Advances in Clinical Medicine
Vol. 12  No. 12 ( 2022 ), Article ID: 59072 , 9 pages
10.12677/ACM.2022.12121607

精神分裂症患者肠道菌群与认知功能的关系 研究进展

赵君1,刘玮1,吴斌2*

1西安医学院,陕西 西安

2西安市精神卫生中心,陕西 西安

收稿日期:2022年11月9日;录用日期:2022年12月3日;发布日期:2022年12月14日

摘要

精神分裂症(Schizophrenia, SCZ)是临床常见的精神疾病,认知缺陷是造成SCZ患者社会功能受损的重要因素。探索SCZ认知缺陷的发病原因及其病理机制,对改善患者认知功能,提高患者患病后的社会功能具有重要意义。近年来,“脑–肠轴”的发现表明肠道微生物与大脑存在双向调节的作用。肠道微生物的紊乱在SCZ的发病过程中发挥了重要的作用,且与SCZ患者的认知损害密切相关。肠道微生物或可成为干预SCZ认知缺陷的潜在治疗靶点。本文将对SCZ患者肠道微生物与认知功能关系的研究进行综述,详细介绍肠道微生物的特点,“脑–肠轴”的概念及作用,总结肠道微生物在SCZ的发病过程中发挥的作用,重点介绍SCZ患者肠道微生物与认知功能相关性的研究进展,为防治SCZ和改善SCZ患者认知功能提供新的思路。

关键词

精神分裂症,肠道菌群,认知功能

Research Progress on the Relationship between Intestinal Flora and Cognitive Function in Patients with Schizophrenia

Jun Zhao1, Wei Liu1, Bin Wu2*

1Xi’an Medical University, Xi’an Shaanxi

2Xi’an Mental Health Center, Xi’an Shaanxi

Received: Nov. 9th, 2022; accepted: Dec. 3rd, 2022; published: Dec. 14th, 2022

ABSTRACT

Schizophrenia (SCZ) is a common clinical mental illness, and cognitive deficits are important factors in impaired social functioning in SCZ patients. Exploring the pathogenesis and pathological mechanism of SCZ cognitive deficit is of great significance to improve patients’ cognitive function and improve their social function after illness. In recent years, the discovery of the “brain-gut axis” has shown that there is a two-way regulation between the gut microbiome and the brain. Disturbances of the Intestinal flora play an important role in the pathogenesis of SCZ and are closely related to cognitive impairment in SCZ patients. The gut microbiome may be a potential therapeutic target for SCZ cognitive deficits. This article will review the research on the relationship between Intestinal flora and cognitive function in SCZ patients, introduce in detail the characteristics of intestinal microbes, the concept and role of “brain-gut axis”, summarize the role of intestinal microbes in the pathogenesis of SCZ, focus on the research progress of the correlation between intestinal microbes and cognitive function in SCZ patients, and provide new ideas for preventing SCZ and improving cognitive function in SCZ patients.

Keywords:Schizophrenia, Intestinal Flora, Cognitive Function

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

精神分裂症(Schizophrenia, SCZ)是一种重性精神疾病,病程往往迁延不愈。认知功能的损害作为独立的核心症状,纵贯整个病程。研究显示至少85%的SCZ患者在感知、记忆、思维方面体现出认知损害,并且在疾病的早期就已经很明显,预示了首发患者的复发风险 [1]。因此,改善SCZ患者的认知功能十分重要。然而,典型抗精神病药会降低患者的警觉性,影响患者的注意、记忆功能和信息整合功能,为缓解锥体外系不良反应而合用的抗胆碱药物也会加剧认知功能的损害,尤其是学习、记忆能力的损害。非典型抗精神病药能减轻因过度阻断多巴胺活性引起的椎体外系反应,减少抗胆碱药物的合用,但非典型抗精神病药的镇静、泌乳素升高和代谢不良反应也可导致患者认知功能恶化 [2];尽管研究发现二氢嗌啶(DAR-0100)、N-甲基-D-天(门)冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDA)药物、谷氨酸受体调控剂等药物及经颅磁刺激治疗、电休克治疗等治疗手段对SCZ患者认知功能有改善作用,但效果也并不理想。近年来“脑–肠轴”的发现使越来越多的研究开始关注肠道菌群对脑功能的影响 [3],人们发现肠道微生物不仅与SCZ有关,与认知功能也同样密切相关 [4]。有学者提出肠道菌群或可成为治疗SCZ患者认知损害的潜在靶点。本文将从肠道菌群的角度出发,通过检索文献,系统介绍肠道菌群的特点及肠道菌群在SCZ中发挥的作用;重点总结肠道菌群与认知功能的研究进展,为改善SCZ患者的认知损害的研究提供参考。

