Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50200 , 12 pages
10.12677/ACM.2022.124384

miR-429通过调控靶基因LRP1抑制乳腺癌细胞增殖

纪涵青,吴琍*

青岛大学附属医院乳腺病诊疗中心,山东 青岛

收稿日期:2022年3月11日;录用日期:2022年4月2日;发布日期:2022年4月13日

摘要

目的:分析miR-429对乳腺癌细胞增殖的抑制作用,通过分析miR-429对其靶基因的调控方式研究miR-429抑制乳腺癌细胞增殖的分子机制。方法:RT-qPCR技术检测乳腺癌组织及体外培养细胞系中miR-429的表达水平;MTT法检测不同miR-429表达水平对乳腺癌细胞系细胞增殖的影响;通过海肾–萤火虫双荧光素酶报告基因活性检测系统、RT-qPCR及Westernblot检测其对靶基因的调控作用。结果:乳腺癌组织及体外培养细胞系中miR-429表达水平显著降低;过表达miR-429显著抑制乳腺癌细胞系细胞增殖;miR-429通过碱基互补的方式与其靶基因LRP1 3’-UTR区域8个碱基结合抑制其表达。结论:miR-429通过调控靶基因LRP1抑制乳腺癌细胞增殖。

关键词

miR-429,乳腺癌,LRP1,抑癌基因

miR-429 Inhibits Proliferation of Breast Cancer Cells by Regulating Target Gene LRP1

Hanqing Ji, Li Wu*

Diagnosis and Treatment Centre of Breast Diseases, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Mar. 11th, 2022; accepted: Apr. 2nd, 2022; published: Apr. 13th, 2022

ABSTRACT

Objective: The purpose of this study is to analyze the inhibitory effect of miR-429 on the proliferation of breast cancer cells, and study the molecular mechanism of miR-429 by analysing the regulation mode of miR-429 on its target genes. Methods: RT-qPCR is used to detect the relative expression level of miR-429 in breast cancer and the corresponding cancer cells. MTT is used to detect the cell proliferation of breast cancer cells with different expression of miR-429. The double luciferase reporter gene activity detection system, RT-qPCR, and Western blot are used to analyze the regulation of miR-429 on the target gene. Results: miR-429 is significantly down regulated in breast cancer tissues and cultured cell lines compared to the corresponding control. Elevated miR-429 expression inhibits cell proliferation of breast cancer cells. miR-429 inhibits the expression of its target gene LRP1 by binding to eight bases in the 3’-UTR through base complementation. Conclusion: miR-429 inhibits breast cancer cell proliferation by regulating target gene LRP1.

Keywords:miR-429, Breast Cancer, LRP1, Antioncogene

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

乳腺癌(Breast cancer)为世界范围内女性最常见的恶性肿瘤,约占女性新发癌症病例的30% [1] [2] [3] [4]。由于早期诊断和综合治疗策略的进步,乳腺癌患者的预后得到了改善 [3]。据报道,20%~30%乳腺癌患者在诊断和原发肿瘤治疗后可能发生转移,约90%癌症相关死亡归因于转移 [5]。特定的生物学过程和不同的遗传途径与预后、化疗及靶向药物的敏感性相关。对特定基因功能通路的识别有助于选择针对患者亚群的靶向药物 [6]。寻找新的潜在肿瘤标记物对于乳腺癌的个体化治疗及诊断至关重要。

miR-429为miRNA-200家族成员之一,作为致癌基因或抑癌基因在多种肿瘤的发生及发展中发挥重要的调控作用 [7] - [13]。研究表明,miR-429失调参与了多种癌症的上皮–间充质转化、发生、发展、侵袭、转移、凋亡和耐药性 [14] [15] [16] [17]。如miR-429通过抑制CDKN2B促进膀胱癌细胞增殖 [18]。此外,不少报道显示miR-429通过调控下游靶基因抑制乳腺癌增殖和侵袭 [19] [20] [21]。例如,miR-429抑制乳腺癌细胞的迁移和侵袭 [22]。然而,其具体作用机制仍有待阐明。

