Advances in Applied Mathematics
Vol. 11  No. 05 ( 2022 ), Article ID: 51542 , 8 pages
10.12677/AAM.2022.115286

非局部两分量耦合复可积无色散方程的 孤子解

付晨晨

上海理工大学,上海

收稿日期:2022年4月20日;录用日期:2022年5月15日;发布日期:2022年5月23日

摘要

本文提出了一种非局部两分量耦合复可积无色散方程。利用达布变换方法得到了零种子解和非零种子解两种情况下,非局部两分量耦合复可积无色散方程的孤子解。

关键词

非局部两分量耦合复可积无色散方程,达布变换,孤子解

Soliton Solutions of Nonlocal Two-Component Coupled Complex Integrable Dispersionless Equations

Chenchen Fu

University of Shanghai for Science and Technology, Shanghai

Received: Apr. 20th, 2022; accepted: May 15th, 2022; published: May 23rd, 2022

ABSTRACT

In this paper, a nonlocal two-component complex coupled integrable dispersionless equation is proposed. The soliton solutions of nonlocal two-component coupled complex integrable dispersionless equations are obtained by using darboux transformation method under two cases of zero seed solution and non-zero seed solution.

Keywords:The Nonlocal Two-Component Complex Coupled Integrable Dispersionless Equations, Darboux Transformation, Soliton Solutions

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

耦合可积无色散(CID)系统

q x t = ρ q , ρ t + q q x = 0 (1)

是由Konno和Oono提出的 [1]。因为它是一个优质的可积系统 [2],所以引起了人们对该系统的研究热情。并且它在物理应用方面有很多应用 [3],例如,它可以描述三维欧几里德空间中电流与外部磁场的相互作用。接着Hirota、Tsujimoto [4]、Ishimori [5] 成功地将CID系统转化为Sin-Gordon方程。并且在 [6] 中证明了复的CID系统

q x t = ρ q , ρ t + ( | q | 2 ) x 2 = 0 (2)

等效于Pohlmeyer-Lund-Regge模型的规范。在 [7] 中,用IST方法研究了其柯西问题。实际上,实的CID系统(1)和复的CID系统(2)都是一般CID系统

q x t = ρ q , p x t = ρ p , ρ t + ( p q ) x 2 = 0 (3)

p = q p = q * 的特殊情况。一般CID系统在群里论点 [8] 中被提出,它的孤子解也应用IST方法被求出。随着一些非线性方程的怪波解的出现 [9] [10] [11] [12] [13],复CID系统(2)的怪波解也被求出。实际上,实CID系统(1)和复CID系统(2)都可以转化为实短脉冲方程和复短脉冲方程 [14] [15] [16],该方程可以描述超短脉冲在光纤中的传播。利用相应的速矢图变换,还可以从复CID系统的解中得到复短脉冲方程的一些孤子解 [17] [18]。值得一提的是,多分量的复CID系统可以转化成

q j , x t = ρ q j , j = 1 , 2 , , n

ρ t + 1 2 ( j = 1 n ε j | q j | 2 ) x = 0 , (4)

可以转化成多分量的短脉冲方程。

关于两分量复的CID系统

q 1 , x t = ρ q 1 , q 2 , x t = ρ q 2

ρ t + 1 2 ( ε 1 | q 1 | 2 + ε 2 | q 2 | 2 ) x = 0 (5)

的研究,也有了一些新的孤子解。例如,在背景解消失时的多峰孤子波解,这种解是局域波解,其振幅在传播过程中呈现周期性变化,同时它的呼吸II-型解、共振解、半有理性确定性奇异波解也相应被求出。

近年来,非局部可积方程引起了人们的广泛关注。非局部CID系统的对称性得到了证明,同时逆时空非局部CID系统的保对称不稳定孤子解以及经典CID系统的稳定孤子解都已经被求出。文献 [19] 构造了非局部Sine-Gordon方程的N-次Darboux变换,得到了该方程的多孤子解。并且文献 [19] 中还提到了非局部复的耦合无色散(CCD)方程。本文主要研究的是两分量复的CID系统(5)在 q 1 * = q 1 * ( x , t ) q 2 * = q 2 * ( x , t ) 时得到的非局部两分量复CID系统:

q 1 , x t = ρ q 1

q 2 , x t = ρ q 2

ρ t + 1 2 ( ε 1 q 1 q 1 * ( x , t ) + ε 2 q 2 q 2 * ( x , t ) ) x = 0 (6)

