Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 78812 , 9 pages
10.12677/ACM.2024.141037

酰胺质子转移成像在直肠癌淋巴结转移评估中的应用

陈名钦,欧阳海涛,吴頔,王帅帅,刘志宁,钱波*

安徽医科大学第二附属医院普外科,安徽 合肥

收稿日期:2023年12月8日;录用日期:2024年1月2日;发布日期:2024年1月9日

摘要

目的:探究磁共振(MRI, Magnetic Resonance Imaging)中酰胺质子转移成像序列(APT, Amide Proton Transfer Imaging)对评估直肠癌淋巴结转移的价值。方法:我们选取了2022年3月至2023年10月安徽医科大学第二附属医院普外科收治的直肠癌患者40例,术后病理均明确为直肠癌,其中出现淋巴结转移的18例,无淋巴结转移的22例。所有患者在术前均行盆腔磁共振成像检查,且在检查序列中增加APT序列扫描,并获得APT值,同时收集患者一般临床资料,采用单因素分析及多因素logistic回归分析直肠癌淋巴结转移的相关危险因素。结果:单因素分析结果提示:直肠癌淋巴结转移与直肠癌患者的CEA值,肿瘤距肛门距离、肿瘤直径、肿瘤的T分期及APT信号强度有关(P < 0.05)。多因素分析结果提示:肿瘤距肛门距离、肿瘤的T分期与APT信号强度为直肠癌出现淋巴结转移的独立影响因素(P < 0.05)。结论:APT信号强度是判断直肠癌淋巴结转移的独立危险因素,APT信号强度越高,提示淋巴结转移可能越大。

关键词

酰胺质子转移成像,直肠癌,淋巴结转移,磁共振

Application of Amide Proton Transfer Imaging in the Evaluation of Lymph Node Metastasis in Rectal Cancer

Mingqin Chen, Haitao Ouyang, Di Wu, Shuaishuai Wang, Zhining Liu, Bo Qian*

Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei Anhui

Received: Dec. 8th, 2023; accepted: Jan. 2nd, 2024; published: Jan. 9th, 2024

ABSTRACT

Objective: To investigate the value of amide proton transfer imaging (APT) in magnetic resonance imaging (MRI) for the diagnosis of rectal cancer lymph node metastasis. Methods: We selected 40 patients with rectal cancer admitted to the Department of General Surgery of the Second Affiliated Hospital of Anhui Medical University from March 2022 to October 2023, and all of them were clearly identified as rectal cancer by postoperative pathology, among which 18 cases showed lymph node metastasis and 22 cases had no lymph node metastasis. All patients underwent preoperative pelvic magnetic resonance imaging, and APT sequence scanning was added to the examination sequence, and APT values were obtained. General clinical data of the patients were collected at the same time, and the risk factors related to lymph node metastasis of rectal cancer were analyzed by unifactorial analysis and multifactorial logistic regression. Results: The results of unifactorial analysis: rectal cancer lymph node metastasis was related to the CEA value of rectal cancer patients, tumor distance from the anus, tumor diameter, T stage of the tumor and APT signal intensity (P < 0.05). The results of multifactorial analysis suggested that tumor distance from the anus, T stage of the tumor and APT signal intensity were independent influencing factors for the appearance of lymph node metastasis in rectal cancer (P < 0.05). Conclusion: APT signal intensity is an independent risk factor for determining lymph node metastasis in rectal cancer, and the higher APT signal intensity suggests that lymph node metastasis may be greater.

