Advances in Clinical Medicine
Vol. 10  No. 06 ( 2020 ), Article ID: 36214 , 5 pages
10.12677/ACM.2020.106165

Study on the Relationship between High Mobility Group Box 1 and Drug-Induced Liver Injury

Min Li, Qiaoyan Gu

Department of Gastroenterology, Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: May 25th, 2020; accepted: Jun. 15th, 2020; published: Jun. 22nd, 2020

ABSTRACT

High mobility group protein 1 (HMGB1) is a highly versatile and ubiquitous non-histone protein belonging to the HMGB protein family. HMGB1 participates in many DNA events in the nucleus, such as DNA transcription, replication, repair, and recombination; in addition to its intracellular function, HMGB1 can also be released in the extracellular space, and promote the occurrence of inflammatory microenvironment through damage-related molecular patterns. High mobility group protein 1 (HMGB1) is a key protein for coordinating the inflammatory response in drug-induced liver injury (DILI), and has important significance in the early prediction, treatment and prognosis of DILI. This article currently reviews the research related to HMGB1 and drug-induced liver injury.

Keywords:High-Mobility Group Protein 1, Drug-Induced Liver Injury, Inflammatory Response, Biomarkers, Review

高迁移率族蛋白1与药物性肝损伤的相关研究

李敏,古巧燕

延安大学附属医院消化内科,陕西 延安

收稿日期:2020年5月25日;录用日期:2020年6月15日;发布日期:2020年6月22日

摘 要

高迁移率族蛋白1 (HMGB1)是一种高度通用,且无处不在的非组蛋白,属于HMGB蛋白家族。HMGB1在细胞核内参与许多DNA事件,例如DNA转录,复制,修复和重组;除其细胞内功能外,HMGB1还可在细胞外空间释放,通过损伤相关分子模式,促进炎症微环境的发生。高迁移率族蛋白1 (HMGB1)是协调药物性肝损伤(DILI)中炎症反应的关键蛋白,在DILI的早期预测,治疗和预后方面都有重要意义。该文就HMGB1与药物性肝损伤的相关研究做一综述。

关键词 :高迁移率族蛋白1,药物性肝损伤,炎症反应,生物标志物,综述

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

药物性肝损伤(DILI)是一种严重的药物不良反应(DILI is a serious adverse drug reaction),严重可导致肝功能衰竭甚至死亡,给人类健康带来了严重危害。据统计,世界范围内药物性肝损伤死亡病例数量已位居世界第五位。DILI的发病机制目前尚不清楚,且无特异性临床症状表现,因此准确、快速地检测DILI对临床患者分层和治疗具有重要意义,有利于临床前药物设计和风险评估。在临床环境中,高迁移率族蛋白1 (HMGB1)作为DILI的另一个有前途的生物标志物,优于丙氨酸转氨酶(ALT)作为进展和结果的指标,被看作为是一种预警素,有助于早期预测DILI,提供治疗和预后信息,在不久的将来改变DILI的管理并提高患者安全性。

2. HMGB1的组成结构特性

高迁移率族蛋白1 (high mobility group proteinB1, HMGB1)于1973年由Goodwin等 [1] 首次在小牛胸腺中被提取和鉴定,是含量最丰富且目前研究最深入的HMG蛋白。在结构上,HMGB1在啮齿动物和人类之间共享99%的氨基酸序列同一性 [2] [3]。HMGB1由3个区域组成:两个DNA结合结构域(A、B)和一个负电荷羧基末端(酸性末端) [4]。研究证实,B盒概括了全长蛋白的炎性活性,而A盒与HMGB1所有区域结合,拮抗了该蛋白,可以减轻炎症级联反应,羧基末端可以对A盒和B盒从细胞核内转移到细胞核外起保护作用 [5]。

3. HMGB1的分泌与释放

HMGB1普遍存在于细胞核中,当巨噬细胞、组织细胞、中性粒细胞等受到刺激活化后能主动将HMGB1分泌到细胞外 [6]。与大多数典型的全身性炎症反应早期释放的经典细胞因子不同,HMGB1以延迟的方式分泌,并在脓毒症发作后维持高水平的循环。胞外HMGB1最初被确定为内毒素血症和败血症的晚期介体 [7]。

