Advances in Clinical Medicine
Vol. 11  No. 11 ( 2021 ), Article ID: 46467 , 5 pages
10.12677/ACM.2021.1111743

Wnt/β-catenin信号通路与多发性骨髓瘤上皮间质转化表型的关系

姜骁娜,许晗,古雅雯,王伟,史雪*

青岛大学附属医院血液科,山东 青岛

收稿日期:2021年10月8日;录用日期:2021年11月8日;发布日期:2021年11月15日

摘要

多发性骨髓瘤是血液系统最常见的恶性肿瘤之一,其复发难治的特点是治疗的一个难点。骨髓瘤患者易发生髓外浸润,患者预后极差。现有大量的研究表明,常发生于实体瘤中的上皮间质转化特征,也在间质肿瘤中发生,比如胶质瘤。多发性骨髓瘤作为一个侵袭性很强的血液肿瘤,我们猜测上皮间质转化在其转移与侵袭中也发挥着作用。Wnt/β-catenin信号通路与肿瘤侵袭转移研究较多,于是我们在本综述中归纳总结了关于骨髓瘤上皮间质转化的研究,并讨论Wnt/β-catenin信号通路在其中的作用。

关键词

多发性骨髓瘤,上皮间质转化,Wnt/β-catenin信号通路

Relationship between Wnt/β-Catenin Signaling Pathway and Epithelial Mesenchymal Transformation Phenotype in Multiple Myeloma

Xiaona Jiang, Han Xu, Yawen Gu, Wei Wang, Xue Shi*

Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Oct. 8th, 2021; accepted: Nov. 8th, 2021; published: Nov. 15th, 2021

ABSTRACT

Multiple myeloma is one of the most common hematological malignancies, and its recurrence is difficult to treat. Patients with myeloma are prone to extramedullary infiltration and have a poor prognosis. A large number of studies have shown that epithelial-mesenchymal transformation features, which are common in solid tumors, also occur in mesenchymal tumors, such as gliomas. Multiple myeloma is a highly aggressive hematologic tumor, and we suspect that epithelial-mesenchymal transformation may also play a role in its metastasis and invasion. There are many studies on Wnt/β-catenin signaling pathway and tumor invasion and metastasis, so in this review, we summarize the studies on epithelial-mesenchymal transformation in myeloma and discuss the role of Wnt/β-catenin signaling pathway in it.

Keywords:Multiple Myeloma, Epithelial Mesenchymal Transformation, Wnt/β-Catenin Signaling Pathway

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

多发性骨髓瘤(multiple myeloma, MM)是一种恶性克隆性浆细胞疾病,在血液系统恶性肿瘤发病率中排名第二位,其细胞遗传学、分子生物学、临床表现及预后等方面均存在很大的异质性,目前仍是一种无法治愈的疾病 [1]。过去的20年里,随着新药(如蛋白酶体抑制剂、免疫调节剂、单克隆抗体等)和干细胞移植技术的应用 [2] [3] [4],MM患者的生存时间得到了极大的提高,患者生存期从4年延长至8年左右 [5],但大部分患者最终都会复发。多数MM表现为骨髓累及的“液体肿瘤”,少数则发生“实体瘤”特征的髓外浆细胞瘤,又被称为髓外病变。髓外病变在整个病程中都可能出现,在新药时代之前,尸检显示骨旁的髓外病变发生率高达70%,肝脏累及率40%,说明髓外病变可能是MM进展的自然结局 [6] [7]。而且随着疾病进展,累及不同部位的浆细胞,其克隆演变也不同 [8]。因此,深入研究MM的生物学异质性和侵袭机制,对开发特异性治疗靶点、优化一线治疗方案的选择、提高完全缓解率、改善患者预后具有重要意义。