在第二节中,构造非局部两分量复CID系统的达布变换(DT),它是构造可积系统解的一种有效方法。在第三节中,利用1-次DT,得到了在非局部两分量复CID系统(6)中的孤子解。

2. 非局部两分量复CID系统的Darboux变换

在本节中,我们将构造非局部两分量复CID系统的达布变换(DT)。

R = ( q 1 q 2 ε 2 q 2 * ( x , t ) ε 1 q 1 * ( x , t ) ) Q = ( ε 1 q 1 * ( x , t ) q 2 ε 2 q 2 * ( x , t ) q 1 ) (7)

I 2 是二阶单位矩阵(*表示复共轭)。方程(6)的Lax对表示为:

Φ x = U Φ , U = 1 λ ( i ρ I 2 R x Q x i ρ I 2 )

Φ t = V Φ , V = i λ 4 ( I 2 0 0 I 2 ) + i 2 ( 0 R Q 0 ) (8)

其中 λ 为光谱参数, Φ = Φ ( x , t ; λ ) = ( ϕ 1 , , ϕ 4 ) T (T表示矩阵转置)。

如果 Φ ( x , t ; λ i ) λ = λ i 处Lax对(8)的列向量特征函数,此时很容易验证

Ψ ( x , t ; λ i ) = ( ϕ 2 * ( x , t ; λ i ) ε 1 ε 2 ϕ 1 * ( x , t ; λ i ) ε 1 ϕ 4 * ( x , t ; λ i ) ε 2 ϕ 3 * ( x , t ; λ i ) ) λ = λ i * 的Lax对(8)的列向量特征函数。为了方便起见,我们用

Φ ( λ i ) Ψ ( λ i ) ϕ l ( λ i ) 分别表示 Φ ( x , t ; λ i ) Ψ ( x , t ; λ i ) ϕ l ( x , t ; λ i )

方程Lax对(8)的伴随问题是

θ x = θ U ( λ ) = θ M [ U ( λ * ) ] M

θ t = θ V ( λ ) = θ M [ V ( λ * ) ] M (9)

其中 M = d i a g ( 1 , ε 1 ε 2 , ε 1 , ε 2 ) ,( 表示矩阵的复共轭转置),同时能够证明 θ ( x , t ; λ i * ) = Φ ( λ i ) M λ = λ i * 时(9)的解。

根据构造Darboux变换(DT)的过程,我们得到了lax对的一阶Darboux变换

Φ [ 1 ] = T Φ = Φ η W 1 Ω ( η , Φ ) = ( I + η W 1 η M ) Φ (10)

其中

η = ( Φ ( λ 1 ) , Ψ ( λ 1 ) ) , W = Ω ( η 1 , η 1 ) , Ω ( η , Φ ) = Ω ( η 1 , Φ )

Ω ( η i , η j ) = ( Φ ( λ i ) M Φ ( λ j ) λ i * λ j Φ ( λ i ) M Ψ ( λ j ) λ i * + λ j * Ψ ( λ i ) M Φ ( λ j ) λ i λ j Ψ ( λ i ) M Φ ( λ j ) λ i + λ j * ) , Ω ( η i , Φ ) = ( Φ ( λ i ) M Φ ( λ ) λ i * λ Ψ ( λ i ) M Φ ( λ ) λ i λ )

变换(10)是非局部两分量复CID系统及其Lax对(8)的Darboux变换,变换后的谱问题和时间演化方程为

Φ [ 1 ] x = U [ 1 ] Φ [ 1 ] , U [ 1 ] = 1 λ ( i ρ [ 1 ] I 2 R [ 1 ] x Q [ 1 ] x i ρ [ 1 ] I 2 )

Φ [ 1 ] t = V [ 1 ] Φ [ 1 ] , V [ 1 ] = i λ 4 ( I 2 0 0 I 2 ) + i 2 ( 0 R [ 1 ] Q [ 1 ] 0 ) (11)

其中

( 0 R [ 1 ] Q [ 1 ] 0 ) = ( 0 R Q 0 ) + 1 2 [ η W 1 η M , ( I 2 0 0 I 2 ) ] (12)