目前HMGB1可被认为是一种“无引线蛋白”,它和别的蛋白不同,它缺乏常规的N端疏水性分泌信号肽 [8]。因此,HMGB1不会按照常规蛋白的分泌途径分泌;另一种是HMGB1从活化免疫细胞中释放的调控需要借助一个物质,称为“前导肽”,缺乏前导肽的HMGB1也不会以常规途径直接从高尔基体转运到细胞外空间 [9] [10]。从活化的免疫细胞释放HMGB1有两个步骤:在第一步中,DAMPs (分子损伤相关模式)或PAMPs (病原损伤相关模式)在免疫细胞的核定位序列点刺激HMGB1的翻译后修饰。这促使HMGB1向细胞质转移。在第二步中,DAMPs或PAMPs通过分泌性溶酶体的形成或激活细胞死亡程序来诱导HMGB1释放到细胞外空间 [10]。HMGB1到底如何分泌尚不清楚。当前提出的模型表明,在细胞应激原组织损伤后,HMGB1可以通过乙酰化,磷酸化,甲基化或氧化进行翻译后修饰 [11],这些修饰不仅调节HMGB1的结构,定位和生物学功能,而且还调节其从细胞中的释放。HGMB1被认为是原型DAMP,Tracey和合作者展示了HMGB1作为原型DAMP的第一个证据 [12]。

4. HMGB1与药物性肝损伤中的相关研究

HMGB1作为一种重要的促炎及趋化因子,介导免疫损伤。当过量摄入APAP时被肝细胞色素Cyp2e1转化成其反应性有毒代谢产物,这些有毒的代谢产物可共价结合HMGB1,在APAP引起的肝损伤过程中,坏死性和凋亡性肝细胞释放出许多内源性DAMP [13],例如HMGB1,可以诱导免疫细胞(如中性粒细胞)的浸润,介导免疫损伤,同时过量服用APAP会显着增加HMGB1的循环水平 [14];细胞外HMGB1与结合配偶体相互作用,例如晚期糖基化终产物(RAGE)的受体,Toll样受体(TLR) [15],此两种受体是最流行和研究最广的HMGB1细胞外受体中的两种 [16]。有实验通过对TLR4缺乏和RAGE缺乏的小鼠进行了致死剂量的APAP治疗,发现RAGE缺陷肝细胞对其显示出正常代谢并保留了对其诱导的细胞死亡的敏感性,在受体APAP毒性期间,HMGB1/RAGE轴提供了坏死细胞和嗜中性粒细胞之间的直接联系,诱导中性粒细胞募集到坏死组织中进一步加剧了肝损伤 [13]。

HMGB1在DILI的早期预测和预后的判断方面都具有重要的意义。近来有研究将CK-18、HMGB1和microRNA-122作为DILI的生物学标志物,发现这些生物学标志物在临床前和临床数据上都对其表现出敏感状态 [17]。同时也有研究发现在DILI患者中,尽管不同人群之间存在差异,但HMGB1值的总体表现与miR-122相似,可预测过早出现的APAP过量患者的毒性,但总HMGB1值无法用来确定可能性APAP过量后的死亡率,到目前为止,还没有研究进行了HMGB1在非APAP DILI中的预后价值测试 [18];有实验通过对过量服用APAP的患者和健康志愿者进行对照研究,发现过量服用APAP的患者血清中存在乙酰化的HMGB1,在入选研究的第1天,这些患者的血清中总HMGB1显著升高,高于健康志愿者和LAP正常的APAP过量患者观察到的值。而在APAP正常的LFT组中,总HMGB1未升高,乙酰化HMGB1仅在死亡需要肝移植或预后较差的患者中升高。因此,乙酰化的HMGB1具有作为DILI早期预测及预后指标的潜力 [19]。

HMGB1的中和作用及其对损伤后炎症的减轻介导了治疗效果。Lundback等 [20] 研究了部分人源化抗HMGB1单克隆抗体的治疗功效,发现使用抗HMGB1抗体治疗后血清ALT、microRNA-122水平均较前有所降低,并完全消除了APAP诱导的炎症标志物 [21];甘草甜素是一种直接抑制HMGB1的植物化学物质,作为HMGB1的抑制剂已被广泛用于治疗肝病在亚洲和欧洲 [22],甘草甜素能消融肝细胞特异的HMGB1或在药理学上治疗HMGB1,从而挽救了APAP诱导的肝炎症和损伤 [23]。使用中和抗体阻断HMGB1也已被证明可以改善APAP毒性中的肝细胞再生和肝脏结构恢复 [24],推测了药理预防HMGB1介导的损伤放大的可能性。