1.1. 上皮–间质转化(Epithelial-Mesenchymal Transition, EMT)与MM

EMT是胚胎发育的基础,多种生物过程参与其中,与肿瘤细胞的局部浸润和远处转移密切相关。EMT是指上皮细胞在特定生理或病理情况下向间质细胞转化,并伴随明显基因和表型改变的一个多阶段过程。在肿瘤细胞发生EMT的过程中,细胞的形态、极性、迁移侵袭能力等形态学和生物学行为会出现变化,还有一些分子标志物也会发生改变:如细胞膜蛋白E-钙黏蛋白(E-cadherin)等上皮标志物表达减低和功能缺失,细胞膜蛋白N-钙黏蛋白(N-cadherin)、细胞骨架蛋白(β-catenin)、波形蛋白(vimentin)等间质细胞标志物过量表达,以及某些转录因子Snail、Twist和ZEB1等表达和/或功能上调 [9]。因此,EMT在上皮细胞肿瘤中研究较多,在非上皮细胞肿瘤中研究较少,因为非上皮细胞肿瘤缺乏上皮细胞的形态特点。但近几年,研究显示在非上皮细胞肿瘤中,如脑部肿瘤、血液系统肿瘤、骨肉瘤中存在类EMT现象 [10] [11] [12] [13],与细胞的微环境和信号级联激活有关而非上皮细胞本身。从本质上讲,EMT是一个可逆的过程,细胞可以通过间质–上皮转化(mesenchymal to epithelial transition, MET)恢复到上皮状态,这似乎是肿瘤细胞在远处定植所必需的,是转移过程中的关键一步。所以,肿瘤细胞在EMT/MET过程中,可能具有这两种相反状态的中间特征,同时表达上皮和间质标记物。上皮/间质的混合细胞表型,比完全的EMT,更能促进肿瘤细胞的侵袭性,细胞的粘附性更弱,迁移性增高,循环肿瘤细胞增多,增强了干细胞特征和耐药 [14]。Azab等的研究发现低氧环境可以激活EMT相关蛋白活化,下调E-cadherin的表达,从而促进骨髓瘤细胞向远处侵袭、转移 [15]。Yang等发现在MM合并骨旁髓外病变患者中TWIST1表达升高,且与较低的无进展生存率相关,证实间质转化参与了MM的疾病播散 [16]。另有研究证实CXCR4增强了MM细胞中EMT样表型的获得,表型转化为侵袭型,通过EMT转录激活,促进MM髓外病变的发生 [17]。间充质干细胞(mesenchymal stem cells, MSCs)是肿瘤微环境中的一种重要细胞成分,在肿瘤的发生和发展中具有重要作用,能使实体肿瘤细胞发生EMT及获得干性特征 [18]。骨髓间充质干细胞(bone marrow mesenchymal stem cells, BM-MSCs)通过激活Wnt和转化生长因子-β信号通路使胃癌细胞获得并维持干细胞特性 [19]。Ibraheem等研究发现,BM-MSCs胞外基质与多发性骨髓瘤EMT样表型相关 [20]。Zhou等研究发现BM-MSCs源性外泌体激活骨髓瘤细胞EMT相关的信号通路,增加了MM细胞的侵袭性,导致髓外病变的发生 [21]。最近的研究发现通过沉默核转录因子Snail1可以增加硼替佐米耐药MM的化疗敏感性,提示EMT转录因子在治疗耐药MM方面有很大潜力 [22]。肿瘤EMT的调控机制仍不明确,PI3K/AKT、NF-κB、Wnt/β-catenin和MAPK等多种信号通路可促进肿瘤细胞EMT的发生 [23]。