Keywords:Amide Proton Transfer Imaging, Rectal Cancer, Lymph Node Metastasis, Magnetic Resonance Imaging

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在我国,直肠癌的发病率位于所有恶性肿瘤的第四位,病死率居于我国第五位 [1] ,对我国居民健康造成了严重损害。很多直肠癌患者在初诊时即发现淋巴结转移,淋巴结转移是影响直肠癌患者治疗及预后的重要因素之一,因为术前淋巴结转移情况决定患者手术方式和治疗方案的选择 [2] 。磁共振(Magnetic Resonance Imaging, MRI)是直肠癌术前最常见的检查手段,相较于CT等其他检查,MRI对于软组织有更清晰的成像表现 [3] 。MRI对直肠癌浸润深度诊断准确性较高,但对转移淋巴结诊断方面仍存在不足,PIhnat [4] 等人对40名直肠癌患者进行磁共振的淋巴结评估,发现仅有33.0%的恶性淋巴结在MRI影像上获得准确诊断,其灵敏度仅为59.0%。磁共振各序列对于淋巴结转移的判断中,高分辨率的T2WI具有较好的信噪比,目前是评估淋巴结的最佳序列,但有一部分淋巴结因为不典型或者钙化的原因,导致信号的丢失,导致淋巴结在MRI上的图像显示不佳 [5] 。酰胺质子转移成像(APT, Amide Proton Transfer Imaging)作为磁共振化学交换转移的一个重要分支,是近些年新兴的一种成像技术,其主要通过射频照射组织中的结合水质子,促进蛋白质酰胺基团的结合水与自由水进行质子交换,使水分子的信号逐渐饱和,从而形成了蛋白质的质子信号,也因此可以测量肿瘤组织中游离多肽与蛋白质的含量水平 [6] 。该序列应用于脑肿瘤的鉴别中,瘤体为高信号,而瘤周水肿呈明显低信号;在区分高级别与低级别的脑肿瘤上,高级别脑肿瘤的APT信号强度明显高于低级别脑肿瘤。Huang [7] 等人比较了宫颈癌中淋巴结阳性组和阴性组的淋巴结APT强度,结果发现阳性淋巴结的APT信号强度为3.7 ± 1.1,明显高于阴性淋巴结的2.4 ± 1.0,他们认为APT信号强度可作为宫颈癌淋巴结的独立危险预测因素。而APT在直肠癌淋巴结显像方面的鲜有报道,本文中我们通过研究直肠癌患者淋巴结APT成像情况,评估其在直肠癌淋巴结转移诊断方面的价值 [8] 。

2. 材料与方法

2.1. 一般资料

我们收集了2022年3月至2023年10月安徽医科大学第二附属医院普外科确诊并行手术治疗的直肠癌患者的临床资料,根据纳入排除标准筛选患者。纳入标准:① 术后病理均明确诊断为直肠腺癌;② 术前磁共振中包含APT序列,且整体图像清晰;③ 患者均行直肠癌根治术,且术后均有完整的组织病理结果。排除标准:① 具有严重的心脑血管疾病或体内有金属植入物等,无法进行MRI检查的患者。② 术前行放疗或化疗的患者;③ 术前MRI检测中APT序列伪影重,图像不清晰的患者。本次研究中我们共收集了100例直肠癌患者,符合纳排标准患者40例,淋巴结阳性组18例,淋巴结阴性组22例。其中男性23例,女性17例,平均年龄(67.58 ± 7.61)岁。

2.2. 图像采集及处理

2.2.1. MRI检查

所有患者术前均行MRI盆腔平扫加增强扫描,采用仪器为飞利浦3.0T高分辨率磁共振仪。患者在检查前一小时,灌肠1次,并排空膀胱,以减少相关伪影。扫描序列为常规的T1、T2加权成像,DWI等,同时增加了APT序列,APT序列在增强扫描之前完成,避免造影剂对APT序列成像产生影响。APT具体扫描参数为:视野:230 mm × 180 mm × 60 mm,像素:1.80 m × 1.80 mm × 6.00 mm,矩阵:128 × 100 × 10 slice。

2.2.2. 图像分析处理

收集患者所有磁共振图像,并将所有影像图片在飞利浦工作站软件进行阅片与分析。我们在普通的T2序列图像中找出并标记所有可见淋巴结,将感兴趣区(ROI)放置在淋巴结所在区域,之后在对应的APT层面进行手动勾画,计算出所勾画区域即淋巴结所在区域的APT信号强度,多个层面勾画数个区域,计算每个区域的APT值,最终获得每个淋巴结的APT信号强度的平均值。

