Stress in Cancer Cells and Therapeutic Implications. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004

  22. 22. Trachootham, D., Zhou, Y., Zhang, H., et al. (2006) Selective Killing of Oncogenically Transformed Cells through a ROS-Mediated Mechanism by Beta-Phenylethyl Isothiocyanate. Cancer Cell, 10, 241-252. https://doi.org/10.1016/j.ccr.2006.08.009

  23. 23. Moloney, J. and Cotter, T. (2018) ROS Signalling in the Biology of Cancer. Seminars in Cell & Developmental Biology, 80, 50-64. https://doi.org/10.1016/j.semcdb.2017.05.023

  24. 24. Kivelä, T. (2009) The Epidemiological Challenge of the Most Frequent Eye Cancer: Retinoblastoma, an Issue of Birth and Death. The British Journal of Ophthalmology, 93, 1129-1131. https://doi.org/10.1136/bjo.2008.150292

  25. 25. Sun, J., Xi, H.Y., Shao, Q., et al. (2020) Biomarkers in Retinoblastoma. International Journal of Ophthalmology, 13, 325-341. https://doi.org/10.18240/ijo.2020.02.18

  26. 26. Kaliki, S. and Shields, C.L. (2017) Uveal Melanoma: Relatively Rare but Deadly Cancer. Eye (London, England), 31, 241-257. https://doi.org/10.1038/eye.2016.275

  27. 27. Vandhana, S., Lakshmi, T.S., Indra, D., et al. (2012) Microarray Analysis and Biochemical Correlations of Oxidative Stress Responsive Genes in Retinoblastoma. Current Eye Research, 37, 830-841. https://doi.org/10.3109/02713683.2012.678544

  28. 28. Zhu, X., Li, X. and Chen, Z. (2020) Inhibition of Anticancer Growth in Retinoblastoma Cells by Naturally Occurring Sesquiterpene Nootkatone Is Mediated via Autophagy, Endogenous ROS Production, Cell Cycle Arrest and Inhibition of NF-κB Signalling Pathway. Journal of BUON: Official Journal of the Balkan Union of Oncology, 25, 427-431.

  29. 29. Guiying, T., Yue, L., Chao, X., et al. (2019) Antitumor Effects of 8-Deoxylactucin in RB355 Human Retinoblastoma Cells Are Mediated via Apoptosis Induction, Reactive Oxygen Species Production, and Cell Cycle Arrest. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 4575-4582. https://doi.org/10.12659/MSM.914242

  30. 30. Yan, F., Liao, R., Silva, M., Li, S., et al. (2020) Pristimerin-Induced Uveal Melanoma Cell Death via Inhibiting PI3K/ Akt/FoxO3a Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 6208-6219. https://doi.org/10.1111/jcmm.15249

  31. 31. Kaarniranta, K., Pawlowska, E., Szczepanska, J., et al. (2019) Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). International Journal of Molecular Sciences, 20, 2374. https://doi.org/10.3390/ijms20102374

  32. 32. Babizhayev, M. (2016) Generation of Reactive Oxygen Species in the Anterior Eye Segment. Synergistic Codrugs of N-Acetylcarnosine Lubricant Eye Drops and Mitochondria-Targeted Antioxidant Act as a Powerful Therapeutic Platform for the Treatment of Cataracts and Primary Open-Angle Glaucoma. BBA Clinical, 6, 49-68. https://doi.org/10.1016/j.bbacli.2016.04.004

  33. 33. Brennan, L. and Kantorow, M. (2009) Mitochondrial Function and Redox Control in the Aging Eye: Role of MsrA and Other Repair Systems in Cataract and Macular Degenerations. Experimental Eye Research, 88, 195-203. https://doi.org/10.1016/j.exer.2008.05.018

  34. 34. Yao, K., Ye, P., Zhang, L., et al. (2008) Epigallocatechin Gallate Protects against Oxidative Stress-Induced Mitochondria-Dependent Apoptosis in Human Lens Epithelial Cells. Molecular Vision, 14, 217-223.

  35. 35. Kruk, J., Kubasik-Kladna, K. and Aboul-Enein, H. (2015) The Role Oxidative Stress in the Pathogenesis of Eye Diseases: Current Status and a Dual Role of Physical Activity. Mini Reviews in Medicinal Chemistry, 16, 241-257. https://doi.org/10.2174/1389557516666151120114605

  36. 36. Babizhayev, M., Deyev, A., Yermakova, V., et al. (2004) Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes. Drugs in R&D, 5, 125-139. https://doi.org/10.2165/00126839-200405030-00001

  37. 37. Ganea, E. and Harding, J. (2006) Glutathione-Related Enzymes and the Eye. Current Eye Research, 31, 1-11. https://doi.org/10.1080/02713680500477347

  38. 38. Pennington, K.L. and Deangelis, M.M. (2016) Epidemiology of Age-Related Macular Degeneration (AMD): Associations with Cardiovascular Disease Phenotypes and Lipid Factors. Eye and Vision (London, England), 3, Article No. 34. https://doi.org/10.1186/s40662-016-0063-5

  39. 39. Rohowetz, L.J., Kraus, J.G. and Koulen, P. (2018) Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. International Journal of Molecular Sciences, 19, 3362. https://doi.org/10.3390/ijms19113362

  40. 40. Payne, A.J., Kaja, S., Sabates, N.R., et al. (2013) A Case for Neuroprotection in Ophthalmology: Developments in Translational Research. Missouri Medicine, 110, 429-436.