5. 小结与展望

DILI的临床表现和病理变化较为复杂,因此准确而可靠的生物标志物将对DILI的预防、诊断和治疗提供很大的帮助,现有的DILI生物标志物如丙氨酸转氨酶(ALT)在早期预测、诊断及预后方面具有一定的局限性,HMGB1亚型已被证明比ALT更敏感的生物标志物,介于HMGB1及其受体在肝脏中的广泛表达,已牵涉到许多常见肝脏疾病的发病机理中,HMGB1作为DILI的一种新生生物标记物在疾病的早期预测,治疗及预后的判断方面都显现出较大的潜力。

文章引用

李 敏,古巧燕. 高迁移率族蛋白1与药物性肝损伤的相关研究
Study on the Relationship between High Mobility Group Box 1 and Drug-Induced Liver Injury[J]. 临床医学进展, 2020, 10(06): 1097-1101. https://doi.org/10.12677/ACM.2020.106165

参考文献

  1. 1. Goodwin, G.H., Sanders, C. and Johns, E.W. (1973) A New Group of Chromatin-Associated Proteins with a High Content of Acidic and Basic Aminoacids. European Journal of Biochemistry, 38, 14-19. https://doi.org/10.1111/j.1432-1033.1973.tb03026.x

  2. 2. Ferrari, S., Ronfani, L., Calogero, S. an Bianchi, M.E. (1994) The Mouse Gene Coding for High Mobility Group 1 Protein (HMG1). J. Boil. Chem., 269, 28803-28808.

  3. 3. Huang, J.-K., Johnson, B.H., Gerald, R. and Wen, L. (1989) A Human Placental cDNA Clone That Encodes Nonhistone Chromosomal Protein HMG-1. Nucleic Acids Research, 17, 1197-1214. https://doi.org/10.1093/nar/17.3.1197

  4. 4. 刘娟, 邬小萍. 高迁移率族蛋白B1的生物学作用及研究进展[J]. 南昌大学学报(医学版), 2013, 53(3): 89-92.

  5. 5. 胡辰晨, 刘嫣方, 苏兆亮, 许化溪. HMGB1在心血管疾病中作用的研究进展[J]. 国际检验医学杂志, 2011, 32(21): 2475-2479.

  6. 6. Tsung, A., Klune, J.R., Zhang, X., et al. (2007) HMGB1 Release Induced by Liver Ischemia Involves Toll-Like Receptor 4 Dependent Reactive Oxygen Species Production and Calcium-Mediated Signaling. Journal of Experimental Medicine, 204, 2913-2923. https://doi.org/10.1084/jem.20070247

  7. 7. Lu, B., Tang, Y., Zhao, X., Antoine, D., Xiao, X., Wang, H., Andersson, U., Billiar, T. and Tracey, K.J. (2015) Regulation of Post-Translational Modifications of HMGB1 during Immune Responses. Antioxidants & Redox Signaling, 24, No. 12. https://doi.org/10.1089/ars.2015.6409

  8. 8. Gorr, S.-U. and Darling, D.S. (1995) An N-Terminal Hydrophobic Peak Is the Sorting Signal of Regulated Secretory Proteins. FEBS Letters, 361, 8-12. https://doi.org/10.1016/0014-5793(95)00142-V

  9. 9. Andersson, U. and Tracey, K.J. (2011) HMGB1 Is a Therapeutic Target for Sterile in Flammation and Infection. Annual Review of Immunology, 29, 139-162. https://doi.org/10.1146/annurev-immunol-030409-101323

  10. 10. Lu, B., Antoine, D.J., Kwan, K., Lundbäck, P., Wähämaa, H., Schierbeck, H., Robinson, M., Van Zoelen, M.A., Yang, H., Li, J., Harris, E.H., Chavan, S.S., Wang, H., Andersson, U. and Tracey, K.J. (2014) JAK/STAT1 Signaling Promotes HMGB1 Hyper-Acetylation and Nuclear Translocation. Proceedings of the National Academy of Sciences of the United States of America, 111, 3068-3073. https://doi.org/10.1073/pnas.1316925111

  11. 11. Tang, Y., Zhao, X., Antoine, D., Xiao, X., Wang, H., Andersson, U., Billiar, T.R., Tracey, K.J. and Lu, B. (2016) Regulation of Posttranslational Modifications of HMGB1 during Immune Responses. Antioxidants & Redox Signaling, 24, 620-634. https://doi.org/10.1089/ars.2015.6409