2.2.3. 术后病理分析

所有患者磁共振检查后均行直肠癌根治术,术后由手术者手工挑出直肠肿瘤周围淋巴结,连同标本一同送检病理科。所有淋巴结均由一名阅片经验5年以上的病理科医师进行镜检,在淋巴结中找到恶性肿瘤细胞则为阳性淋巴结转移,否则为阴性。

2.2.4. 观察项目

1) 患者一般资料,包括:性别、年龄、BMI、糖尿病、高血压、吸烟史、饮酒史、血红蛋白、白蛋白、CEA、CA199、淋巴结的APT信号强度。2) 术后临床观察指标包括:肿瘤直径、肿瘤距肛门距离、肿瘤T分期、淋巴结转移情况。

2.2.5. 统计学分析

采取SPSS 26.0统计学软件对研究数据进行分析,计量资料用( x ¯ ± s )表示,组间比较采用独立样本t检验;计数资料以率(%)表示,采用卡方检验或Fisher’s精确检验。利用logistic回归模型对相关因素进行多因素分析。P < 0.05时表示具有统计学差异。

3. 结果

3.1. 直肠淋巴结在APT序列上的特点

图1所示,我们将常规的T2图像中可见的淋巴结进行标记,并使用APT图像填充后获得标记图像,之后测量标记出的APT信号强度。

Figure 1. (1A) APT sequence image of patient with APT high signal in red. (1B) T2 sequence image of MRI. (1C) T2 image based on which lymph nodes were outlined and filled using corresponding APT image

图1. (1A) 患者的APT序列影像,红色为APT高信号。(1B) 磁共振的T2序列图像。(1C) T2图像基础上将淋巴结进行勾画并使用对应APT图像进行填充

3.2. 直肠癌淋巴结转移影响因素的单因素分析

表1所示,淋巴结阳性组患者与阴性组患者在性别、年龄、高血压、吸烟史、饮酒史、BMI、Hb、CA199、血清白蛋白方面比较,差异无明显统计学意义(P > 0.05),直肠癌患者的CEA值,肿瘤距肛门距离、肿瘤直径、肿瘤的T分期及APT信号强度淋巴结阳性组和阴性组比较有明显统计学差异(P < 0.05)。

Table 1. Table of analysis of single factor results

表1. 单因素结果分析表

3.3. 直肠癌淋巴结转移影响因素的多因素分析

表2所示,多因素分析结果显示两组患者肿瘤直径及CEA值差异无统计学意义(P > 0.05);但是肿瘤距肛门距离、T分期与APT信号强度是直肠癌患者淋巴结转移的独立危险因素(P < 0.05)。

Table 2. Multifactorial results analysis table

表2. 多因素结果分析表

3.4. APT信号强度与直肠癌淋巴结转移

图2所示,我们绘制了APT信号强度对于评估直肠癌淋巴结转移箱型图,淋巴结阳性患者的APT信号强度均值为3.808,高于淋巴结阴性患者的APT信号强度值2.675,这说明了直肠癌患者的淋巴转移与APT信号强度呈正相关。当APT信号强度越高时,淋巴结阳性可能越大。

