Advances in Clinical Medicine
Vol. 10  No. 11 ( 2020 ), Article ID: 38752 , 7 pages
10.12677/ACM.2020.1011402

中老年睡眠障碍与认知功能相关性分析

刘敬,王亚男,张栩,刘学军,韩滨,孙锦平*

青岛大学附属医院,山东 青岛

收稿日期:2020年11月2日;录用日期:2020年11月18日;发布日期:2020年11月25日

摘要

目的:研究具有睡眠障碍人群其认知功能的改变。方法:在青岛社区选取教育程度为小学及以上50~80岁人群,共327名参与者完成匹兹堡睡眠质量指数(Pittsburgh sleep quality index, PSQI)测试,按照PSQI测试总分 > 7分认定为睡眠障碍作为筛查标准进行分组,分睡眠良好组(PSQI < 7),睡眠障碍组。对五个认知领域进行神经心理测试:包括情景记忆、注意力和处理速度、视觉空间能力、语言能力和执行能力,利用听觉词语学习测试(the Auditory Verbal Learning Test, AVLT)和复杂图形模仿(Rey Osterrieth Complex Figure Test, ROCF)情景记忆。连线测试A (the Trail Making Test A, TMT-A)和符号数字模式测试(Symbol Digit Modalities Test, SDMT)评估注意力和处理速度。ROCF复刻部分和CDT时钟绘制测试评估视觉空间。波士顿命名测试(the Boston Naming Test, BNT)和词语流畅性(Verbal fluency)评估语言能力。由连线测试B (the Trail Making Test B, TMT-B)和Stroop色字测验(Stroop Color-word Test, Stroop)评估执行功能。比较两组各认知功能差异,并对PSQI各因子及各认知功能进行相关性分析。结果睡眠良好组与睡眠障碍组受试者在注意功能、执行功能差异有统计学意义(P < 0.05),在记忆、语言及视空间差异均无统计学意义(P > 0.05)。表示注意功能的SDMT得分与PSQI总分、入睡时间、睡眠效率呈负相关,相关性显著;表示执行功能的Stroop得分与PSQI总分呈正相关;性别与PSQI总分、主观睡眠质量、入睡时间、睡眠时间呈正相关,相关性显著;年龄与睡眠效率、催眠药物呈正相关,相关性显著。结论:本研究显示,睡眠障碍主要影响注意及执行功能,调节睡眠障碍可有助于预防认知功能损伤。

关键词

睡眠障碍,认知功能,匹兹堡睡眠质量指数

Analysis of Correlation between Sleep Disorder and Cognitive Function in the Middle and the Old

Jing Liu, Yanan Wang, Xu Zhang, Xuejun Liu, Bin Han, Jinping Sun*

The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Nov. 2nd, 2020; accepted: Nov. 18th, 2020; published: Nov. 25th, 2020

ABSTRACT

Objective: To study the changes of cognitive function in people with sleep disorder. Methods: Right-handed people aged 50 - 80 years old with primary school education and above in Qingdao community were selected. A total of 327 participants completed PSQI, the groups were grouped according to the PSQI total score of >7 for the presence of sleep disorders as the screening criteria. Neuropsychological tests were carried out in five cognitive areas: episodic memory, attention and processing speed, visual-spatial ability, language ability and executive ability. Episodic memory tests were comprised of the Auditory Verbal Learning Test (AVLT) and Recall component of Rey Osterrieth Complex Figure Test (ROCF). Attention and processing speed tests were comprised of the Trail Making Test A (TMT-A) and Symbol Digit Modalities Test (SDMT). Visual-spatial tests were comprised of the Copy component of ROCF and Clock-Drawing Test (CDT). Language ability tests were comprised of the Boston Naming Test (BNT) and Verbal fluency. Executive function tests were comprised of the Trail Making Test B (TMT-B) and Stroop Color-word Test (Stroop). Results: In the two groups, attention and executive had significant differences (P < 0.05). Here were no significant differences in memory, language and visual space (P > 0.05). SDMT score of attention function was negatively correlated with PSQI total score, time to sleep and sleep efficiency, significant correlation. Gender was positively correlated with PSQI total score, subjective sleep quality, sleeping time, and sleeping time. Age was positively correlated with sleep efficiency and hypnotic drugs, and the correlation was significant. Conclusion: Sleep disorders mainly affect attention and executive function. Each factor of PSQI is related to different cognitive fields, which shows that sleep can be specifically regulated through changes in each cognitive field.