  12. 12. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J.M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., et al. (1999) HMG-1 as a Late Mediator of Endotoxin Lethality in Mice. Science, 285, 248-251. https://doi.org/10.1126/science.285.5425.248

  13. 13. Huebener, P., Pradere, J.P., Hernandez, C., Gwak, G.Y., Caviglia, J.M., Mu, X., Loike, J.D., Jenkins, R.E., Antoine, D.J. and Schwabe, R.F. (2015) The HMGB1/RAGE Axis Triggers Neutrophil-Mediated Injury Amplification Following Necrosis. The Journal of Clinical Investigation, 125, 539-550. https://doi.org/10.1172/JCI76887

  14. 14. Zamora, R., Barclay, D., Yin, J., Alonso, E.M., Leonis, M.A., Mi, Q., Billiar, T.R., Simmons, R.L., Squires, R.H. and Vodovotz, Y. (2019) HMGB1 is a Central Driver of Dynamic Pro-Inflammatory Networks in Pediatric Acute Liver Failure Induced by Acetaminophen. Scientific Reports, 9, Article No. 5971. https://doi.org/10.1038/s41598-019-42564-5

  15. 15. Yang, H., Wang, H., Chavan, S.S. and Andersson, U. (2015) High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule. Molecular Medicine, 21, S6-S12. https://doi.org/10.2119/molmed.2015.00087

  16. 16. 蔡妩扬, 蒋骏航, 钱峰. HMGB1研究进展[J]. 上海医药, 2019, 40(3): 60-63.

  17. 17. 杨新英, 庄艳, 康富标, 孙殿兴. 高迁移率族蛋白B1在肝脏疾病中的研究进展[J]. 临床误诊误治, 2018, 31(10): 106-109.

  18. 18. Howell, L.S., Ireland, L., Park, B.K. and Goldring, C.E. (2018) MiR-122 and Other microRNAs as Potential Circulating Biomarkers of Drug-Induced Liver Injury. Expert Review of Molecular Diagnostics, 18, 47-54. https://doi.org/10.1080/14737159.2018.1415145

  19. 19. Antoine, D.J., Jenkins, R.E., Dear, J.W., Williams, D.P., et al. (2012) Molecular Forms of HMGB1 and Keratin-18 as Mechanistic Biomarkers for Mode of Cell Death and Prognosis during Clinical Acetaminophen Hepatotoxicity. Journal of Hepatology, 56, 1070-1079. https://doi.org/10.1016/j.jhep.2011.12.019

  20. 20. Lundback, P., Lea, J.D., Sowinska, A., et al. (2016) A Novel High Mobility Group Box 1 Neutralizing Chimeric Antibody Attenuates Drug-Induced Liver Injury and Post Injury Inflammation in Mice. Hepatology, 64, 1699-1710. https://doi.org/10.1002/hep.28736

  21. 21. Lundbäck, P., Lea, J.D., Sowinska, A., Ottosson, L., et al. (2016) A Novel High Mobility Group Box 1 Neutralizing Chimeric Antibody Attenuates Drug-Induced Liver Injury and Postinjury Inflammation in Mice. Hepatology, 64, 1699-1710. https://doi.org/10.1002/hep.28736

  22. 22. Khambu, B., Yan, S. M., Huda, N. and Yin, X.M. (2019) Role of High-Mobility Group Box-1 in Liver Pathogenesis. International Journal of Molecular Sciences, 20, 5314. https://doi.org/10.3390/ijms20215314

  23. 23. Yan, T., Wang, H., Zhao, M., Yagai, T., Chai, Y., Krausz, K.W., Xie, C., Cheng, X., Zhang, J., Che, Y., et al. (2016) Glycyrrhizin Protects against Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis Factor Alpha-Mediated Apoptosis. Drug Metabolism and Disposition, 44, 720-731. https://doi.org/10.1124/dmd.116.069419

  24. 24. Yang, R., Zhang, S., Cotoia, A., Oksala, N., Zhu, S. and Tenhunen, J. (2012) High Mobility Group B1 Impairs Hepatocyte Regeneration in Acetaminophen Hepatotoxicity. BMC Gastroenterology, 12, Article No. 45. https://doi.org/10.1186/1471-230X-12-45

期刊菜单