本研究拟探讨miR-429对乳腺癌细胞增殖的抑制作用机制,寻找miR-429调控的原癌基因或抑癌基因,为寻找乳腺癌诊断治疗及预后的生物标志物奠定实验基础。

2. 材料与方法

2.1. 实验材料

人乳腺癌临床组织(青岛大学附属医院乳腺外科手术切除并经病理证实的浸润性乳腺癌组织);人肾上皮细胞系293T,人乳房上皮细胞系MCF-10A,人乳腺癌细胞系MDA-MB-231 (青岛大学医学部中心实验室),人乳腺癌细胞系MCF-7 (青岛大学附属医院中心实验室);miR-432 mimics、miR-432 inhibitors、NC-mimics、NC-inhibitors (上海吉玛生物公司,序列见表1);MTT细胞增殖检测试剂盒(Sigma);总RNA提取试剂TRIzol、cDNA合成试剂、荧光定量PCR试剂(Life Technologies, lnc);细胞转染试剂(Life Technologies, lnc);细胞培养用基础培养基DMEM、胰蛋白酶、青霉素链霉素混合液、PBS,胎牛血清(Gibco);总蛋白提取试剂(Thermo Fisher Scientific);BCA蛋白质定量试剂盒(YEASEN);兔抗人LRP1抗体(恩晶生物科技有限公司);鼠抗人GAPDH抗体(北京全式金生物技术有限公司);ECL发光液(Thermo Fisher Scientific);HRP 标记山羊抗兔IgG、HRP标记山羊抗鼠IgG (武汉博士德生物工程有限公司);双荧光素酶报告基因检测试剂盒(Progema);pSI-Check2载体、HB-infusionTM无缝克隆试剂盒(汉恒生物科技有限公司);DNA测序、引物(生工生物)。

Table 1. miRNA mimics sequence

表1. miRNA mimics序列

2.2. 实验方法

2.2.1. 细胞培养

从液氮中取出冻存的细胞,立即置于37℃水浴锅解冻。将解冻后的细胞移入15 ml离心管,加入2 ml完全培养基(89% DMEM + 10% FBS + 1% PS)离心后于新的完全培养基重悬,于10 cm细胞培养皿或T25细胞培养瓶中,放置于37℃培养箱中培养(5% CO2)。显微镜下观察其生长状态,待细胞聚合度为95%以上进行细胞传代处理。

2.2.2. 细胞转染

使用无抗生素培养基(90% DMEM + 10% FBS)提前将待转染细胞按一定比例种到6孔或12孔细胞培养皿中。待细胞聚合度为70%~90%时,按照细胞转染试剂操作步骤进行转染。细胞转染后24小时可进行基因mRNA表达水平检测,48小时后进行蛋白质表达水平检测,或进行后续分析。

2.2.3. MTT法检测细胞增殖

转染后的细胞按照2000个/孔密度种到96孔细胞培养皿,共计5块96孔板。待细胞完全贴壁后进行第1天OD450nm值检测。每孔加入10 μl MTT,同时设置空白孔,置于细胞培养箱中孵育4小时,进行OD450nm吸光值检测。每天同一时间检测一次,持续检测5天。每孔实际吸光值 = 所检测吸光值 − 空白组吸光值。

2.2.4. 实时荧光定量PCR (RT-qPCR, Quantitative Reverse Transcription PCR)

收集新鲜处理细胞或组织,根据RNA提取试剂Trizol的操作说明进行细胞或组织总RNA提取,并测定每组RNA浓度,及A260/A280。根据下游检测基因类型选择不同的cDNA逆转录试剂盒,按照逆转录试剂盒操作说明进行cDNA文库构建,并将得到的cDNA置于−20℃保存。根据RT-qPCR检测试剂盒操作说明进行miRNA或基因mRNA表达值检测(引物序列见表2)。根据2ΔΔCt计算方法计算基因相对表达值。

2.2.5. 蛋白质免疫印迹(WB, Westernblot)

采用细胞总蛋白提取试剂RIPA (其中加入蛋白酶抑制剂,现用现配)进行细胞总蛋白质提取。将提取所得蛋白质进行BCA定量后按统一浓度进行稀释。加入6 × Protein Loading Buffer沸水煮沸5分钟后进行SDS-PAGE电泳。电泳结束后根据转膜的操作步骤将PAGE胶上的蛋白质转移至0.45 μM的PVDF膜上,并于5%脱脂奶粉中进行封闭2小时。按照一定稀释比例于室温进行一抗孵育2小时。TBST清洗5次后,于室温进行二抗孵育1小时。重复TBST洗膜5次后进行ECL发光拍照。通过Image J软件进行条带的灰度值统计,按照以下方法计算蛋白质相对表达量。目的蛋白相对表达量 = 目的蛋白灰度值/GAPDH灰度值。

Table 2. Primer sequences used in fluorescent quantitative PCR reaction

表2. 荧光定量PCR反应中所用引物序列

2.2.6. 海肾–萤火虫双荧光素酶报告基因活性检测

细胞转染48小时后弃掉旧培养基,于PBS清洗2次。96孔板每孔加入100 μl蒸馏水稀释的1 × PLB,用移液枪吹散细胞,置于水平摇床,并于1500 r/min,25℃摇匀,持续15 min。吸取细胞裂解液至1.5 mL离心管中,4℃,12,000 r/min离心10 min,取上清液于新的EP管中。96孔板中每孔加入100 μl荧光素酶检测试剂II (LAR II)工作液,每孔加入20 μl细胞裂解液,移液枪吹打混匀2~3次后测定记录萤火虫荧光素酶活性值,此值为内参值;每一样品中再加入Stop & Glo® Reagent 100 mL,移液枪吹打混匀后测定记录海肾荧光素酶活性值,为报告基因发光值;利用荧光检测仪,通过萤火虫荧光素酶和海肾荧光素酶活性值的比值计算相对荧光素酶活性。