Keywords:Sleep Disorders, Cognitive Function, Pittsburgh Sleep Quality Index

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

当今社会,人口老龄化现象日益严重,随着年龄渐增、身体机能的衰退,中老年人的睡眠质量逐渐下降,我国老年人睡眠障碍患病率约为30.6%~41.2% [1],认知是人脑接受外界信息,经过加工处理,转换成内在的心理活动,从而获取知识或应用知识的过程。它包括记忆、语言、视空间、执行、计算和理解判断等方面。轻度认知功能损害(Mild Cognitive Impairment, MCI)是介于正常老年与早期痴呆之间的一种状态,发展为阿尔茨海默病(Alzheimer’s disease, AD)的风险极大 [2]。睡眠障碍与认知功能损害的关系成为近年来的研究热点,但未有定论,本研究通过匹兹堡睡眠质量指数评价受试者睡眠情况及睡眠质量,分析睡眠障碍与认知功能损害之间的相关性。

2. 对象和方法

2.1. 研究对象

本研究的参与者来自2016~2019年间调研的北京老年脑健康促进计划(Beijing Aging Brain Rejuvenation Initiative, BABRI)。入组标准 [3]:1) 在青岛社区50~80岁人群;2) 受教育时间 ≥ 6年;3) 中文版简明精神量表(MMSE) [4] 成绩为24分或以上;4) 无已知会影响大脑功能的神经系统疾病、精神疾病或全身性疾病史,包括严重血管疾病、头部创伤、肿瘤、目前抑郁、酗酒和癫痫;5) 没有服用精神药物的历史。

排除标准 [3]:1) 疑似老年痴呆患者以及因身体或精神残疾而无法完成神经心理学量表及睡眠量表检查的人;2) 完成神经心理学测试的人因隐私等原因拒绝回答个人信息问卷;3) 有可能损害认知功能的结构异常的参与者:有脑血管病变,如肿瘤、硬脑膜下血肿、以及单纯外伤所致创伤的人;4) 有成瘾、精神疾病或正在接受治疗会影响认知功能的参与者(如抗抑郁药、止痛药、苯二氮平类药物等)。

符合纳排标准的入选者共327例,男性123例,女性204例,平均年龄60.49 ± 8.175岁。PSQI得分将入选者分为睡眠良好组171例(PSQI ≤ 7分),和睡眠障碍组156例(PSQI > 7分) [5]。在本研究已获得北京师范大学脑成像中心机构审查委员会(IRB)的批准。每位参与者都已填写知情同意书。

2.2. 研究方法

2.2.1. 一般资料收集

收集受试者个人资料包括年龄、性别、接受正规教育的年限、吸烟、饮酒、高血压及糖尿病。

2.2.2. 认知功能评定

由受过统一培训的专业人员采用蒙特利尔认知评估量表(MOCA)北京版评估总体认知功能。利用听觉言语学习测试(AVLT) [6] 和Rey Osterrieth Complex Figure Test (ROCF) [7] 情景记忆。连线测试A (TMT-A) [8] 和符号数字模式测试(SDMT) [9] 评估注意力和处理速度。ROCF [7] 复刻部分和CDT时钟绘制测试 [10] 评估视觉空间。波士顿命名测试(BNT) [11] 和词语流畅性(Verbal fluency)评估语言能力。由连线测试B (TMT-B) [8] 和Stroop色字测验 [12] 评估执行功能。

2.2.3. 睡眠功能评定

PSQI [13] [14] 用于评估最近1个月睡眠质量。本问卷共18个项目,7个不同组成部分(即主观睡眠质量、入睡时间、睡眠时间、睡眠效率、睡眠障碍、催眠药物及日间功能碍)。每个分项按0~3等级计分,各分项得分累计为PSQI得分,分数越高表明睡眠质量越差。PSQI量表被广泛用于调查研究和临床试验,按照PSQI总分 > 7分存在睡眠障碍 [5] 作为筛查标准进行评估。

2.3. 统计学方法

采用SPSS 23.0统计软件对数据进行统计学分析,计数资料用百分率(%)表示,采用χ2检验;计量资料用均值 ± 标准差(x ± s)表示,对睡眠良好组及睡眠障碍组代表各认知功能的量表得分行独立样本t检验及曼-惠特尼U检验。对PSQI各部分及代表各认知功能的量表得分做Pearson相关性检验及肯德尔tau-b检验。检验水准 = 0.05,以P < 0.05为差异有统计学意义。