( i ρ [ 1 ] I 2 R [ 1 ] x Q [ 1 ] x i ρ [ 1 ] I 2 ) = ( i ρ I 2 R x Q x i ρ I 2 ) + ( η W 1 η M ) x (13)

q 1 [ 1 ] q 2 [ 1 ] ρ [ 1 ] q 1 q 2 ρ 之间的关系是

q 1 [ 1 ] = q 1 ε 1 ( λ 1 * λ 1 ) a 1 ϕ 1 ϕ 1 * ( x , t ) + ε 1 ε 2 ϕ 2 ϕ 2 * ( x , t ) ε 1 ϕ 3 ϕ 3 * ( x , t ) ε 2 ϕ 4 ϕ 4 * ( x , t )

q 2 [ 1 ] = q 2 ε 2 ( λ 1 * λ 1 ) a 2 ϕ 1 ϕ 1 * ( x , t ) + ε 1 ε 2 ϕ 2 ϕ 2 * ( x , t ) ε 1 ϕ 3 ϕ 3 * ( x , t ) ε 2 ϕ 4 ϕ 4 * ( x , t )

ρ [ 1 ] = ρ + i ( λ 1 * λ 1 ) ( a 3 ϕ 1 ϕ 1 * ( x , t ) + ε 1 ε 2 ϕ 2 ϕ 2 * ( x , t ) ε 1 ϕ 3 ϕ 3 * ( x , t ) ε 2 ϕ 4 ϕ 4 * ( x , t ) ) x (14)

其中:

a 1 = ε 2 ϕ 4 ϕ 2 * ( x , t ) ϕ 1 ϕ 3 * ( x , t ) a 2 = ε 1 ϕ 3 ϕ 2 * ( x , t ) ϕ 1 ϕ 4 * ( x , t )

a 3 = ϕ 1 ϕ 1 * ( x , t ) + ε 1 ε 2 ϕ 2 ϕ 2 * ( x , t )

3. 非局部两分量复CID系统的孤子解

本节利用达布变换得到了不同条件下非局部两分量复CID系统的孤子解,并分析它们的渐进行为。

3.1. 种子解为零时非局部两分量复CID系统的解

ϕ 1 = c 1 e w ¯ 1 , ϕ 2 = c 2 e w ¯ 1 , ϕ 3 = c 3 e w ¯ 1 , ϕ 4 = c 4 e w ¯ 1 (15)

其中: w ¯ 1 = i ρ 0 λ 1 x + i λ 1 4 t w ¯ 1 * = i ρ 0 λ 1 x i λ 1 4

a 1 = ε 2 c 4 c 2 * e w ¯ 1 * w ¯ 1 c 1 c 3 * e w ¯ 1 w ¯ 1 * a 2 = ε 1 c 3 c 2 * e w ¯ 1 * w ¯ 1 c 1 c 4 * e w ¯ 1 w ¯ 1 * a 3 = ( | c 1 | 2 + ε 1 ε 2 | c 2 | 2 ) e w ¯ 1 * + w ¯ 1

将其代入(14)可得出孤子解为:

q 1 [ 1 ] = 2 i λ 1 I ε 1 a 1 ( | c 1 | 2 + ε 1 ε 2 | c 2 | 2 ) e w ¯ 1 * + w ¯ 1 + ( ε 1 | c 3 | 2 + ε 2 | c 4 | 2 ) e ( w ¯ 1 * + w ¯ 1 )

q 2 [ 1 ] = 2 i λ 1 I ε 2 a 2 ( | c 1 | 2 + ε 1 ε 2 | c 2 | 2 ) e w ¯ 1 * + w ¯ 1 + ( ε 1 | c 3 | 2 + ε 2 | c 4 | 2 ) e ( w ¯ 1 * + w ¯ 1 )

ρ [ 1 ] = ρ 0 + 2 i λ 1 I ( a 3 ( | c 1 | 2 + ε 1 ε 2 | c 2 | 2 ) e w ¯ 1 * + w ¯ 1 + ( ε 1 | c 3 | 2 + ε 2 | c 4 | 2 ) e ( w ¯ 1 * + w ¯ 1 ) ) x (16)

( | c 1 | 2 + ε 1 ε 2 | c 2 | 2 ) ( ε 1 | c 3 | 2 + ε 2 | c 4 | 2 ) > 0 时这些解是非奇异的。当 c j 全不为0时,式(16)中的分量 q 1 q 2 都是沿 θ 1 R = 0 传播的局域波,具有周期性现象,可称为多峰孤子波。