2.3. 统计分析

采用SPSS 22.0和Graphpad Prism 8.0软件进行统计学处理,计量资料数据以 x ¯ ± s 表示,多个时间点组间比较采用析因设计的方差分析,组间两两比较采用LSD-t检验;多组数据比较采用单因素方差分析,两组均数的比较采用t检验,以P < 0.05为差异有统计学意义。

3. 实验结果

3.1. 乳腺癌组织中miR-429表达水平检测

收集来自青岛医科大学附属医院乳腺外科手术切除并经病理证实的浸润性乳腺癌组织8例,以及来源于经病理证实的正常乳腺组织8例。通过RT-qPCR技术进行miR-429相对表达量的检测。通过计算及统计分析,结果显示,与正常组织相比,乳腺癌组织中miR-429的表达水平显著降低(P < 0.0001) (图1)。

Figure 1. Relative expression level of miR-429 in breast cancer tissues

图1. 乳腺癌组织中miR-429中的相对表达水平

3.2. 乳腺癌细胞系中miR-429表达水平检测

由于收集的乳腺癌组织为包含多种类型细胞的肿瘤微环境组织,因此检测组织中miR-429的表达水平不足以明确其真实表达水平。随后通过RT-qPCR技术检测了2种人乳腺癌细胞系MCF-7及MDA-MB-231,以及对应正常乳腺上皮细胞系MCF-10A中miR-429的表达水平。结果显示,与正常细胞系MCF-10A相比,人乳腺癌细胞系MCF-7及MDA-MB-231中miR-429的表达水平显著降低(图2)。与乳腺癌组织中的表达一致,即乳腺癌组织及体外培养的细胞系中miR-429的表达水平均显著降低。

Figure 2. Relative expression level of miR-429 in breast cancer cell lines

图2. 乳腺癌细胞系中miR-429中的相对表达水平

3.3. 过表达或敲低表达miR-429对乳腺癌细胞增殖的影响

为研究miR-429对乳腺癌的作用机制,购买了miR-429特异性过表达模拟物miR-429 mimics及其对应的阴性对照mimics NC,将其转染进入乳腺癌细胞系MDA-MB-231构建miR-429过表达细胞系。同时购买miR-429特异性抑制剂miR-429 inhibitors及其对应阴性对照inhibitors NC,将其转染到乳腺癌细胞系MDA-MB-231构建miR-429敲低表达细胞系。首先通过RT-qPCR技术检测miR-429 mimics及miR-429 inhibitors在MDA-MB-231中的作用效率。结果显示,与空白对照组相比,转染miR-429 mimics的细胞系中miR-429表达水平显著提高(P < 0.001),转染mimics NC的细胞系中miR-429表达无显著变化(P = 0.0880) (图3(a))。miR-429 inhibitors转染组中miR-429表达水平显著降低(P < 0.01),inhibitors NC组的细胞系中miR-429表达无显著变化(P = 0.1406) (图3(b))。表明,miR-429 mimics及miR-429 inhibitors可达到后续实验要求。

为研究该基因对乳腺癌细胞生长的作用,检测不同表达水平miR-429对MDA-MB-231细胞体外生长的影响。细胞转染后分别于第1~5天的同一时间点进行MTT活性检测。结果显示,在细胞培养的第3~5天,miR-429 mimics处理组细胞的增殖活力明显低于其他组(P < 0.0001) (图3(c))。此外,miR-429 inhibitors处理组中细胞增殖水平无明显变化,即敲低表达miR-429对乳腺癌细胞增殖无影响(P = 0.2011)。

Figure 3. Effects of over expression or low expression of miR-429 on the proliferation of breast cancer cell lines (***P < 0.001)

图3. 过表达或敲低表达miR-429对乳腺癌细胞系增殖的影响(***P < 0.001)

3.4. miR-429下游靶基因预测

由于miRNA通常结合其对应靶基因的mRNA序列,通过降解信号通路或生物学途径的某些关键基因发挥其调控作用。本课题组前期通过生物数据库筛选得到多个参与细胞周期调控的靶基因。其中,我们注意到低密度脂蛋白受体相关蛋白1 (LRP1, LDL receptor related protein 1) 3’-UTR区域包含8个与miR-429特异性结合的碱基序列(5’-CAGUAUUA-3’) (图4)。提示LRP1可能为miR-429下游靶基因,并参与乳腺癌中miR-429的作用过程。