2. 肠道菌群

肠道微生物,是指消化道中庞大复杂的微生态系统,由5000多种微生物和1000多种微生物群组成 [5],其中99%为细菌,因此肠道微生物也称肠道菌群。人体肠道内细菌数量约1014个,其编码的基因数量之多更是高达人类基因的150倍,因此肠道菌群也被称为是“人体第二基因组” [6]。生理状态下,肠道菌群保持着动态平衡,而当机体环境发生变化时,敏感菌被抑制,未被抑制的肠菌过度繁殖,便会引起菌群失调,进而导致临床症状。2008年,Romijn [7] 等人提出了“脑–肠轴”的概念,认为中枢神经系统能直接调控肠道功能,而肠道菌群的分布可通过神经网络、神经内分泌、免疫、细菌的代谢以及屏障通路等方式参与神经系统的发育和调控,对中枢神经系统造成影响。

3. 肠道菌群与SCZ密切相关

3.1. 参与SCZ的发病机制

肠道菌群在SCZ的发病机制中发挥着重要的作用。目前已知中枢多巴胺(Dopamine, DA)、5-羟色胺(5-hydroxytryptamine, 5-HT)功能亢进、谷氨酸、γ-氨基丁酸(γ-aminobutyric acid, GABA)功能不足与SCZ的发病机制有关。肠道菌群参与肠道嗜铬细胞90%的5-HT的生物合成,间接参与SCZ的发病 [8]。肠道菌群失调引起的低度炎症被认为是诱发SCZ的重要因素 [9]。肠道菌群通过免疫反应激活多种免疫细胞,进而产生的促炎细胞因子穿过血脑屏障进入大脑,作用于脑内神经元或胶质细胞的受体后激活SCZ相关的信号通路,诱导了SCZ的发生 [9]。

3.2. 与SCZ症状密切相关

大量的研究表明SCZ患者肠道菌群的特征与健康人群的肠道菌群存在差异。部分菌属与SCZ的不同的症状类型及症状严重程度存在相关性。有研究发现链球菌属、乳杆菌属水平与精神症状及症状的严重程度有关 [10]。拟杆菌属与首发精神病患者简明精神量表得分 [11] 及患者的抑郁症状 [12] 呈正相关,毛螺菌属、瘤胃菌属和拟杆菌属的丰度与SCZ的阴性症状和认知缺陷高度相关。也有研究发现普氏菌属的相对丰度与PANSS评分呈负相关,通过调节普氏菌属的相对丰度可能使患者症状改善 [13]。

3.3. 与SCZ患者认知损害相关

认知损害作为SCZ独立的核心症状,对SCZ患者的预后具有重要的影响。研究发现肠道菌群与认知功能也有着千丝万缕的联系。脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)和NMDA受体被公认为是参与SCZ患者认知缺陷的主要机制 [14] [15]。在动物实验中,去除肠道菌群的小鼠的大脑皮层和海马中,NMDA受体的表达水平显著性地降低 [16]。NMDA受体拮抗剂可诱导小鼠产生SCZ的行为表型,并同时伴有认知缺陷。而当NMDA受体的功能提高时,小鼠的认知功能也可获得改善 [14]。BNDF主要在中枢神经系统内表达,其中海马和皮质的含量最高。它可以促进5-HT和DA能神经元的发育分化与生长再生,还可以促进海马神经发生,通过增加突触的可塑性使长时程增强,进而影响学习和记忆的过程。在动物模型中,GF小鼠的BDNF水平更高,并且可能有类似焦虑的行为 [17]。给大鼠长期服用抗生素会导致BDNF表达的增加和认知功能缺陷 [18]。也有研究发现GF小鼠大脑皮层和海马中BDNF和c-fos蛋白的表达降低,并伴有非空间及工作记忆损伤 [19]。与正常个体相比,SCZ患者的背外侧前额叶皮层中BDNF mRNA和蛋白质显著降低 [20]。近年来研究表明研究证实肠道菌群能通过改变大脑中BDNF和NMDA受体的表达水平,间接参与对SCZ的调控 [21]。一项关于重度抑郁症的临床研究发现粪便拟杆菌、变形菌、放线菌以及粪便粪杆菌与血清中BDNF水平有关。梭状芽胞杆菌XIVb的流行与血液BDNF水平呈负相关 [22]。然而,微生物菌群如何调节BDNF在很大程度上仍然未知,有学者认为可能与下丘脑垂体肾上腺轴有关 [23]。尽管研究的结果不完全一致,但都表明肠道菌群能通过改变大脑中NMDA受体和BDNF的表达水平,从而间接地对SCZ患者的认知功能产生影响。