1.2. Wnt/β-catenin信号通路与MM

传统Wnt信号转导通路在调节细胞增殖、分化、迁移和干细胞自我更新过程中起着关键作用,与疾病的多个方面有关 [24]。Derksen最先发现原代骨髓瘤细胞中β-catenin的表达明显高于健康对照,且通过促进β-catenin聚积及核内转移,进而促进骨髓瘤细胞的增殖 [25]。Wnt信号在MM中的相关性首先被认为是其在骨稳态中的调节作用。骨髓中的恶性浆细胞分泌的Wnt拮抗剂严重破坏了骨骼的稳态,导致溶骨性骨病。在MM中,Wnt信号通路通过直接和间接机制调节骨形成成骨细胞和骨吸收破骨细胞之间的平衡 [26]。Huang等研究证明类泛素化通过促进泛素–蛋白酶体介导的β-catenin降解来下调Wnt通路,β-catenin类泛素化是MM细胞增殖失调的重要机制,且异常激活的类泛素化与MM患者不良预后密切相关 [27] [28]。另有研究发现,重组Wnt配体进行的额外治疗导致MM对来那度胺耐药性进一步增加,而β-catenin敲低极大地增强了药物敏感性,Wnt通路靶基因CD44可作为MM中介导的来那度胺抗性的下游效应分子 [29] [30]。以上的研究表明,靶向Wnt通路可能是治疗MM的一个有趣的新途径:1) 增加MM细胞的凋亡,从而减少肿瘤生长;2) 减少MM细胞分泌的Wnt拮抗剂,从而减少骨溶骨病;3) 减少MM获得的耐药,从而提高对现有治疗方案的应答。

1.3. β-catenin在Wnt/β-catenin信号通路和EMT中的双重作用

经典的Wnt/β-catenin信号通路激活的关键是细胞骨架蛋白β-catenin的降解障碍,大量的β-catenin从胞浆转移至细胞核内,进而调控下游靶基因的表达 [31]。而同时β-catenin又属于EMT的细胞骨架蛋白标志物,正常情况下,β-catenin与细胞表面蛋白E-cadherin相互作用,从而实现上皮细胞相互粘附连接。在肿瘤发生发展的过程中,细胞表面E-cadherin的表达降低,以至于E-cadherin/β-catenin复合体不稳定,E-cadherin和β-catenin发生解离,使释放入胞浆内的游离β-catenin增多 [31]。β-catenin进入核内,可以激活Wnt通路下游的vimentin基因转录及上调Twist、Snails、ZEB1等转录因子的表达,来诱导肿瘤细胞的EMT进程 [31]。各种分子或药物通过调控Wnt信号通路来调控EMT过程已在胃癌、肝癌、肺癌等肿瘤中被证实 [32] [33] [34]。Wnt信号通路能够调节肿瘤的EMT变化已是事实,最新研究发现,miR-744-5p能够通过靶向Wnt/β-catenin信号通路抑制多发性骨髓瘤的EMT表型 [35]。我们期待更多的研究来证实Wnt通路与MM中EMT表型的联系,并发掘更多的治疗靶点来促进MM细胞对药物的应答。

2. 展望

Wnt/β-catenin信号通路是诱导EMT的关键通路之一。大量实验表明,Wnt/β-catenin信号通路的失调导致了EMT,其特征是β-catenin的核移位和E-cadherin的抑制。越来越多的证据表明,EMT诱导剂也能促进非上皮性肿瘤的间充质特性。众所周知,MM以多个溶骨性病变为特征,提示骨髓内多个区域的骨髓瘤细胞持续扩散,MM细胞间充质功能增强,并导致骨髓瘤的进展。因此,上皮间质转化是引起多发性骨髓瘤不良预后的一个重要原因,抑制Wnt/β-catenin信号通路有望成为调控骨髓瘤上皮间质转化的关键靶点。

文章引用

姜骁娜,许 晗,古雅雯,王 伟,史 雪. Wnt/β-catenin信号通路与多发性骨髓瘤上皮间质转化表型的关系
Relationship between Wnt/β-Catenin Signaling Pathway and Epithelial Mesenchymal Transformation Phenotype in Multiple Myeloma[J]. 临床医学进展, 2021, 11(11): 5053-5057. https://doi.org/10.12677/ACM.2021.1111743