3.2. 种子解不为零时非局部两分量复CID系统的解

容易验证非局部的两分量CID系统有平面波解 ρ = ρ 0 q 1 = r 1 e ( k 1 x w 1 t ) q 2 = r 2 e ( k 2 x w 2 t ) ,其中 ρ 0 = k i w i r 1 , r 2 ρ 0 都是常数,在这个种子解下,为了求解线性微分方程(1.7),对 Φ 作变换

Φ ˜ = Q Φ

Q = d i a g ( 1 , e ( k 1 x w 1 t ) + ( k 1 x w 1 t ) , e ( k 1 x w 1 t ) , e ( k 2 x w 2 t ) ) (17)

Φ ˜ 满足,如下常系数的微分方程

Φ ˜ x = U ˜ Φ ˜

Φ ˜ t = V ˜ Φ ˜ (18)

其中

U ˜ = 1 λ ( i ρ 0 0 k 1 r 1 k 2 r 2 0 i ρ 0 + λ ( k 1 + k 2 ) k 2 r 2 ε 2 k 1 r 1 ε 1 k 1 r 1 ε 1 k 2 r 2 i ρ 0 + λ k 1 0 k 2 r 2 ε 2 k 1 r 1 0 i ρ 0 + λ k 2 )

V ˜ = ( i λ 4 0 i r 1 2 i r 2 2 0 i λ 4 w 1 w 2 i 2 r 2 ε 2 i 2 r 1 ε 1 i 2 r 1 ε 1 i r 2 2 i λ 4 w 1 0 i 2 r 2 ε 2 i r 1 2 0 i λ 4 w 2 )

矩阵 V ˜ 的特征方程是

D e t [ τ I 4 V ˜ ] = 0 (19)

其中四个特征根是 τ j , j = 1 , 2 , 3 , 4

k 1 = k 2 w 1 = w 2 时,则特征方程(21)为

b 1 b 2 256 = 0 (20)

其中

b 1 = ( λ 1 + 4 i τ ) ( λ 1 4 i τ 4 i w ) + 4 ( r 1 2 ε 1 + r 2 2 ε 2 )

b 2 = ( λ 1 + 4 i τ + 8 i w 1 ) ( λ 1 4 i τ 4 i w ) + 4 ( r 1 2 ε 1 + r 2 2 ε 2 ) (21)

b 1 = 0 时我们能得出方程的特征根是 τ j = 2 w 1 ± ( 2 w 1 + i λ 1 ) 2 4 ( r 1 2 ε 1 + r 2 2 ε 2 ) 4 , j = 1 , 2 它对应的特征向量是 v j = ( 1 0 2 r 1 ε 1 λ 1 4 i τ j 4 i w 1 2 r 2 ε 2 λ 1 4 i τ j 4 i w 1 ) T 。当 b 2 = 0 时我们能得出方程的特征根是

τ l = 6 w 1 ± ( 2 w 1 i λ 1 ) 2 4 ( r 1 2 ε 1 + r 2 2 ε 2 ) 4 , l = 3 , 4 ,它对应的特征向量是

v j = ( 0 1 2 r 2 λ 1 4 i τ j 4 i w 1 2 r 1 λ 1 4 i τ j 4 i w 1 ) T

ν = ( v 1 v 2 v 3 v 4 ) ,则可以得出 λ 1 对应的线性问题(8)的通解是

Φ ( λ 1 ) = Q 1 ν C (22)

其中:

C = ( c 1 e θ 1 c 2 e θ 2 c 3 e θ 3 c 4 e θ 4 ) T θ j = m j x + τ j t m k = λ 1 k 1 2 i ( ρ 0 2 i τ k ) 2 λ 1 , k = 1 , 2

m l = 3 λ 1 k 1 2 i ( 4 k w + ρ 0 + 2 k τ k ) 2 λ 1 , l = 3 , 4

则可以的得出特征函数是

Φ = ( c 1 e θ 1 + c 2 e θ 2 e 2 x k 1 + 2 t w 1 ( c 3 e θ 3 + c 4 e θ 4 ) c 1 e θ 1 r 1 ε 1 l 1 + c 2 e θ 2 r 1 ε 1 l 2 + r 2 ( c 3 e θ 3 l 3 c 4 e θ 4 l 4 ) c 1 e θ 1 r 2 ε 2 l 1 + c 2 e θ 2 r 2 ε 2 l 2 + r 1 ( c 3 e θ 3 l 3 c 4 e θ 4 l 4 ) ) (23)