4. 肠道菌群影响认知功能的机制

4.1. 通过4种途径影响认知功能

4.1.1. 迷走神经途径

海马神经在学习和记忆巩固的过程中发挥了重要作用,肠道菌群参与海马神经的发生由迷走神经介导,进而对认知功能产生影响。肠道产生的脂多糖(Lipopolysaccharide, LPS)、3-羟基犬尿氨酸等有毒物质以及BDNF,5-HT,GABA等神经递质也由迷走神经上传到大脑 [24]。研究表明某些微生物只有在迷走神经完好无损的情况下才能在中枢发挥作用,而在迷走神经切断术之后作用消失 [25]。例如:给予小鼠长期服用益生菌鼠李糖乳杆菌可以减少GABA受体以影响认知功能。然而经过迷走神经切断术的小鼠再经过鼠李糖乳杆菌治疗后并不能观察到神经化学或行为的改变 [26]。长双歧杆菌NCC3001对患有化学性结肠炎的小鼠抗焦虑的作用在迷走神经切断术后也同样消失 [27]。早期的研究认为肠道菌群的紊乱激活迷走神经由免疫反应介导 [28],新的研究表明肠道微生物组可以在引起任何免疫反应之前直接激活迷走神经。空肠弯曲菌给药后的小鼠中c-Fos (迷走神4经感觉神经节和孤立神经元的神经活动指标)的表达随时间增加,神经活动在短时间内增加,而促炎细胞因子没有随之增加 [29]。此外,研究发现迷走神经刺激术可以通过改善脑线粒体功能障碍、减弱胰岛素敏感性、增加树突棘密度和减少细胞凋亡来降低认知功能 [30]。

4.1.2. 神经递质途径

肠道某些菌株能够分泌DA、5-HT、去甲肾上腺素(Norepinephrine, NE)、乙酰胆碱(Acetylcholine, ACh)等多种神经递质对认知功能产生影响 [31]。5-HT是脑–肠轴的关键信号分子 [32],中枢5-HT在认知功能处理过程中发生了重要作用 [33]。5-HT可调节早期神经元的发育和分化 [34]。肠道菌群参与肠道嗜铬细胞95%的5-HT的生物合成 [35],从而影响循环中5-HT的水平,对认知功能产生影响。此外,色氨酸是外周和大脑产生5-HT的唯一前体,犬尿氨酸途径是色氨酸代谢的关键途径 [36],同样受到肠道菌群产生的炎症介质和代谢酶的严格调节 [37]。链球菌属、念珠菌属、肠球菌属和大肠埃希氏菌属可以通过调节犬尿氨酸途径代谢直接或间接影响色氨酸代谢和随后的5-HT合成,从而进一步影响中枢区域的认知功能 [38]。此外,研究表明短乳杆菌和齿双歧杆菌产生GABA [39],大肠杆菌、芽孢杆菌产生DA,这些神经递质均对认知功能存在正面或负面的影响。结肠和盲肠部位的梭菌和普氏菌产生的短链脂肪酸(Short-chain fatty acids, SCFAs)参与了DA和NE合成,对血清素能神经传递和体内较低水平的GABA,血清胺和DA具有调节作用。