参考文献

  1. 1. Rollig, C., Knop, S. and Bornhauser, M. (2015) Multiple Myoloma. Lancet, 385, 2197-2208. https://doi.org/10.1016/S0140-6736(14)60493-1

  2. 2. Dhakal, B., Szabo, A., Chhabra, S., Hamadani, M., D’Souza, A., Usmani, S.Z., et al. (2018) Autologous Transplantation for Newly Diagnosed Multiple Myeloma in the Era of Novel Agent Induction: A Systematic Review and Meta-Analysis. JAMA Oncology, 4, 343-350. https://doi.org/10.1001/jamaoncol.2017.4600

  3. 3. Mateos, M.V., Goldschmidt, H., San-Miguel, J., Mikhael, J., DeCosta, L., Zhou, L., et al. (2018) Carfilzomib in Relapsed or Refractory multiple Myeloma Patients with Early or Late Relapse Following Prior Therapy: A Subgroup Analysis of the Randomized Phase 3 ASPIRE and ENDEA VOR Trials. Hematological oncology, 36, 463-470. https://doi.org/10.1002/hon.2499

  4. 4. Krishnan, A., Kapoor, P., Palmer, J.M., Tsai, N.-C., Kumar, S., Lonial, S., et al. (2018) Phase I/II Trial of the Oral Regimen Ixazomib, Pomalidomide, and Dexamethasone in Relapsed/Refractory multiple Myeloma. Leukemia, 32, 1567-1574. https://doi.org/10.1038/s41375-018-0038-8

  5. 5. Anderson, K.C. (2016) Progress and Paradigms in Multiple Myeloma. Clinical Cancer Research, 22, 5419-5427. https://doi.org/10.1158/1078-0432.CCR-16-0625

  6. 6. Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., et al. (2013) Chimeric Antigen Receptor—Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine, 368, 1509-1518. https://doi.org/10.1056/NEJMoa1215134

  7. 7. Porter, D.L., Levine, B.L., Kalos, M., Bagg, A. and June, C.H. (2011) Chimeric Antigen Receptor—Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine d, 365, 725-733. https://doi.org/10.1056/NEJMoa1103849

  8. 8. Rasche, L., Chavan, S.S., Stephens, O.W., Patel, P.H., Tytarenko, R., Ashby, C., et al. (2017) Spatial Genomic Heterogeneity in Multiple Myeloma Revealed by Multi-Region Sequencing. Nature Communications, 8, Article No. 268. https://doi.org/10.1038/s41467-017-00296-y

  9. 9. Zeisberg, M. and Neilson, E.G. (2009) Biomarkers for Epithelial-Mesenchymal Transitions. Journal of Clinical Investigation, 119, 1429-1437. https://doi.org/10.1172/JCI36183

  10. 10. Wang, Q., Li, H., Sun, Z., Dong, L., Gao, L., Liu, C., et al. (2016) Kukoamine A Inhibits Human Glioblastoma Cell Growth and Migration through Apoptosis Induction and Epithelial-Mesenchymal Transition Attenuation. Scientific Reports, 6, Article No. 36543. https://doi.org/10.1038/srep36543

  11. 11. Wang, N., He, Y.L., Pang, L.J., Zou, H., Liu, C.-X., Zhao, J., et al. (2015) Down-Regulated E-Cadherin Expression Is Associated with Poor Five-Year Overall Survival in Bone and Soft Tissue Sarcoma: Results of a Meta-Analysis. PLoS ONE, 10, Article ID: e0121448. https://doi.org/10.1371/journal.pone.0121448

  12. 12. Shi, X., Ying, L., Zhou, X., et al. (2016) Downregulation of Metadherin Inhibits the Invasiveness of Diffuse Large B Cell Lymphoma. International Journal of Clinical and Experimental Pathology, 9, 8112-8121.