3. 结果

3.1. 一般资料

睡眠良好组与睡眠障碍组在年龄、性别、受教育年限、吸烟、饮酒、高血压及糖尿病方面,差异无统计学意义(P > 0.05)。见表1

3.2. 各认知域得分与比较

睡眠良好组与睡眠障碍组受试者在注意功能、执行功能差异有统计学意义(P < 0.05),在MoCa总分差异均无统计学意义,记忆、语言及视空间无差异(P > 0.05)。见表2

3.3. PSQI各因子及注意及执行认知域的相关性分析

经分析,表示注意功能的SDMT得分与PSQI总分(r = −0.115, P = 0.038)、入睡时间(r = −0.110, P = 0.009)、睡眠效率(r = −0.086, P = 0.043)呈负相关,相关性显著;表示执行功能的Stroop得分与PSQI总分呈正相关(r = 0.096, P = 0.084);性别与PSQI总分(r = 0.110, P = 0.019)、主观睡眠质量(r = 0.150, P = 0.004)、入睡时间(r = 0.127, P = 0.013)、睡眠时间(r = 0.120, P = 0.018)呈正相关,相关性显著;年龄与睡眠效率(r = 0.101, P = 0.019)、催眠药物(r = 0.102, P = 0.024)呈正相关,相关性显著。见表3

Table 1. General information comparison

表1. 一般资料比较

Table 2. Comparison of general information and cognitive domains between sleep well group and sleep disorder group

表2. 睡眠良好组与睡眠障碍组一般资料及各认知域比较

注:*示P < 0.05,显示差异有统计学意义。

Table 3. Correlation analysis of PSQI factors with attention and executive cognitive domain, gender and age

表3. PSQI各因子与注意及执行认知域及性别、年龄的相关性分析

注:表格内数字为P值,*示P < 0.05;**示P < 0.01,均表示相关性显著。

4. 讨论

随着年龄的增长,睡眠的睡眠效率通常会下降,老年人需要更长的时间才能入睡,睡眠效率下降,入睡后觉醒次数增加,睡眠质量下降 [15]。在55岁以上的成年人中已经观察到睡眠中断影响认知功能 [16]。

本研究通过独立样本t检验及曼–惠特尼U检验对睡眠良好组及睡眠障碍组各认知领域进行分析,结果显示两组差异主要体现在注意及执行功能,而在记忆、语言、视空间差异无统计学意义。睡眠障碍影响注意及执行功能,这与既往研究结果基本一致,睡眠障碍与认知功能损伤是双向的,并且是相互促进的 [16],但也有研究表明,睡眠障碍组在时间定向、即刻记忆、注意力和计算力、命名、重复、阅读、书写、视空间的组间比较有统计学差异,也有研究显示,也有证据表明睡眠差影响记忆功能 [17]。这与本研究存在些许差异,具体差异方面有待进一步研究。

睡眠障碍与认知功能损害相互促进可能与以下机制有关:1) 与认知损害相关的病理蛋白清除减少:睡眠时间减少、睡眠质量下降时患者大脑Aβ清除减少,大量Aβ沉积,促使其出现认知功能障碍。睡眠质量下降是神经变性疾病的早期表现,可导致认知障碍的发生,并促使其向痴呆发展 [18]。2) 神经递质紊乱:兴奋性神经递质可促进觉醒,包括乙酰胆碱等。抑制性递质与睡眠有关,包括γ-氨基丁酸。这些相关神经递质系统共同调节着睡眠–觉醒周期。同时这些神经递质通路又与记忆等认知功能密切相关。因此,这些递质及神经传导通路的异常可能导致MCI患者出现认知障碍和睡眠障碍等症状。也有研究指出,有睡眠障碍的老年人会因为夜间低血氧及睡眠时间减少而导致认知功能障碍,甚至痴呆的风险增加 [19],有基础研究表明,睡眠障碍诱发小鼠海马的神经炎症,并损害小鼠海马依赖学习和记忆。有待进一步研究的是,这些发现表明睡眠不安引起的神经炎症和学习记忆障碍可能是导致住院患者认知功能下降的原因 [20]。

本研究通过肯德尔tau-b对PSQI各因子与注意及执行认知域及性别、年龄的相关性分析发现,表示注意功能的SDMT得分与PSQI总分、入睡时间、睡眠效率呈负相关,相关性显著;性别与PSQI总分、主观睡眠质量、入睡时间、睡眠时间呈正相关,相关性显著;年龄与睡眠效率、催眠药物呈正相关,相关性显著。