4.1.3. 免疫途径

首先,肠道菌群可以影响大脑中免疫细胞的数量和功能,进而影响大脑功能 [31]。其次,肠道菌群相关的分子,如LPS、细菌脂蛋白、鞭毛蛋白和CpG DNA等,可激活多种免疫细胞(如:巨噬细胞、嗜中性粒细胞和树突状细胞等),产生多种促炎细胞因子,如IL-1α、IL-1β、TNF-α、IL-6。这些细胞因子通过扩散和转运蛋白穿过血脑屏障(Blood-brain barrier, BBB)进入大脑,作用于与神经系统疾病相关的信号通路,在SCZ慢性低度炎症和免疫反应的病理机制中发挥重要作用。高水平的IL-6参与海马神经变性和结构重塑,对学习和记忆产生影响 [40],还可以提高CRP和TNF-α的水平 [41]。研究表明IL-6水平升高与瘤胃球菌和普雷沃氏菌的丰度降低有关 [42],也有研究发现循环IL-6水平与大肠杆菌等、嗜血杆菌、假单胞菌、肺炎克雷伯菌等、耶尔森氏菌等、沙雷氏菌和弧菌等变形菌门的细菌丰度存在正相关,而与霍氏真杆菌、直肠真杆菌、凸腹真杆菌、梭状芽孢杆菌和梭菌簇XIVa存在负相关 [43]。TNF-α可以调节和干扰能量代谢,尤其是脂质稳态 [44],并引起SCZ患者代谢异常和炎症反应 [45],进而导致认知功能的损害。与没有代谢综合征(Metabolic syndrome, MetS)的患者相比,患有MetS的SCZ患者TNF-α水平更高,但BDNF水平更低 [46],这表明BDNF受TNF-α的负调控,进一步证实了TNF-α对认知功能的影响。现有的研究发现TNF-α与内脏臭杆菌、嗜胆菌和青春双歧杆菌的丰度呈负相关 [47],而与厚壁菌门丰度正相关 [48]。服用植物乳杆菌P8治疗的患者TNF-α减少,记忆力和认知功能(例如社会情感认知和语言学习和记忆力)也得到改善 [49]。CRP是目前研究肠道菌群引起低度炎症的标志物 [50],且与认知功能有关。研究发现认知能力水平低下的人群同时也存在CRP水平的改变 [51]。CRP水平和颤杆菌克属的丰度呈负相关,而与拟杆菌属的丰度呈正相关 [42]。LPS是一种特异性促炎剂,不仅可以通过脑血屏障转运系统直接影响大脑结构和功能,能够改变边缘系统的神经元活动(它增加杏仁核的活动)并激活迷走神经传入神经元 [52],还可以降低BDNF的海马表达并对认知功能产生负面影响 [53]。临床研究表明低剂量LPS影响长期记忆表现,而不影响工作记忆表现,并以剂量依赖性方式增加其他血浆细胞因子IL-6、TNF-α、IL-10 [54]。其他炎性细胞因子,如IL-1、IL-8和IFN-γ,它们与肠道微生物的关联也有报道,可能参与肠道菌群失调引起认知功能障碍的机制 [43]。最近的证据表明,嗜神经病毒,如单纯疱疹病毒弓形虫、以及白色念珠菌和酿酒酵母暴露于SCZ患者并引起感染,导致微生物组的改变和随后的炎症,从而引起认知缺陷 [55]。

4.1.4. 神经内分泌途径

肠内分泌细胞通过内分泌和旁分泌的方式释放肠肽,包括生长素释放肽、肽YY (Peptideyy, PYY)、胰高糖素样肽-1 (glucagon-like peptide-1, GLP-1)和胰高糖素样肽-2 (glucagon-like peptide-1, GLP-2),可以直接作用于后区(位于血脑屏障之外) [56]。PYY可以穿过血脑屏障,然后通过分布在不同的皮层区域、海马和丘脑核的受体Y1和Y2影响认知功能 [57]。与肽相关的病原微生物群包括拟杆菌属、乳酸杆菌、幽门螺杆菌、念珠菌和大肠杆菌 [58]。

4.2. 肠道菌群失调影响肠道上皮屏障和血脑屏障的通透性

有研究证实肠道菌群的改变可通过减少细胞–细胞连接,导致肠道上皮屏障的通透性增加,造成细菌移位,进而导致全身炎症,导致疾病恶化或诱发。SCFAs可改善肠屏障功能,当SCFAs减少时,肠屏障功能减弱,可能引发细菌移位和炎症反应。不仅如此,肠道菌群失调还可影响BBB通透性及紧密连接蛋白的表达。不同菌群状态下BBB通透性及TJ蛋白的表达水平不同。无菌小鼠BBB通透性增高,脑内皮紧密蛋白表达水平降低,外源性补充脑丁酸梭菌(CBut),多形类杆菌(BTeta)及微生物代谢产物丁酸钠(NaBu)显著改善BBB通透性及TJ蛋白的表达 [59]。母体肠道菌群影响胎儿血脑屏障的发育。无菌小鼠母体体内胎儿脑内皮紧密蛋白表达水平降低,BBB通透性增加 [60]。

5. 总结与展望

大量的证据表明肠道菌群失调与SCZ患者的认知损害相关。研究开发了许多啮齿动物大脑疾病模型,对肠道菌群引起SCZ患者认知缺陷进行了大量的假设和研究。益生菌、益生元、后生元、粪菌移植(Fecal microbiota transplantation, FMT)、潜在活体生物制剂、工程菌移植等肠道微生态治疗在改善精神疾病患者的认知功能方面取得了一定的成果。孤独症谱系障碍儿童补充益生菌混合物对语言和认知的发展具有一定的改善作用 [61];单一剂量的乳酸菌和双歧杆菌能够更明显提高老年阿尔茨海默病患者简易智能精神状态检查量表评分 [62];复合益生菌能显著改善抑郁患者的认知功能 [63]。补充β-1,3/1,6葡聚糖能够改善健康成年人的认知和情感 [64]。然而,目前肠道菌群分离培养技术难以达到菌株的水平 [65],肠道菌群失调影响SCZ认知缺陷的具体机制尚不能明确,FMT也无持续改善疾病症状的报道,针对微生物组治疗干预的有效性证据仍十分有限 [34]。未来的研究应结合多组学联合分析,逐渐从16S到宏基因组方法,从菌属菌种到菌株分析水平,从细菌向真菌和病毒组延伸,从益生菌、益生元,到工程菌和粪菌移植,到后生元,从基础研究到改善SCZ认知缺陷的临床应用,揭示肠道菌群与SCZ认知缺陷的分子机制,提供有效改善SCZ患者认知缺陷的治疗方案。