Figure 4. Binding site of miR-429 and its target gene LRP1

图4. miR-429与其靶基因LRP1结合位点

3.5. 双荧光素酶报告基因活性检测miR-429对LRP1的调控作用

随后检测miR-429对LRP1的调控机制。构建含有miR-429应答序列的LRP1基因3’-UTR正常片段(CAGTATTA, LRP1-3’-UTR-WT)及突变片段(GACTCTGA, LRP1-3’-UTR-MUT),并将其构建于pSI-Check2载体(图5(a))。转染LRP1-3UTR-WT和LRP1-3UTR-MUT质粒48小时后收集细胞,通过双荧光素酶报告基因活性检测技术检测miR-429对LRP1的调控机制。结果显示,与阴性对照组相比,miR-429显著下调LRP1-3UTR-WT的luciferase的表达(P < 0.001) (图5(b))。相反,LRP1-3UTR-MUT转染组中,miR-429未能下调luciferase的表达(P > 0.05),表明突变的DNA序列封闭了miR-429的结合位点,导致miR-429未能与其结合。结果证实了TargetScan预测结果,即miR-429与LRP1基因3’-UTR序列5’-CAGTATTA-3’直接结合,并调控其表达。

Figure 5. Detection of the regulatory effect of miR-429 on LRP1 by double luciferase reporter gene activity

图5. 双荧光素酶报告基因活性检测miR-429对LRP1的调控作用

3.6. 过表达或敲低表达miR-429对LRP1 mRNA表达水平的影响

为验证miR-429对LRP1的调控作用,通过RT-qPCR技术检测不同miR-429表达水平乳腺癌细胞中LRP1的表达水平。结果显示,与空白对照组相比,miR-429 mimics处理的MDA-MB-231细胞中LRP1 mRNA表达水平显著降低(P = 0.0005),miR-429 inhibitors处理组(P = 0.0695)、mimics NC (P = 0.3156)及inhibitors NC (P = 0.1270)处理组中LRP1 mRNA表达水平无明显变化(图6)。表明LRP1为miR-429下游靶基因,其表达水平受miR-429调控。

Figure 6. Effect of over expression or low expression of miR-429 on the expression level of LRP1 mRNA

图6. 过表达或敲低表达miR-429对LRP1 mRNA表达水平的影响

Figure 7. Effect of over expression or low expression of miR-429 on LRP1 protein expression level

图7. 过表达或敲低表达miR-429对LRP1蛋白质表达水平的影响

3.7. 过表达或敲低表达miR-429对LRP1蛋白质表达水平的影响

通过westernblot技术检测miR-429过表达及表达沉默对LRP1蛋白质表达水平的影响。结果显示,与control组相比,转染miR-429 mimics显著降低LRP1蛋白质表达水平,且具有统计学意义(P = 0.0017),Mimics NC转染组无显著差异(P = 0.8294) (图7(a), 图7(b))。miR-429 inhibitors及Inhibitors NC转染组均无显著差异(P = 0.6629, P = 0.9882) (图7(c), 图7(d))。

4. 讨论

乳腺癌为一种复杂的肿瘤性疾病,包括肿瘤的起始和发展过程(tumor initiation and growth) [23],转移和侵袭过程(metastasis and invasion) [24],血管生成过程(angiogenesis) [25],并有显著的复发可能性 [26]。当乳腺细胞的细胞和分子信号通路受到干扰或失调时,将引发这类恶性变化 [27]。针对乳腺癌基因表达的个体化性质,乳腺癌治疗发展出多种治疗方案。然而,尽管有细胞毒性化疗(cytotoxic chemotherapies)、内分泌治疗(endocrine therapies)和靶向治疗(targeted therapies)等治疗方法,转移性乳腺癌的5年总生存率仍低于30% [1] [28]。对乳腺癌的调控机制及新的治疗靶点仍有待不断发掘。

miRNA为一类小RNA分子,通过与其靶mRNA结合,在基因沉默和翻译抑制过程中发挥重要调控作用 [29] [30]。过去的二十年里,miRNA与各种癌症之间的联系得到了广泛的研究 [31]。基于miRNA的研究证据,许多潜在的用于诊断和预后的癌症生物标志物被提出,为癌症筛查提供了一个新的视角。自2005年 [32] 首次报道miRNA在乳腺癌中的作用以来,大量研究表明miRNA在乳腺癌中的表达发生改变,并以致癌miRNAs或抑癌miRNAs的角色发挥作用 [33]。随着高通量测序技术及其他生物信息学技术的迅速发展,miRNAs已被提出作为乳腺癌的有前途的生物标志物 [34] [35]。