  13. 13. Stavropoulou, V., Kaspar, S., Brault, L., Sanders, M.A., Juge, S, Morettini, S., et al. (2016) MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell, 30, 43-58. https://doi.org/10.1016/j.ccell.2016.05.011

  14. 14. Kahlert, U.D., Joseph, J.V. and Kruyt, F.A.E. (2017) EMT- and MET-Related Processes in Nonepithelial Tumors: Importance for Disease Progression, Prognosis, and Therapeutic Opportunities. Molecular Oncology, 11, 860-877. https://doi.org/10.1002/1878-0261.12085

  15. 15. Azab, A.K., Hu, J., Quang, P., Azab, F., Pitsillides, C., Awwad, R., et al. (2012) Hypoxia Promotes Dissemination of Multiple Myeloma through Acquisition of Epithelial to Mesenchymal Transition-Like Features. Blood, 119, 5782-5794. https://doi.org/10.1182/blood-2011-09-380410

  16. 16. Yang, J., Lian, W., Sun, L., Qi, D., Ding, Y. and Zhang, X.-H. (2016) High Nuclear Expression of Twist1 in the Skeletal Extramedullary Disease of Myeloma Patients Predicts Inferior Survival. Pathology—Research and Practice, 212, 210-216. https://doi.org/10.1016/j.prp.2015.12.011

  17. 17. Roccaro, A.M., Mishima, Y., Sacco, A., Moschetta, M., Tai, Y.-T., Shi, J., et al. (2015) CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-Like Transcriptional Activation. Cell Report, 12, 622-635. https://doi.org/10.1016/j.celrep.2015.06.059

  18. 18. Lv, C., Dai, H., Sun, M., Zhao, H., Wu, K., Zhu, J., et al. (2017) Mesenchymal Stem Cells Induce Epithelial Mesenchymal Transition in Melanoma by Paracrine Secretion of Transforming Growth Factor-β. Melanoma Research, 27, 74-84. https://doi.org/10.1097/CMR.0000000000000325

  19. 19. Nishimura, K., Semba, S., Aoyagi, K., Sasaki H. and Yokozaki, H. (2012) Mesenchymal Stem Cells Provide an Advantageous Tumor Microenvironment for the Restoration of Cancer Stem Cells. Pathobiology, 79, 290-306. https://doi.org/10.1159/000337296

  20. 20. Ibraheem, A., Attar-Schneider, O., Dabbah, M., Jarchowsky, O.D., Matalon, S.T., Lishner, M., et al. (2019) BM-MSCs-Derived ECM Modifies Multiple Myeloma Phenotype and Drug Response in a Source-Dependent Manner. Translational Research, 207, 83-95. https://doi.org/10.1016/j.trsl.2019.01.003

  21. 21. Zhou, Y. (2019) Study the Effects of BM-MSCs-Derived Exosomes on EMT-Like Phenotype, Stemness and Invasion of Myeloma Cells. Master’s Thesis, Tianjin Medical University, Tianjin.

  22. 22. Huang, Z., Liang, X., Wu, W., Chen, X., Zeng, Q., Yang, M., et al. (2019) Mechanisms Underlying the Increased Chemosensitivity of Bortezomib-Resistant Multiple Myeloma by Silencing Nuclear Transcription Factor Snail1. Oncology Reports, 41, 415-426. https://doi.org/10.3892/or.2018.6797

  23. 23. DeCraene, B. and Berx, G. (2013) Regulatory Networks Defining EMT during Cancer Initiation and Progression. Nature Reviews Cancer, 13, 97-110. https://doi.org/10.1038/nrc3447

  24. 24. Michela, F. and Giovanni, T. (2020) WNT Signaling in Hematological Malignancies. Frontiers in Oncology, 10, Article ID: 615190. https://doi.org/10.3389/fonc.2020.615190