**p < 0.01.

Figure 2. APT signal strength box diagrams

图2. APT信号强度箱型图

4. 讨论

APT是一种新型磁共振成像技术,主要是利用蛋白质及多肽与水分子的转移情况产生信号值,它的信号强度主要与两个方面有关:一个是可移动的酰胺质子浓度,如组织中的蛋白质含量等,浓度越高则信号越强;另一个是组织的酰胺质子交换频率,主要反映在组织的PH值上,APT信号强度与组织的PH呈指数比例上升 [9] [10] 。因此,根据APT技术评估组织中的蛋白及多肽含量,肿瘤细胞增殖活性强,蛋白质多肽浓度较正常组织明显升高,信号也就越强,从而评估肿瘤的发展,与常规序列相比,研究证实APT可更加准确地识别肿瘤 [11] 。已有一些APT在肿瘤诊断方面的研究 [12] ,如APT应用最广泛的主要是针对脑肿瘤的研究,可以协助鉴别脑肿瘤及瘤周水肿,评估神经胶质瘤的恶性程度及识别相关病理类型等 [13] [14] 。陈玲 [15] 等人比较了APT和动脉自旋标记这两种成像技术在区分孤立性脑转移瘤和神经胶质母细胞瘤的临床效能,发现APT在区分两种肿瘤上效能更高,ROC曲线中APT信号强度具有最大的曲线下面积(AUC = 0.864),敏感性为75.0%,特异性为81.8%,同时对于异质性区域的高信号识别上也更加灵敏。Tao [16] 等人发现,恶性乳腺癌的乳腺组织由于具有更高的细胞密度,导致其APT信号强度明显高于良性组织,从而可以利用APT区分良性及恶性乳腺肿瘤。在肝癌中,Wu [17] 等人比较了不同组织学分级的肝癌组织的APT信号强度,他们发现在区分高级别与低级别肝癌中,APT具有较好的敏感性,这是因为高级别肝癌组织细胞增殖效率更高,组织更活跃,在APT成像中具有更高的信号值。

APT成像技术在直肠癌方面的研究多集中在肿瘤组织,Chen [18] 等人收集了部分行新辅助化疗的局部晚期直肠癌患者磁共振影像,提取其中的影像学特征,结果发现将APT与DWI序列的影像特征结合可作为预测新辅助化疗后反应的无创标记物。因为p53和Ki-67的表达状态对于直肠癌预后有较大影响,Ling [19] 等人利用APT评估了直肠癌p53和Ki-67的表达,结果发现p53阳性状态组和Ki-67增殖指数高组直肠腺癌APT信号强度明显升高,两者呈正相关。

我们研究显示淋巴结APT信号强度是淋巴结转移的独立危险预测因素,淋巴结APT强度和淋巴结转移呈正相关。Yang P [20] 等通过测量直肠肿瘤瘤体的APT信号强度,发现瘤体的APT强度越高,出现组织淋巴结转移可能性越大,他们认为病变组织与周围正常组织的“邻里关系”是造成磁共振中高信号的主要原因,肿瘤细胞的密度增加,脂肪含量升高,给组织微环境带来了更高的代谢水平。其次,组织的PH值情况会极大地影响到APT信号强度,而肿瘤组织内的PH值可能会受到恶性肿瘤细胞或者其产生的坏死组织影响,造成信号差异 [21] ,Yang等人通过直肠癌瘤体的APT信号强度对淋巴结转移进行预测,而我们直接通过测量淋巴结的APT强度来判读淋巴结转移情况。另外,Gui [22] 等人通过研究肝癌和前列腺癌的周围淋巴结,发现转移性淋巴结组血管增多区域和血管下区的区域面积占比明显高于非转移性淋巴结的血管区域,而异常肿瘤血管的增生会导致淋巴结内的血流灌注增加,这会促进肿瘤细胞的增殖,同样有可能会造成APT信号强度的升高 [23] 。通过本次实验,在APT序列中我们可以发现淋巴结处于一个明显的高信号区,而正常的淋巴结组织并不会出现这种情况,这可能是由于在阳性的淋巴结内包含有恶性肿瘤细胞,其增殖及代谢较周围脂肪组织明显升高,其中肿瘤合成的蛋白质及多肽含量也更高,因此出现高信号。通过获得这种影像学分子生物信息,我们希望能达到预测肿瘤转移的效能 [24] 。