本论文研究结果提出miR-429作为乳腺癌的肿瘤标志物,通过调控其靶基因LRP1抑制乳腺癌细胞增殖。我们发现在乳腺癌临床组织及其体外培养的细胞系中miR-429表达水平均显著下降。过表达miR-429显著抑制乳腺癌细胞系细胞增殖。然而,敲低表达miR-429对乳腺癌细胞系生长无明显影响。可能由于乳腺癌中miR-429本底表达水平较低,在此基础上进一步敲低该基因表达,可能对乳腺癌细胞的生长无法产生效应性作用。这些结果进一步明确了miR-429作为一种抑癌因子,参与乳腺癌肿瘤发生及发展。miR-429为miR-200家族成员之一 [36]。除miR-429,miR-200家族成员包括miR-200a, miR-200b, miR-200c, miR-141,其中每一种都能产生成熟的-5p和-3p miRNA [36]。miR-200家族控制多种在癌细胞中发挥重要作用的基因的表达。其中一种主要通路为上皮–间充质转化,一种实体肿瘤侵袭性生长调控的重要组成部分。因此,miR-200家族一直是许多旨在发现阻断癌细胞生长和疾病进展策略的研究的焦点 [37]。miR-200家族参与多种人类癌症的调控,其中包括肝细胞癌 [38]、卵巢癌 [39]、神经胶质瘤 [40]、肺癌 [41] [42]。此外,miR-200家族的表达可影响化疗耐药机制 [43] [44] [45]。本论文结果表明,乳腺癌中miR-200家族成员miR-429表达显著下降可能是该癌症肿瘤的促发因素,或在乳腺癌恶性发展即转移中发挥促进作用。

通过生物学数据库Targetscan分析miR-429的潜在作用靶基因。我们注意到LRP1 mRNA序列中3’-UTR区域具有与miR-429具有完全互补的碱基序列5’-CAGUAUUA-3’。miRNA与其靶基因的结合方式一般为两种,其中一种为miRNA与其靶基因mRNA序列不完全结合,抑制该mRNA翻译进而抑制靶蛋白生成;另外一种为miRNA与其靶基因mRNA序列完全结合,降解该mRNA进而抑制靶蛋白生成 [30] [46] [47]。miR-429与LRP1 mRNA序列中3’-UTR区域碱基序列5’-CAGUAUUA-3’完全结合,提示miR-429可能通过与该碱基序列互补结合进而降解细胞中LRP1 mRNA。随后通过RT-qPCR技术、双荧光素酶报告基因活性检测技术,及westernblot技术明确了LRP1为miR-429的直接作用靶基因。LRP1为一种内源性/信号转导细胞表面受体,控制细胞和分子机制,驱动多种器官的生理和病理炎症反应和组织重塑 [48],最近被确定为多癌症临床结果预测的生物标志物网络的核心。此外,LRP1被认为在癌症的调控中发挥作用。例如,近期报道显示,LRP1表达缺失与结肠癌预后恶化相关 [49]。LRP1过表达与肾细胞癌(renal cell carcinoma)预后恶化和肿瘤免疫功能下降相关 [50],意味着肾细胞癌中LRP1具有肿瘤促进功能。此外,LRP1非细胞自主抑制肺肿瘤细胞增殖,进而改善肺癌预后 [51]。本研究内容表明过表达miR-429通过降解LRP1 mRNA进而抑制其蛋白质合成,最终抑制乳腺癌细胞系MDA-MB-231细胞增殖。

本论文研究仍存在一定局限性。1) 由于小动物培养周期较长,本研究中仅通过细胞水平研究miR-429对乳腺癌的调控作用。未来的研究中需通过小动物体内模型研究miR-429对乳腺癌细胞增殖的抑制作用。2) 本研究揭示了miR-429通过其下游靶基因LRP1发挥其肿瘤抑制功能。然而,LRP1表达下调对乳腺癌细胞增殖的作用效果仍有待进一步证实。3) 由于所收集乳腺癌样本数目有限,且后续随访周期较长,本研究无法分析miR-429及LRP1的表达水平与乳腺癌预后生存的相关性。更多数目的样本需要继续收集,并记录随访信息,以分析miR-429及LRP1的表达水平与乳腺癌预后生存的相关性。

综上所述,本研究结果表明miR-429通过与其下游靶基因LRP1 mRNA 3’-UTR区域结合降解其mRNA,抑制LRP1蛋白质合成,最终抑制乳腺癌细胞增殖。这为寻找乳腺癌诊断治疗及预后的生物标志物奠定实验基础。

文章引用

纪涵青,吴 琍. miR-429通过调控靶基因LRP1抑制乳腺癌细胞增殖
miR-429 Inhibits Proliferation of Breast Cancer Cells by Regulating Target Gene LRP1[J]. 临床医学进展, 2022, 12(04): 2671-2682. https://doi.org/10.12677/ACM.2022.124384