致谢

感谢在我整个研究和写作过程中蔺华利老师给予的悉心指导和严格要求,在老师身上学到了很多,终身受用。同时感谢吴斌老师,李欢老师,张曼老师在学习过程中给予的帮助和支持,感谢同门刘玮同学在学习和写作过程中的帮助。衷心的感谢他们!

文章引用

赵 君,刘 玮,吴 斌. 精神分裂症患者肠道菌群与认知功能的关系研究进展
Research Progress on the Relationship between Intestinal Flora and Cognitive Func-tion in Patients with Schizophrenia[J]. 临床医学进展, 2022, 12(12): 11145-11153. https://doi.org/10.12677/ACM.2022.12121607

参考文献

  1. 1. Burton, S.C. (2005) Strategies for Improving Adherence to Second-Generation Antipsychotics in Patients with Schizo-phrenia by Increasing Ease of Use. Journal of Psychiatric Practice, 11, 369-378. https://doi.org/10.1097/00131746-200511000-00003

  2. 2. 徐逸, 陆峥. 精神分裂症患者认知功能障碍评估与治疗[J]. 世界临床药物, 2016, 37(1): 8-12.

  3. 3. Gabanyi, I., Lepousez, G., Wheeler, R., et al. (2022) Bacterial Sensing via Neuronal Nod2 Regulates Appetite and Body Temperature. Science, 376, eabj3986. https://doi.org/10.1126/science.abj3986

  4. 4. Cervenka, I., Agudelo, L.Z. and Ruas, J.L. (2017) Kynurenines: Tryptophan’s Metabolites in Exercise, Inflammation, and Mental Health. Science, 357, eaaf9794. https://doi.org/10.1126/science.aaf9794

  5. 5. Dave, M., Higgins, P.D., Middha, S., et al. (2012) The Human Gut Microbiome: Current Knowledge, Challenges, and Future Directions. Translational Research, 160, 246-257. https://doi.org/10.1016/j.trsl.2012.05.003

  6. 6. Jandhyala, S.M., Talukdar, R., Subramanyam, C., et al. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787

  7. 7. Romijn, J.A., Corssmit, E.P., Havekes, L.M., et al. (2008) Gut-Brain Axis. Current Opinion in Clinical Nutrition & Metabolic Care, 11, 518-521. https://doi.org/10.1097/MCO.0b013e328302c9b0

  8. 8. Mawe, G.M. and Hoffman, J.M. (2013) Serotonin Signal-ling in the Gut—Functions, Dysfunctions and Therapeutic Targets. Nature Reviews Gastroenterology & Hepatology, 10, 473-486. https://doi.org/10.1038/nrgastro.2013.105

  9. 9. Gao, L., Li, J., Zhou, Y., et al. (2018) Effects of Baicalein on Cortical Proinflammatory Cytokines and the Intestinal Microbiome in Senescence Accelerated Mouse Prone 8. ACS Chemical Neuroscience, 9, 1714-1724. https://doi.org/10.1021/acschemneuro.8b00074

  10. 10. 李鑫, 赵雪, 卓恺明, 等. 首发精神分裂症肠道菌群特征及其与精神症状的关系[J]. 中国神经精神疾病杂志, 2022, 48(2): 90-95.

  11. 11. Schwarz, E., Maukonen, J., Hyytiäinen, T., et al. (2018) Analysis of Microbiota in First Episode Psychosis Identifies Preliminary Associations with Symptom Severity and Treatment Response. Schizophrenia Research, 192, 398-403. https://doi.org/10.1016/j.schres.2017.04.017

  12. 12. Nguyen, T.T., Kosciolek, T., Maldonado, Y., et al. (2019) Dif-ferences in Gut Microbiome Composition between Persons with Chronic Schizophrenia and Healthy Comparison Sub-jects. Schizophrenia Research, 204, 23-29. https://doi.org/10.1016/j.schres.2018.09.014

  13. 13. 张言武, 白丽君, 程强, 等. 精神分裂症发作期与缓解期肠道菌群高通量测序分析[J]. 中国神经精神疾病杂志, 2018, 44(12): 705-709.