我们的研究结果也提示了肿瘤距肛门距离是影响淋巴结转移的独立危险因素。由于直肠的淋巴引流途径决定了淋巴结的受累,位于腹膜反折上方的直肠癌的淋巴引流几乎均是沿着肠系膜血管的淋巴结引流,引流至直肠上、直肠系膜等,而对于盆腔侧壁淋巴结的转移发生率较低;位于腹膜反折以下的直肠癌虽也是沿肠系膜血管转移,但具有明显的侧向转移趋势,更多向盆腔侧壁淋巴结转移 [25] 。本次研究中收集的淋巴结影像多为盆腔侧壁淋巴结,因此从结果上看距离肛门较近的肿瘤多位于腹膜反折下,更容易发生盆腔侧壁淋巴结转移。这也与Alessandra [26] 等人的研究结果相似,他们认为腹膜反折以上的直肠癌发生盆腔淋巴结转移的概率为21%,而腹膜反折以下的直肠癌则为41.8%,肿瘤位置越低,扩散到外侧淋巴结的可能也越高。

同样,我们的研究表明了直肠癌的T分期也会对其淋巴转移产生影响,我们认为T分期较晚的直肠肿瘤具有较强的肠壁穿透力,T4期已经穿透浆膜层甚至侵犯临近结构,同样更加容易导致区域淋巴结的转移,使淋巴结产生免疫及炎症反应 [27] 。David [28] 等人比较了T4期直肠癌患者的治疗前后信息,发现其阳性淋巴结数目明显升高,且局部复发及远处转移发生率同样较高。同样的,Nicholls [29] 等人分析了直肠癌的淋巴结转移率与肠壁浸润深度的关系,他们发现随着渗透深度的不断增加,似乎有更多的淋巴结具有转移的趋势;当达到一定程度的肌层时,它变得具有统计学意义。因此,当直肠癌的达到T4期时,淋巴结转移的可能也更大。

本研究为单中心,样本量较少,APT作为一种新型检查方式,应用参数还需不断调整,对直肠癌转移淋巴结显像仍有一定局限性。但APT对组织中蛋白含量的敏感性,能较好地区分阳性淋巴结,作为对MRI直肠癌淋巴结分期评估的补充,有一定的临床应用价值。

基金项目

安徽医科大学第二附属医院转化医学研究科研基金项目(2022ZHYJ15);安徽省高校科学研究项目(KJ2021A0317)。

文章引用

陈名钦,欧阳海涛,吴 頔,王帅帅,刘志宁,钱 波. 酰胺质子转移成像在直肠癌淋巴结转移评估中的应用
Application of Amide Proton Transfer Imaging in the Evaluation of Lymph Node Metastasis in Rectal Cancer[J]. 临床医学进展, 2024, 14(01): 256-264. https://doi.org/10.12677/ACM.2024.141037

参考文献

  1. 1. Cervantes, A., Adam, R., Rosello, S., et al. (2023) Metastatic Colorectal Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 34, 10-32. https://doi.org/10.1016/j.annonc.2022.10.003

  2. 2. Araghi, M., Soerjomataram, I., Jenkins, M., et al. (2019) Global Trends in Colorectal Cancer Mortality: Projections to the Year 2035. International Journal of Cancer, 144, 2992-3000. https://doi.org/10.1002/ijc.32055

  3. 3. Knoblauch, M., Kuhn, F., von Ehrlich-Treuenstatt, V., et al. (2023) Diagnos-tic and Therapeutic Management of Early Colorectal Cancer. Visceral Medicine, 39, 10-16. https://doi.org/10.1159/000526633

  4. 4. Ihnat, P., Zidlik, V., Hanzlikova, P., et al. (2023) Magnetic Resonance Imaging Evaluation of Mesorectal Lymphadenopathy in Patients with Rectal Cancer. Rozhledy v Chirurgii, 102, 194-198. https://doi.org/10.33699/PIS.2023.102.5.194-198

  5. 5. Kawai, K., Shiomi, A., Miura, T., et al. (2023) Optimal Di-agnostic Criteria for Lateral Lymph Node Dissection Using Magnetic Resonance Imaging: A Multicenter Prospective Study. ANZ Journal of Surgery, 93, 206-213. https://doi.org/10.1111/ans.18029