  41. 41. Blasiak, J. (2020) Senescence in the Pathogenesis of Age-Related Macular Degeneration. Cellular and Molecular Life Sciences, 77, 789-805. https://doi.org/10.1007/s00018-019-03420-x

  42. 42. He, Y., Leung, K.W., Zhang, Y.H., et al. (2008) Mitochondrial Complex I Defect Induces ROS Release and Degeneration in Trabecular Meshwork Cells of POAG Patients: Protection by Antioxidants. Investigative Ophthalmology & Visual Science, 49, 1447-1458. https://doi.org/10.1167/iovs.07-1361

  43. 43. Zheng, Z., Chen, H., Wang, H., et al. (2010) Improvement of Retinal Vascular Injury in Diabetic Rats by Statins Is Associated with the Inhibition of Mitochondrial Reactive Oxygen Species Pathway Mediated by Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α. Diabetes, 59, 2315-2325. https://doi.org/10.2337/db10-0638

  44. 44. Ruan, Y., Jiang, S., Musayeva, A., et al. (2020) Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel, Switzerland), 9, 761. https://doi.org/10.3390/antiox9080761

  45. 45. Panahi, Y., Ahmadi, Y., Teymouri, M., et al. (2018) Curcumin as a Potential Candidate for Treating Hyperlipidemia: A Review of Cellular and Metabolic Mechanisms. Journal of Cellular Physiology, 233, 141-152. https://doi.org/10.1002/jcp.25756

  46. 46. Shimouchi, A., Yokota, H., Ono, S., et al. (2016) Neuroprotective Effect of Water-Dispersible Hesperetin in Retinal Ischemia Reperfusion Injury. Japanese Journal of Ophthalmology, 60, 51-61. https://doi.org/10.1007/s10384-015-0415-z

  47. 47. Uchino, Y., Kawakita, T., Miyazawa, M., et al. (2012) Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production. PLoS ONE, 7, e45805. https://doi.org/10.1371/journal.pone.0045805

  48. 48. Balci, M., Sahin, S., Mutlu, F.M., et al. (2011) Investigation of Oxidative Stress in Pterygium Tissue. Molecular Vision, 17, 443-447.

  49. 49. Dogru, M., Kojima, T., Simsek, C., et al. (2018) Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Investigative Ophthalmology & Visual Science, 59, DES163-DES168. https://doi.org/10.1167/iovs.17-23402

  50. 50. Wakamatsu, T., Dogru, M., Matsumoto, Y., et al. (2013) Evaluation of Lipid Oxidative Stress Status in Sjögren Syndrome Patients. Investigative Ophthalmology & Visual Science, 54, 201-210. https://doi.org/10.1167/iovs.12-10325

  51. 51. Zheng, Q., Ren, Y., Reinach, P.S., et al. (2015) Reactive Oxygen Species Activated NLRP3 Inflammasomes Initiate Inflammation in Hyperosmolarity Stressed Human Corneal Epithelial Cells and Environment-Induced Dry Eye Patients. Experimental Eye Research, 134, 133-140. https://doi.org/10.1016/j.exer.2015.02.013

  52. 52. Zhu, C., Pan, F., Ge, L., et al. (2014) SERPINA3K Plays Antioxidant Roles in Cultured Pterygial Epithelial Cells through Regulating ROS System. PLoS ONE, 9, e108859. https://doi.org/10.1371/journal.pone.0108859

  53. 53. Tsai, Y., Cheng, Y., Lee, H., et al. (2005) Oxidative DNA Damage in Pterygium. Molecular Vision, 11, 71-75.

  54. 54. Frey, T. and Antonetti, D.A. (2011) Alterations to the Blood-Retinal Barrier in Diabetes: Cytokines and Reactive Oxygen Species. Antioxidants & Redox Signaling, 15, 1271-1284. https://doi.org/10.1089/ars.2011.3906

  55. 55. Castilho, Á., Aveleira, C.A., Leal, E.C., et al. (2012) Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity. PLoS ONE, 7, e42428. https://doi.org/10.1371/journal.pone.0042428

  56. 56. Silva, K., Rosales, M., Biswas, S., et al. (2009) Diabetic Retinal Neurodegeneration Is Associated with Mitochondrial Oxidative Stress and Is Improved by an Angiotensin Receptor Blocker in a Model Combining Hypertension and Diabetes. Diabetes, 58, 1382-1390. https://doi.org/10.2337/db09-0166

  57. 57. Santana-Garrido, Á., Reyes-Goya, C., Fernández-Bobadilla, C., et al. (2021) NADPH Oxidase-Induced Oxidative Stress in the Eyes of Hypertensive Rats. Molecular Vision, 27, 161-178.

  58. 58. Iomdina, E.N., Khoroshilova-Maslova, I.P., Robustova, O.V., et al. (2015) Mitochondria-Targeted Antioxidant SkQ1 Reverses Glaucomatous Lesions in Rabbits. Frontiers in Bioscience (Landmark Edition), 20, 892-901. https://doi.org/10.2741/4343

  59. 59. Ikuno, Y. (2017) Overview of the Complications of High Myopia. Retina (Philadelphia, PA), 37, 2347-2351. https://doi.org/10.1097/IAE.0000000000001489

  60. 60. Francisco, B.M., Salvador, M. and Amparo, N. (2015) Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 750637. https://doi.org/10.1155/2015/750637

  61. NOTES

    *通讯作者。

期刊菜单