在本研究中,性别与PSQI总分、主观睡眠质量、入睡时间、睡眠时间呈正相关,而有学者指出,主观睡眠障碍与受试者的记忆相关 [21],而在本研究中未得到此结论。有研究显示,女性短(≤6小时/夜)或长(≥8小时/夜)睡眠时间较(7小时/夜)的发展为MCI或者痴呆的风险较高 [22],性别确与睡眠时间相关,但结果亦有差异,实验结果的差异,可能由于本研究评价睡眠时间为近一月,上述研究为对睡眠的长期观察。

药物依然是改善睡眠的主要手段,那些不使用这些药物的人群相较于服用安眠药的人群有显著的发展为MCI的风险 [23]。本研究挖掘PSQI各因子与注意及执行认知域及性别、年龄的相关性,可指导临床用药,注意认知域损伤及女性睡眠障碍人群,可应用非苯二氮卓类佐匹克隆、唑吡坦、扎来普隆以改善难以入睡及睡眠时间短的状态。老年睡眠障碍人群应用催眠药物多,但存在觉醒次数多,可尝试新型催眠镇静药物APD125,其可提高睡眠的持续度,减少觉醒、微觉醒及睡眠时相的转换次数,增加慢波睡眠 [24]。

本研究的局限性在于,本研究样本量虽大,但对受教育年限有要求,不能全部概括青岛社区人群全貌,且本实验未对患者进行随访,不能观察到睡眠及认知变化。

综上所述,本研究结果显示,睡眠质量差人群在注意及执行功能有明显损伤,老年女性对自己睡眠的质量评价更低,并表现出难以入睡,睡眠时间短、夜间易醒。因此早期对睡眠障碍的中老年人群进行针对性干预可能有助于认知功能的保护,尤其是执行、注意这两个认知域,这有利于中老年人群的身心健康,有助于改善其生活质量。

基金项目

基于大型前瞻性队列研究的临床前阿尔茨海默病综合预防与治疗的中美合作研究(2018YFC1315200)。

文章引用

刘 敬,王亚男,张 栩,刘学军,韩 滨,孙锦平. 中老年睡眠障碍与认知功能相关性分析
Analysis of Correlation between Sleep Disorder and Cognitive Function in the Middle and the Old[J]. 临床医学进展, 2020, 10(11): 2642-2648. https://doi.org/10.12677/ACM.2020.1011402

参考文献

  1. 1. Lu, L., Wang, S.B., Rao, W., et al. (2019) The Prevalence of Sleep Disturbances and Sleep Quality in Older Chinese Adults: A Comprehensive Meta-Analysis. Behavioral Sleep Medicine, 17, 683-697. https://doi.org/10.1080/15402002.2018.1469492

  2. 2. Sanford, A.M. (2017) Mild Cognitive Impairment. Clinics in Geriatric Medicine, 33, 325-337. https://doi.org/10.1016/j.cger.2017.02.005

  3. 3. Shu, N., Liang, Y., Li, H., et al. (2012) Disrupted Topological Organization in White Matter Structural Networks in Amnestic Mild Cognitive Impairment: Relationship to Subtype. Radiology, 265, 518-527. https://doi.org/10.1148/radiol.12112361

  4. 4. Folstein, M.F., Folstein, S.E. and Mchugh, P.R. (1975) “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric Research, 12, 189-198. https://doi.org/10.1016/0022-3956(75)90026-6

  5. 5. Mollayeva, T., Thurairajah, P., Burton, K., et al. (2016) The Pittsburgh Sleep Quality Index as a Screening Tool for Sleep Dysfunction in Clinical and Non-Clinical Samples: A Systematic Review and Meta-Analysis. Sleep Medicine Reviews, 25, 52-73. https://doi.org/10.1016/j.smrv.2015.01.009

  6. 6. Rosenberg, S.J., Ryan, J.J. and Prifitera, A. (1984) Rey Auditory-Verbal Learning Test Performance of Patients with and without Memory Impairment. Journal of Clinical Psychology, 40, 785-787. https://doi.org/10.1002/1097-4679(198405)40:3<785::AID-JCLP2270400325>3.0.CO;2-4

  7. 7. Tupler, L.A., Welsh, K.A., Asare-Aboagye, Y., et al. (1995) Reliability of the Rey-Osterrieth Complex Figure in use with Memory-Impaired Patients. Journal of Clinical and Experimental Neuropsychology, 17, 566-579. https://doi.org/10.1080/01688639508405146

  8. 8. Gordon, N.G. (1972) The Trail Making Test in Neuropsychological Diagnosis. Journal of Clinical Psychology, 28, 167-169. https://doi.org/10.1002/1097-4679(197204)28:2<167::AID-JCLP2270280212>3.0.CO;2-X