  6. 6. Zhou, J. and Jia, G. (2022) Editorial for “Amide Proton Transfer-Weighted Imaging Could Complement Apparent Diffusion Coefficient for More Lesion Characterization in Transition Zone of the Prostate”. Journal of Magnetic Resonance Imaging, 56, 1320-1321. https://doi.org/10.1002/jmri.28224

  7. 7. Huang, Q., Wang, Y., Meng, X., et al. (2023) Amide Proton Transfer-Weighted Imaging Combined with ZOOMit Diffusion Kurtosis Imaging in Predicting Lymph Node Metastasis of Cervical Cancer. Bioengineering (Basel), 10, Article No. 331. https://doi.org/10.3390/bioengineering10030331

  8. 8. Bie, C., van Zijl, P., Xu, J., et al. (2023) Radiofrequency La-beling Strategies in Chemical Exchange Saturation Transfer MRI. NMR in Biomedicine, 36, e4944. https://doi.org/10.1002/nbm.4944

  9. 9. Xu, J., Chung, J.J. and Jin, T. (2023) Chemical Exchange Saturation Trans-fer Imaging of Creatine, Phosphocreatine, and Protein Arginine Residue in Tissues. NMR in Biomedicine, 36, e4671. https://doi.org/10.1002/nbm.4671

  10. 10. Wu, Y. and Sun, P.Z. (2023) Demonstration of pH Imaging in Acute Stroke with Endogenous Ratiometric Chemical Exchange Saturation Transfer Magnetic Resonance Imaging at 2 ppm. NMR in Biomedicine, 36, e4850. https://doi.org/10.1002/nbm.4850

  11. 11. Liu, Z., Wen, J., Wang, M., et al. (2023) Breast Amide Proton Transfer Imaging at 3 T: Diagnostic Performance and Association with Pathologic Characteristics. Journal of Magnetic Resonance Imaging, 57, 824-833. https://doi.org/10.1002/jmri.28335

  12. 12. Murayama, K., Ohno, Y., Yui, M., et al. (2023) Three-Dimensional Gra-dient-Echo-Based Amide Proton Transfer-Weighted Imaging of Brain Tumors: Comparison with Two-Dimensional Spin-Echo-Based Amide Proton Transfer-Weighted Imaging. Journal of Computer Assisted Tomography, 47, 494-499. https://doi.org/10.1097/RCT.0000000000001432

  13. 13. Sugawara, K., Miyati, T., Wakabayashi, H., et al. (2023) Evaluation of Brain Tumors Using Amide Proton Transfer Imaging: A Comparison of Normal Amide Proton Transfer Signal with Abnormal Amide Proton Transfer Signal Value. Journal of Computer Assisted Tomography, 47, 121-128. https://doi.org/10.1097/RCT.0000000000001378

  14. 14. Guo, H., Liu, J., Hu, J., et al. (2022) Diagnostic Perfor-mance of Gliomas Grading and IDH Status Decoding a Comparison between 3D Amide Proton Transfer APT and Four Diffusion-Weighted MRI Models. Journal of Magnetic Resonance Imaging, 56, 1834-1844. https://doi.org/10.1002/jmri.28211

  15. 15. Chen, L., Li, T., Li, Y., et al. (2023) Combining Amide Proton Trans-fer-Weighted and Arterial Spin Labeling Imaging to Differentiate Solitary Brain Metastases from Glioblastomas. Mag-netic Resonance Imaging, 102, 96-102. https://doi.org/10.1016/j.mri.2023.05.004

  16. 16. Yu, T., Li, L., Shi, J., et al. (2023) Predicting Histopathological Types and Molecular Subtype of Breast Tumors: A Comparative Study Using Amide Proton Transfer-Weighted Imaging, Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging. Magnetic Resonance Imaging, 105, 37-45. https://doi.org/10.1016/j.mri.2023.10.010