参考文献

  1. 1. Liang, Y., Zhang, H., Song, X. and Yang, Q. (2020) Metastatic Heterogeneity of Breast Cancer: Molecular Mechanism and Potential Therapeutic Targets. Seminars in Cancer Biology, 60, 14-27. https://doi.org/10.1016/j.semcancer.2019.08.012

  2. 2. Woolston, C. (2015) Breast Cancer. Nature, 527, S101. https://doi.org/10.1038/527S101a

  3. 3. Fahad Ullah, M. (2019) Breast Cancer: Current Perspectives on the Disease Status. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance, Vol. 1152, Springer, Cham, 51-64. https://doi.org/10.1007/978-3-030-20301-6_4

  4. 4. Libson, S. and Lippman, M. (2014) A Review of Clinical Aspects of Breast Cancer. International Review of Psychiatry, 26, 4-15. https://doi.org/10.3109/09540261.2013.852971

  5. 5. The Cancer Genome Atlas Network (2012) Comprehensive Molecular Portraits of Human Breast Tumours. Nature, 490, 61-70. https://doi.org/10.1038/nature11412

  6. 6. Curigliano, G. and Criscitiello, C. (Eds.) (2014) Successes and Limitations of Targeted Cancer Therapy in Breast Cancer. Progress in Tumor Research, 41, 15-35. https://doi.org/10.1159/000355896

  7. 7. Yao, J., Tan, W., Wu, W., Ye, R., Li, Y. and Chen, Y. (2020) Effects of miR-432 and miR-548c-3p on the Proliferation and Invasion of Osteosarcoma Cells. Journal of BUON, 25, 1562-1568.

  8. 8. Tong, L., Yang, H., Xiong, W., Tang, G., Zu, X. and Qi, L. (2021) Circ_100984-miR-432-3p Axis Regulated c-Jun/YBX-1/beta-Catenin Feedback Loop Promotes Bladder Cancer Progression. Cancer Science, 112, 1429-1442. https://doi.org/10.1111/cas.14774

  9. 9. Dong, C., Fan, B., Ren, Z., Liu, B. and Wang, Y. (2021) CircSMARCA5 Facilitates the Progression of Prostate Cancer through miR-432/PDCD10 Axis. Cancer Biotherapy & Radiopharmaceuticals, 36, 70-83. https://doi.org/10.1089/cbr.2019.3490

  10. 10. Wang, Y., Xu, W., Zu, M. and Xu, H. (2021) Circular RNA Circ_0021093 Regulates miR-432/Annexin A2 Pathway to Promote Hepatocellular Carcinoma Progression. Anticancer Drugs, 32, 484-495. https://doi.org/10.1097/CAD.0000000000001053

  11. 11. Gong, Y., Zhang, S., Wang, H.X., Huang, Y., Fu, X., Xiang, P., et al. (2022) The Involvement of the circFOXM1-miR-432-Galpha12 Axis in Glioma Cell Proliferation and Aggressiveness. Cell Death Discovery, 8, Article No. 9. https://doi.org/10.1038/s41420-021-00782-9

  12. 12. Ye, B., Qiao, K., Zhao, Q., Jiang, Z., Hu, N. and Wang, F. (2022) Tanshinone I Restrains Osteosarcoma Progression by Regulating Circ_0000376/miR-432-5p/BCL2 Axis. Molecular and Cellular Biochemistry, 477, 1-13. https://doi.org/10.1007/s11010-021-04257-4

  13. 13. Wang, G. and Yang, H. (2021) CircRNA DUSP16 Knockdown Suppresses Colorectal Cancer Progression by Regulating the miR-432-5p/E2F6 Axis. Cancer Management and Research, 13, 6599-6609. https://doi.org/10.2147/CMAR.S323437

  14. 14. Guo, C.M., Liu, S.Q. and Sun, M.Z. (2020) miR-429 as Biomarker for Diagnosis, Treatment and Prognosis of Cancers and Its Potential Action Mechanisms: A Systematic Literature Review. Neoplasma, 67, 215-228. https://doi.org/10.4149/neo_2019_190401N282

  15. 15. Han, Y.T., et al. (2020) miR-429 Mediates Tumor Growth and Metastasis in Colorectal Cancer [Retraction]. American Journal of Cancer Research, 10, 2688.