  14. 14. Quidé, Y., Wilhelmi, C. and Green, M.J. (2020) Structural Brain Morphometry Associated with Theory of Mind in Bipolar Disorder and Schizophrenia. PsyCh Journal, 9, 234-246. https://doi.org/10.1002/pchj.322

  15. 15. Saze, T., Hirao, K., Namiki, C., et al. (2007) In-sular Volume Reduction in Schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 257, 473-479. https://doi.org/10.1007/s00406-007-0750-2

  16. 16. 朱锡群, 易伟. 微生物群-脑-肠轴和中枢神经系统研究进展[J]. 疑难病杂志, 2018, 17(7): 748-752.

  17. 17. Neufeld, K.M., Kang, N., Bienenstock, J., et al. (2011) Reduced Anxiety-Like Behavior and Central Neurochemical Change in Germ-Free Mice. Neurogastroenterology & Motility, 23, 255-264, e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x

  18. 18. Hoban, A.E., Stilling, R.M., Ryan, F.J., et al. (2016) Reg-ulation of Prefrontal Cortex Myelination by the Microbiota. Translational Psychiatry, 6, e774. https://doi.org/10.1038/tp.2016.42

  19. 19. Gareau, M.G., Wine, E., Rodrigues, D.M., et al. (2011) Bacterial Infection Causes Stress-Induced Memory Dysfunction in Mice. Gut, 60, 307-317. https://doi.org/10.1136/gut.2009.202515

  20. 20. 甄莉丽, 汪艳, 彭广海. 伴发代谢综合征的精神分裂症患者认知功能及事件相关电位P300研究[J]. 中国现代医学杂志, 2013, 23(34): 76-79.

  21. 21. 邹超杰, 程宇琪. 肠道微生物在精神分裂症中的研究进展[J]. 医学信息, 2018, 31(2): 29-32+6.

  22. 22. Jiang, H., Ling, Z., Zhang, Y., et al. (2015) Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain, Behavior, and Immunity, 48, 186-194. https://doi.org/10.1016/j.bbi.2015.03.016

  23. 23. Hennings, J.M., Kohli, M.A., Uhr, M., et al. (2019) Pol-ymorphisms in the BDNF and BDNFOS Genes Are Associated with Hypothalamus-Pituitary Axis Regulation in Major Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 95, Article ID: 109686. https://doi.org/10.1016/j.pnpbp.2019.109686

  24. 24. Bonaz, B., Sinniger, V. and Pellissier, S. (2016) An-ti-Inflammatory Properties of the Vagus Nerve: Potential Therapeutic Implications of Vagus Nerve Stimulation. The Journal of Physiology, 594, 5781-5790. https://doi.org/10.1113/JP271539

  25. 25. Dinan, T.G. and Cryan, J.F. (2020) Gut Microbiota: A Missing Link in Psychiatry. World Psychiatry, 19, 111-112. https://doi.org/10.1002/wps.20726

  26. 26. Bravo, J.A., Forsythe, P., Chew, M.V., et al. (2011) Ingestion of Lactoba-cillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055. https://doi.org/10.1073/pnas.1102999108

  27. 27. Bercik, P., Park, A.J., Sinclair, D., et al. (2011) The Anxiolytic Ef-fect of Bifidobacterium longum NCC3001 Involves Vagal Pathways for Gut-Brain Communication. Neurogastroenter-ology & Motility, 23, 1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x

  28. 28. Hansen, M.K., Daniels, S., Goehler, L.E., et al. (2000) Subdiaphragmatic Vagotomy Does Not Block Intraperitoneal Lipopolysaccharide-Induced Fever. Autonomic Neurosci-ence, 85, 83-87. https://doi.org/10.1016/S1566-0702(00)00224-1

  29. 29. Goehler, L.E., Gaykema, R.P., Opitz, N., et al. (2005) Acti-vation in Vagal Afferents and Central Autonomic Pathways: Early Responses to Intestinal Infection with Campylobacter jejuni. Brain, Behavior, and Immunity, 19, 334-344. https://doi.org/10.1016/j.bbi.2004.09.002

  30. 30. Chunchai, T., Samniang, B., Sripetchwandee, J., et al. (2016) Vagus Nerve Stimulation Exerts the Neuroprotective Effects in Obese-Insulin Resistant Rats, Leading to the Improvement of Cognitive Function. Scientific Reports, 6, Article No. 26866. https://doi.org/10.1038/srep26866

  31. 31. Li, Q., Han, Y., Dy, A.B.C., et al. (2017) The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 11, Article No. 120. https://doi.org/10.3389/fncel.2017.00120

  32. 32. Jenkins, T.A., Nguyen, J.C., Polglaze, K.E., et al. (2016) Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8, 56. https://doi.org/10.3390/nu8010056