  17. 17. Wu, B., Jia, F., Li, X., et al. (2020) Amide Proton Transfer Imaging vs Diffusion Kurtosis Imaging for Predicting Histological Grade of Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 7, 159-168. https://doi.org/10.2147/JHC.S272535

  18. 18. Chen, W., Mao, L., Li, L., et al. (2021) Predicting Treatment Response of Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Using Amide Proton Transfer MRI Combined with Diffusion-Weighted Imaging. Frontiers in Oncology, 11, Article ID: 698427. https://doi.org/10.3389/fonc.2021.698427

  19. 19. Li, L., Chen, W., Yan, Z., et al. (2020) Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adeno-carcinoma. Journal of Magnetic Resonance Imaging, 52, 1487-1496. https://doi.org/10.1002/jmri.27212

  20. 20. Peng, Y., Zou, X., Chen, G., et al. (2023) Chemical Shift-Encoded Sequence (IDEAL-IQ) and Amide Proton Transfer (APT) MRI for Prediction of Histopathological Factors of Rectal Cancer. Bioengineering (Basel), 10, Article No. 720. https://doi.org/10.3390/bioengineering10060720

  21. 21. Sun, P.Z. (2023) Numerical Simulation-Based Assessment of pH-Sensitive Chemical Exchange Saturation Transfer MRI Quantification Accuracy across Field Strengths. NMR in Bi-omedicine, 36, e5000. https://doi.org/10.1002/nbm.5000

  22. 22. Cui, X.W., Jenssen, C., Saftoiu, A., et al. (2013) New Ultrasound Tech-niques for Lymph Node Evaluation. World Journal of Gastroenterology, 19, 4850-4860. https://doi.org/10.3748/wjg.v19.i30.4850

  23. 23. Chen, W., Li, L., Yan, Z., et al. (2021) Three-Dimension Amide Proton Transfer MRI of Rectal Adenocarcinoma: Correlation with Pathologic Prognostic Factors and Comparison with Diffusion Kurtosis Imaging. European Radiology, 31, 3286-3296. https://doi.org/10.1007/s00330-020-07397-1

  24. 24. Hou, H., Chen, W., Diao, Y., et al. (2023) 3D Amide Proton Transfer-Weighted Imaging for Grading Glioma and Correlating IDH Mutation Status: Added Value to 3D Pseudocon-tinuous Arterial Spin Labelling Perfusion. Molecular Imaging and Biology, 25, 343-352. https://doi.org/10.1007/s11307-022-01762-w

  25. 25. Kaur, H., Ernst, R.D., Rauch, G.M., et al. (2019) Nodal Drain-age Pathways in Primary Rectal Cancer: Anatomy of Regional and Distant Nodal Spread. Abdominal Radiology (NY), 44, 3527-3535. https://doi.org/10.1007/s00261-019-02094-0

  26. 26. Borgheresi, A., De Muzio, F., Agostini, A., et al. (2022) Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. Journal of Clinical Medicine, 11, Arti-cle No. 2599. https://doi.org/10.3390/jcm11092599

  27. 27. Tonini, V., Birindelli, A., Bianchini, S., et al. (2020) Factors Affecting the Number of Lymph Nodes Retrieved after Colorectal Cancer Surgery: A Prospective Single-Centre Study. Surgeon, 18, 31-36. https://doi.org/10.1016/j.surge.2019.05.002

  28. 28. Macari, D., Kawak, S., Raofi, V., et al. (2020) Recurrence Pattern and Outcomes in T4 Colon Cancer: A Single Institution Analysis. Journal of Surgical Oncology, 121, 337-341. https://doi.org/10.1002/jso.25766

  29. 29. Nicholls, R.J., Zinicola, R. and Haboubi, N. (2019) Extramural Spread of Rectal Cancer and the AJCC Cancer Staging Manual 8th Edition, 2017. Annals of Oncology, 30, 1394-1395. https://doi.org/10.1093/annonc/mdz147

  30. NOTES

    *通讯作者。

期刊菜单