  16. 16. Xiao, P., Liu, W. and Zhou, H. (2021) miR-429 Promotes the Proliferation of Non-Small Cell Lung Cancer Cells via Targeting DLC-1. Oncology Letters, 22, Article No. 545. https://doi.org/10.3892/ol.2021.12806

  17. 17. Chen, X., Wang, A.L., Liu, Y.Y., Zhao, C.X., Zhou, X., Liu, H.L., et al. (2020) MiR-429 Involves in the Pathogenesis of Colorectal Cancer via Directly Targeting LATS2. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5316276. https://doi.org/10.1155/2020/5316276

  18. 18. Yang, J., Liu, Y., He, A., Liu, Y., Wu, J., Liao, X., et al. (2017) Hsa-miR-429 Promotes Bladder Cancer Cell Proliferation via Inhibiting CDKN2B. Oncotarget, 8, 68721-68729. https://doi.org/10.18632/oncotarget.19878

  19. 19. Zhang, L., Liu, Q., Mu, Q., Zhou, D., Li, H., Zhang, B., et al. (2020) MiR-429 Suppresses Proliferation and Invasion of Breast Cancer via Inhibiting the Wnt/beta-Catenin Signaling Pathway. Thoracic Cancer, 11, 3126-3138. https://doi.org/10.1111/1759-7714.13620

  20. 20. Zhang, X., Yu, X., Zhao, Z., Yuan, Z., Ma, P., Ye, Z., et al. (2020) MicroRNA-429 Inhibits Bone Metastasis in Breast Cancer by Regulating CrkL and MMP-9. Bone, 130, Article ID: 115139. https://doi.org/10.1016/j.bone.2019.115139

  21. 21. Wang, C., Ju, H., Shen, C. and Tong, Z. (2015) miR-429 Mediates Delta-Tocotrienol-Induced Apoptosis in Triple-Negative Breast Cancer Cells by Targeting XIAP. International Journal of Clinical and Experimental Medicine, 8, 15648-15656.

  22. 22. Ye, Z.B., Ma, G., Zhao, Y.H., Xiao, Y., Zhan, Y., Jing, C., et al. (2015) miR-429 Inhibits Migration and Invasion of Breast Cancer Cells in Vitro. International Journal of Oncology, 46, 531-538. https://doi.org/10.3892/ijo.2014.2759

  23. 23. Polyak, K. (2007) Breast Cancer: Origins and Evolution. Journal of Clinical Investigation, 117, 3155-3163. https://doi.org/10.1172/JCI33295

  24. 24. Karagiannis, G.S., Goswami, S., Jones, J.G., Oktay, M.H. and Condeelis, J.S. (2016) Signatures of Breast Cancer Metastasis at a Glance. Journal of Cell Science, 129, 1751-1758. https://doi.org/10.1242/jcs.183129

  25. 25. Castaneda-Gill, J.M. and Vishwanatha, J.K. (2016) Antiangiogenic Mechanisms and Factors in Breast Cancer Treatment. Journal of Carcinogenesis, 15, 1. https://doi.org/10.4103/1477-3163.176223

  26. 26. Ahmad, A. (2013) Pathways to Breast Cancer Recurrence. International Scholarly Research Notices, 2013, Article ID: 290568. https://doi.org/10.1155/2013/290568

  27. 27. Fouad, Y.A. and Aanei, C. (2017) Revisiting the Hallmarks of Cancer. American Journal of Cancer Research, 7, 1016-1036.

  28. 28. Jin, L., Han, B., Siegel, E., Cui, Y., Giuliano, A. and Cui, X. (2018) Breast Cancer Lung Metastasis: Molecular Biology and Therapeutic Implications. Cancer Biology & Therapy, 19, 858-868. https://doi.org/10.1080/15384047.2018.1456599

  29. 29. Correia de Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C. and Foti, M. (2019) Deciphering miRNAs’ Action through miRNA Editing. International Journal of Molecular Sciences, 20, Article No. 6249. https://doi.org/10.3390/ijms20246249

  30. 30. Fabian, M.R. and Sonenberg, N. (2012) The Mechanics of miRNA-Mediated Gene Silencing: A Look under the Hood of miRISC. Nature Structural & Molecular Biology, 19, 586-593. https://doi.org/10.1038/nsmb.2296

  31. 31. He, B., Zhao, Z., Cai, Q., Zhang, Y., Zhang, P., Shi, S., et al. (2020) miRNA-Based Biomarkers, Therapies, and Resistance in Cancer. International Journal of Biological Sciences, 16, 2628-2647. https://doi.org/10.7150/ijbs.47203

  32. 32. Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005) MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 65, 7065-7070. https://doi.org/10.1158/0008-5472.CAN-05-1783

  33. 33. Wang, W. and Luo, Y.P. (2015) MicroRNAs in Breast Cancer: Oncogene and Tumor Suppressors with Clinical Potential. Journal of Zhejiang University: SCIENCE B, 16, 18-31. https://doi.org/10.1631/jzus.B1400184

  34. 34. Jiang, D. and Zhao, N. (2006) A Clinical Prognostic Prediction of Lymph Node-Negative Breast Cancer by Gene Expression Profiles. Journal of Cancer Research and Clinical Oncology, 132, 579-587. https://doi.org/10.1007/s00432-006-0108-6