  33. 33. Roth, B.L., Hanizavareh, S.M. and Blum, A.E. (2004) Serotonin Receptors Represent Highly Favorable Molecular Targets for Cognitive Enhancement in Schizophrenia and Other Disorders. Psychopharmacology (Berl), 174, 17-24. https://doi.org/10.1007/s00213-003-1683-8

  34. 34. Margolis, K.G., Cryan, J.F. and Mayer, E.A. (2021) The Micro-biota-Gut-Brain Axis: From Motility to Mood. Gastroenterology, 160, 1486-1501. https://doi.org/10.1053/j.gastro.2020.10.066

  35. 35. Martin, A.M., Sun, E.W., Rogers, G.B., et al. (2019) The Influ-ence of the Gut Microbiome on Host Metabolism through the Regulation of Gut Hormone Release. Frontiers in Physiol-ogy, 10, Article No. 428. https://doi.org/10.3389/fphys.2019.00428

  36. 36. Szalardy, L., Zadori, D., Toldi, J., et al. (2012) Manipulating Kynurenic Acid Levels in the Brain—On the Edge between Neuroprotection and Cognitive Dysfunction. Current Topics in Medicinal Chemistry, 12, 1797-1806. https://doi.org/10.2174/1568026611209061797

  37. 37. Campbell, B.M., Charych, E., Lee, A.W., et al. (2014) Kynurenines in CNS Disease: Regulation by Inflammatory Cytokines. Frontiers in Neuroscience, 8, Article No. 12. https://doi.org/10.3389/fnins.2014.00012

  38. 38. Lyte, M. (2011) Probiotics Function Mechanistically as Delivery Vehicles for Neuroactive Compounds: Microbial Endocrinology in the Design and Use of Probiotics. Bioessays, 33, 574-581. https://doi.org/10.1002/bies.201100024

  39. 39. Barrett, E., Ross, R.P., O’toole, P.W., et al. (2012) γ-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine. Journal of Applied Microbiology, 113, 411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.x

  40. 40. Dantzer, R., O’Connor, J.C., Freund, G.G., et al. (2008) From Inflammation to Sickness and Depression: When the Immune System Subjugates the Brain. Nature Reviews Neuroscience, 9, 46-56. https://doi.org/10.1038/nrn2297

  41. 41. Yudkin, J.S., Kumari, M., Humphries, S.E., et al. (2000) Inflammation, Obesity, Stress and Coronary Heart Disease: Is Interleukin-6 the Link? Atherosclerosis, 148, 209-214. https://doi.org/10.1016/S0021-9150(99)00463-3

  42. 42. Claesson, M.J., Jeffery, I.B., Conde, S., et al. (2012) Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature, 488, 178-184. https://doi.org/10.1038/nature11319

  43. 43. Biagi, E., Nylund, L., Candela, M., et al. (2010) Through Ageing, and beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLOS ONE, 5, e10667. https://doi.org/10.1371/journal.pone.0010667

  44. 44. Chen, X., Xun, K., Chen, L., et al. (2009) TNF-Alpha, a Potent Lipid Metabolism Regulator. Cell Biochemistry and Function, 27, 407-416. https://doi.org/10.1002/cbf.1596

  45. 45. Hotamisligil, G.S., Arner, P., Caro, J.F., et al. (1995) Increased Adipose Tissue Expression of Tumor Necrosis Factor-Alpha in Human Obesity and Insulin Resistance. Journal of Clinical Inves-tigation, 95, 2409-2415. https://doi.org/10.1172/JCI117936

  46. 46. Zhang, C., Fang, X., Yao, P., et al. (2017) Metabolic Adverse Effects of Olanzapine on Cognitive Dysfunction: A Possible Relationship between BDNF and TNF-Alpha. Psychoneuroendocri-nology, 81, 138-143. https://doi.org/10.1016/j.psyneuen.2017.04.014

  47. 47. Schirmer, M., Smeekens, S.P., Vlamakis, H., et al. (2016) Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 167, 1125-1136.e8. https://doi.org/10.1016/j.cell.2016.10.020

  48. 48. Orbe-Orihuela, Y.C., Lagunas-Martínez, A., Bahena-Román, M., et al. (2018) High Relative Abundance of Firmicutes and Increased TNF-α Levels Correlate with Obesity in Children. Salud Pública de México, 60, 5-11. https://doi.org/10.21149/8133

  49. 49. Lew, L.C., Hor, Y.Y., Yusoff, N.A.A., et al. (2019) Probiotic Lactobacillus plantarum P8 Alleviated Stress and Anxiety While Enhancing Memory and Cognition in Stressed Adults: A Randomised, Double-Blind, Placebo-Controlled Study. Clinical Nutrition, 38, 2053-2064. https://doi.org/10.1016/j.clnu.2018.09.010