  9. 9. Sheridan, L.K., Fitzgerald, H.E., Adams, K.M., et al. (2006) Normative Symbol Digit Modalities Test Performance in a Community-Based Sample. Archives of Clinical Neuropsychology, 21, 23-28. https://doi.org/10.1016/j.acn.2005.07.003

  10. 10. Ishiai, S., Sugishita, M., Ichikawa, T., et al. (1993) Clock-Drawing Test and Unilateral Spatial Neglect. Neurology, 43, 106-110. https://doi.org/10.1212/WNL.43.1_Part_1.106

  11. 11. Knesevich, J.W., LaBarge, E. and Edwards, D. (1986) Predictive Value of the Boston Naming Test in Mild Senile Dementia of the Alzheimer Type. Psychiatry Research, 19, 155-161. https://doi.org/10.1016/0165-1781(86)90008-9

  12. 12. Koss, E., Ober, B.A., Delis, D.C., et al. (1984) The Stroop Color-Word Test: Indicator of Dementia Severity. The International Journal of Neuroscience, 24, 53-61. https://doi.org/10.3109/00207458409079534

  13. 13. 刘贤臣, 唐茂芹, 胡蕾, 等. 匹兹堡睡眠质量指数的信度和效度研究[J]. 中华精神科杂志, 1996, 29(2): 103-107.

  14. 14. Buysse, D.J., Reynolds 3rd, C.F., Monk, T.H., et al. (1989) The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Research, 28, 193-213. https://doi.org/10.1016/0165-1781(89)90047-4

  15. 15. Phillips, B. and Ancoli-Israel, S. (2001) Sleep Disorders in the Elderly. Sleep Medicine, 2, 99-114. https://doi.org/10.1016/S1389-9457(00)00083-6

  16. 16. Blackwell, T., Yaffe, K., Ancoli-Israel, S., et al. (2006) Poor Sleep Is Associated with Impaired Cognitive Function in Older Women: The Study of Osteoporotic Fractures. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 61, 405-410. https://doi.org/10.1093/gerona/61.4.405

  17. 17. Walker, M.P. and Stickgold, R. (2006) Sleep, Memory, and Plasticity. Annual Review of Psychology, 57, 139-166. https://doi.org/10.1146/annurev.psych.56.091103.070307

  18. 18. Bubu, O.M., Brannick, M., Mortimer, J., et al. (2017) Sleep, Cognitive Impairment, and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Sleep, 40, zsw032. https://doi.org/10.1093/sleep/zsw032

  19. 19. Gelber, R.P., Redline, S., Ross, G.W., et al. (2015) Associations of Brain Lesions at Autopsy with Polysomnography Features before Death. Neurology, 84, 296-303. https://doi.org/10.1212/WNL.0000000000001163

  20. 20. Zhu, B., Dong, Y., Xu, Z., et al. (2012) Sleep Disturbance Induces Neuroinflammation and Impairment of Learning and Memory. Neurobiology of Disease, 48, 348-355. https://doi.org/10.1016/j.nbd.2012.06.022

  21. 21. Westerberg, C.E., Lundgren, E.M., Florczak, S.M., et al. (2010) Sleep Influences the Severity of Memory Disruption in Amnestic Mild Cognitive Impairment: Results from Sleep Self-Assessment and Continuous Activity Monitoring. Alzheimer Disease and Associated Disorders, 24, 325-333. https://doi.org/10.1097/WAD.0b013e3181e30846

  22. 22. Chen, J.C., Espeland, M.A., Brunner, R.L., et al. (2016) Sleep Duration, Cognitive Decline, and Dementia Risk in Older Women. Alzheimer’s & Dementia, 12, 21-33. https://doi.org/10.1016/j.jalz.2015.03.004

  23. 23. Burke, S.L., Hu, T., Spadola, C.E., et al. (2018) Mild Cognitive Impairment: Associations with Sleep Disturbance, Apolipoprotein e4, and Sleep Medications. Sleep Medicine, 52, 168-176. https://doi.org/10.1016/j.sleep.2018.09.001

  24. 24. Rosenberg, R., Seiden, D.J., Hull, S.G., et al. (2008) APD125, a Selective Serotonin 5-HT(2A) Receptor Inverse Agonist, Significantly Improves Sleep Maintenance in Primary Insomnia. Sleep, 31, 1663-1671. https://doi.org/10.1093/sleep/31.12.1663

  25. NOTES

    *通讯作者。

期刊菜单