  35. 35. Shen, J., Stass, S.A. and Jiang, F. (2013) MicroRNAs as Potential Biomarkers in Human Solid Tumors. Cancer Letters, 329, 125-136. https://doi.org/10.1016/j.canlet.2012.11.001

  36. 36. Wen, B., Zhu, R., Jin, H. and Zhao, K. (2021) Differential Expression and Role of miR-200 Family in Multiple Tumors. Analytical Biochemistry, 626, Article ID: 114243. https://doi.org/10.1016/j.ab.2021.114243

  37. 37. Cavallari, I., Ciccarese, F., Sharova, E., Urso, L., Raimondi, V., Silic-Benussi, M., et al. (2021) The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers, 13, Article No. 5874. https://doi.org/10.3390/cancers13235874

  38. 38. Mao, Y., Chen, W., Wu, H., Liu, C., Zhang, J. and Chen, S. (2020) Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. OncoTargets and Therapy, 13, 13479-13490. https://doi.org/10.2147/OTT.S288791

  39. 39. Koutsaki, M., Libra, M., Spandidos, D.A. and Zaravinos, A. (2017) The miR-200 Family in Ovarian Cancer. Oncotarget, 8, 66629-66640. https://doi.org/10.18632/oncotarget.18343

  40. 40. Peng, L., Fu, J. and Ming, Y. (2018) The miR-200 Family: Multiple Effects on Gliomas. Cancer Management and Research, 10, 1987-1992. https://doi.org/10.2147/CMAR.S160945

  41. 41. Xue, B., Chuang, C.H., Prosser, H.M., Fuziwara, C.S., Chan, C., Sahasrabudhe, N., et al. (2021) miR-200 Deficiency Promotes Lung Cancer Metastasis by Activating Notch Signaling in Cancer-Associated Fibroblasts. Genes & Development, 35, 1109-1122. https://doi.org/10.1101/gad.347344.120

  42. 42. Liu, C., Hu, W., Li, L.L., Wang, Y.X., Zhou, Q., Zhang, F., et al. (2018) Roles of miR-200 Family Members in Lung Cancer: More than Tumor Suppressors. Future Oncology, 14, 2875-2886. https://doi.org/10.2217/fon-2018-0155

  43. 43. Gao, Y., Zhang, W., Liu, C. and Li, G. (2019) miR-200 Affects Tamoxifen Resistance in Breast Cancer Cells through Regulation of MYB. Scientific Reports, 9, Article ID: 18844. https://doi.org/10.1038/s41598-019-54289-6

  44. 44. Kozak, J., Jonak, K. and Maciejewski, R. (2020) The Function of miR-200 Family in Oxidative Stress Response Evoked in Cancer Chemotherapy and Radiotherapy. Biomedicine & Pharmacotherapy, 125, Article ID: 110037. https://doi.org/10.1016/j.biopha.2020.110037

  45. 45. Zhang, H.F., Xu, L.Y. and Li, E.M. (2014) A Family of Pleiotropically Acting MicroRNAs in Cancer Progression, miR-200: Potential Cancer Therapeutic Targets. Current Pharmaceutical Design, 20, 1896-1903. https://doi.org/10.2174/13816128113199990519

  46. 46. Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002

  47. 47. Fabian, M.R., Sonenberg, N. and Filipowicz, W. (2010) Regulation of mRNA Translation and Stability by MicroRNAs. Annual Review of Biochemistry, 79, 351-379. https://doi.org/10.1146/annurev-biochem-060308-103103

  48. 48. Wujak, L., Schnieder, J., Schaefer, L. and Wygrecka, M. (2018) LRP1: A Chameleon Receptor of Lung Inflammation and Repair. Matrix Biology, 68-69, 366-381. https://doi.org/10.1016/j.matbio.2017.12.007

  49. 49. Boulagnon-Rombi, C., Schneider, C., Leandri, C., Jeanne, A., Grybek, V., Bressenot, A.M., et al. (2018) LRP1 Expression in Colon Cancer Predicts Clinical Outcome. Oncotarget, 9, 8849-8869. https://doi.org/10.18632/oncotarget.24225

  50. 50. Feng, C., Ding, G., Ding, Q. and Wen, H. (2018) Overexpression of Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is Associated with Worsened Prognosis and Decreased Cancer Immunity in Clear-Cell Renal Cell Carcinoma. Biochemical and Biophysical Research Communications, 503, 1537-1543. https://doi.org/10.1016/j.bbrc.2018.07.076

  51. 51. Meng, H., Chen, G., Zhang, X., Wang, Z., Thomas, D.G., Giordano, T.J., et al. (2011) Stromal LRP1 in Lung Adenocarcinoma Predicts Clinical Outcome. Clinical Cancer Research, 17, 2426-2433. https://doi.org/10.1158/1078-0432.CCR-10-2385

  52. NOTES

    *通讯作者Email: wuliqd@163.com

期刊菜单