  50. 50. Van den Munckhof, I.C.L., Kurilshikov, A., Ter Horst, R., et al. (2018) Role of Gut Microbiota in Chronic Low-Grade Inflammation as Potential Driver for Atherosclerotic Cardiovascu-lar Disease: A Systematic Review of Human Studies. Obesity Reviews, 19, 1719-1734. https://doi.org/10.1111/obr.12750

  51. 51. Sweat, V., Starr, V., Bruehl, H., et al. (2008) C-reactive Protein Is Linked to Lower Cognitive Performance in Overweight and Obese Women. Inflammation, 31, 198-207. https://doi.org/10.1007/s10753-008-9065-3

  52. 52. Bengmark, S. (2013) Gut Microbiota, Immune Development and Function. Pharmacological Research, 69, 87-113. https://doi.org/10.1016/j.phrs.2012.09.002

  53. 53. Dinel, A.L. andré, C., Aubert, A., et al. (2014) Lipopolysaccha-ride-Induced Brain Activation of the Indoleamine 2,3-Dioxygenase and Depressive-Like Behavior Are Impaired in a Mouse Model of Metabolic Syndrome. Psychoneuroendocrinology, 40, 48-59. https://doi.org/10.1016/j.psyneuen.2013.10.014

  54. 54. Grigoleit, J.S., Kullmann, J.S., Wolf, O.T., et al. (2011) Dose-Dependent Effects of Endotoxin on Neurobehavioral Functions in Humans. PLOS ONE, 6, e28330. https://doi.org/10.1371/journal.pone.0028330

  55. 55. Monroe, J.M., Buckley, P.F. and Miller, B.J. (2015) Me-ta-Analysis of Anti-Toxoplasma gondii IgM Antibodies in Acute Psychosis. Schizophrenia Bulletin, 41, 989-998. https://doi.org/10.1093/schbul/sbu159

  56. 56. Forsythe, P. and Kunze, W.A. (2013) Voices from Within: Gut Mi-crobes and the CNS. Cellular and Molecular Life Sciences, 70, 55-69. https://doi.org/10.1007/s00018-012-1028-z

  57. 57. Nonaka, N., Shioda, S., Niehoff, M.L., et al. (2003) Characteriza-tion of Blood-Brain Barrier Permeability to PYY3-36 in the Mouse. Journal of Pharmacology and Experimental Thera-peutics, 306, 948-953. https://doi.org/10.1124/jpet.103.051821

  58. 58. Fetissov, S.O., Hamze Sinno, M., Coëffier, M., et al. (2008) Autoan-tibodies against Appetite-Regulating Peptide Hormones and Neuropeptides: Putative Modulation by Gut Microflora. Nu-trition, 24, 348-359. https://doi.org/10.1016/j.nut.2007.12.006

  59. 59. Braniste, V., Al-Asmakh, M., Kowal, C., et al. (2014) The Gut Mi-crobiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158. https://doi.org/10.1126/scitranslmed.3009759

  60. 60. Smith, O. (2014) The Gut Microbiota and the Blood-Brain Bar-rier. Science Signaling, 7, ec333-ec. https://doi.org/10.1126/scisignal.aaa3404

  61. 61. Santocchi, E., Guiducci, L., Fulceri, F., et al. (2016) Gut to Brain Interaction in Autism Spectrum Disorders: A Randomized Controlled Trial on the Role of Probiotics on Clinical, Bio-chemical and Neurophysiological Parameters. BMC Psychiatry, 16, Article No. 183. https://doi.org/10.1186/s12888-016-0887-5

  62. 62. Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Dou-ble-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, Article No. 256. https://doi.org/10.3389/fnagi.2016.00256

  63. 63. Steenbergen, L., Sellaro, R., Van Hemert, S., et al. (2015) A Ran-domized Controlled Trial to Test the Effect of Multispecies Probiotics on Cognitive Reactivity to Sad Mood. Brain, Be-havior, and Immunity, 48, 258-264. https://doi.org/10.1016/j.bbi.2015.04.003

  64. 64. Talbott, S. and Talbott, J. (2009) Effect of BETA 1,3/1,6 GLUCAN on Upper Respiratory Tract Infection Symptoms and Mood State in Marathon Athletes. Journal of Sports Science and Medicine, 8, 509-515.

  65. 65. Lagier, J.C., Dubourg, G., Million, M., et al. (2018) Culturing the Human Microbiota and Culturomics. Nature Reviews Microbiology, 16, 540-550. https://doi.org/10.1038/s41579-018-0041-0

  66. NOTES

    *通讯作者。

期刊菜单