  25. 25. Derksen, P.W., Tjin, E., Meijer, H.P., Klok, M.D., Mac Gillavry, H.D., van Oers, M.H.J., et al. (2004) Illegitimate WNT Signaling Promotes Proliferation of Multiple Myeloma Cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 6122-6127. https://doi.org/10.1073/pnas.0305855101

  26. 26. Baron, R. and Kneissel, M. (2013) WNT Signaling in Bone Homeostasis and Disease: From Human Mutations to Treatments. Nature Medicin, 19, 179-192. https://doi.org/10.1038/nm.3074

  27. 27. Huang, H.J., Zhou, L.L., Fu, W.J., et al. (2015) β-Catenin SUMOylation is Involved in the Dysregulated Proliferation of Myeloma Cells. American Journal of Cancer Research, 5, 309-320.

  28. 28. Driscoll, J.J., Pelluru, D., Lefkimmiatis, K., Fulciniti, M., Prabhala, R.H., Greipp, P.R., et al. (2010) The Sumoylation Pathway Is Dysregulated in Multiple Myeloma and is Associated with Adverse Patient Outcome. Blood, 115, 2827-2834. https://doi.org/10.1182/blood-2009-03-211045

  29. 29. Bjorklund, C.C., Ma, W., Wang, Z.Q., Eric Davis, R., Kuhn, D.J., Kornblau, S.M., et al. (2011) Evidence of a Role for Activation of Wnt/Beta-Catenin Signaling in the Resistance of Plasma Cells to Lenalidomide. Journal of Biological Chemistrym, 286, 11009-11020. https://doi.org/10.1074/jbc.M110.180208

  30. 30. Bjorklund, C.C., Baladandayuthapani, V., Lin, H.Y., Jones, R.J., Kuiatse, I., Wang, H., et al. (2014) Evidence of a Role for CD44 and Cell Adhesion in Mediating Resistance to Lenalidomide in Multiple Myeloma: Therapeutic Implications. Leukemia, 28, 373-383. https://doi.org/10.1038/leu.2013.174

  31. 31. Valenta, T., Hausmann, G. and Basler, K. (2012) The Many Faces and Functions of β-Catenin. The EMBO Journal, 31, 2714-2736. https://doi.org/10.1038/emboj.2012.150

  32. 32. Ma Y., Zhang, P., Zhang, Q., Wang, X., Miao, Q., Lyu, X., et al. (2021) Dihydroartemisinin Suppresses Proliferation, Migration, the Wnt/β-Catenin Pathway and EMT via TNKS in Gastric Cancer. Oncology Letters, 22, Article No. 688. https://doi.org/10.3892/ol.2021.12949

  33. 33. Jin, X., Yin, J., Zhu, H., Li, W., Yu, K., Liu, M., et al. (2021) SMG9 Serves as an Oncogene to Promote the Tumor Progression via EMT and Wnt/β-Catenin Signaling Pathway in Hepatocellular Carcinoma. Frontiers in Pharmacology, 12, Article ID: 701451. https://doi.org/10.3389/fphar.2021.701454

  34. 34. Liu, W., Fu, X. and Li, R. (2021) CNN1 Regulates the DKK1/Wnt/βcatenin/cmyc Signaling Pathway by Activating TIMP2 to Inhibit the Invasion, Migration and EMT of Lung Squamous Cell Carcinoma Cells. Experimental and Therapeutic Medicine, 22, Article No. 855. https://doi.org/10.3892/etm.2021.10287

  35. 35. Guo, B., Xiao, C., Liu, Y., Zhang, N., Bai, H., Yang, T., et al. (2021) MiR-744-5p Inhibits Multiple Myeloma Proliferation, Epithelial Mesenchymal Transformation and Glycolysis by Targeting SOX12/Wnt/β-Catenin Signaling. OncoTargets and Therapy, 14, 1161-1172. https://doi.org/10.2147/OTT.S270636

  36. NOTES

    *通讯作者Email: snowice795@163.com

期刊菜单