其中 l j = λ 4 i w 1 4 i τ j , j = 1 , 2 , 3 , 4

将其代入(14)可得出孤子解为

p [ 1 ] = e k 1 x t w 1 ε 1 ε 2 ϕ 4 g ¯ 2 ε 1 ϕ 1 g ¯ 3 d

q [ 1 ] = e k 1 x t w 1 ε 1 ε 2 ϕ 3 g ¯ 2 ε 1 ϕ 1 g ¯ 4 d

ρ [ 1 ] = ρ 0 + I ( ε 1 ε 2 ϕ 2 g ¯ 2 + ϕ 1 g ¯ 1 d ) x (24)

其中 d = ( ε 1 ε 2 ϕ 2 g ¯ 2 + ϕ 1 g ¯ 1 + ε 1 ϕ 3 g ¯ 3 + ε 2 ϕ 4 g ¯ 4 ) / 2 i λ I 。当 d 0 时这些解是非奇异的。当 c j 不全为0时,式(24)中的分量 q 1 q 2 也都是孤子波。

4. 结论

本文研究的是非局部两分量复CID系统。我们给出了该方程的Lax对,并构造了其达布变换,利用Darboux的方法考虑零和非零种子解两种情况,得出非局部两分量复CID方程的孤子解。

文章引用

付晨晨. 非局部两分量耦合复可积无色散方程的孤子解
Soliton Solutions of Nonlocal Two-Component Coupled Complex Integrable Dispersionless Equations[J]. 应用数学进展, 2022, 11(05): 2703-2710. https://doi.org/10.12677/AAM.2022.115286

参考文献

  1. 1. Konno, K. and Oono, H. (1994) New Coupled Integrable Dispersionless Equations. Journal of the Physical Society of Japan, 63, 377-378. https://doi.org/10.1143/JPSJ.63.377

  2. 2. Alagesan, T. and Porsezian, K. (1996) Painleve Analysis and the Integrability Properties of Coupled Integrable Dispersionless Equations. Chaos, Solitons & Fractals, 7, 1209-1212. https://doi.org/10.1016/0960-0779(95)00108-5

  3. 3. Kakuhata, H. and Konno, K. (1999) Loop Soliton Solutions of String Interacting with External Field. Journal of the Physical Society of Japan, 68, 757-762. https://doi.org/10.1143/JPSJ.68.757

  4. 4. Hirota, R. and Tsujimoto, S. (1994) Note on New Coupled Integrable Dispersionless Equations. Journal of the Physical Society of Japan, 63, 3533. https://doi.org/10.1143/JPSJ.63.3533

  5. 5. Konno, K. and Oono, H. (1994) Reply to Note on New Coupled Inte-grable Dispersionless Equations. Journal of the Physical Society of Japan, 63, 3534. https://doi.org/10.1143/JPSJ.63.3534

  6. 6. Kotlyarov, V.P. (1994) On Equations Gauge Equivalent to the Si-ne-Gordon and Pohlmeyer-Lund-Regge Equations. Journal of the Physical Society of Japan, 63, 3535-3537. https://doi.org/10.1143/JPSJ.63.3535

  7. 7. Konno, K. (1995) Integrable Coupled Dispersionless Equations. Appli-cable Analysis, 57, 209-220. https://doi.org/10.1080/00036819508840347

  8. 8. Kakuhata, H. and Konno, K. (1996) A Generalization of Cou-pled Integrable Dispersionless System. Journal of the Physical Society of Japan, 65, 340-341. https://doi.org/10.1143/JPSJ.65.340

  9. 9. Peregrine, D.H. (1983) Water Waves, Nonlinear Schrödinger Equations and Their Solutions. The ANZIAM Journal, 25, 16-43. https://doi.org/10.1017/S0334270000003891

  10. 10. Akhmediev, N., Ankiewicz, A. and Soto-Crespo, J.M. (2009) Rogue Waves and Rational Solutions of the Nonlinear Schrödinger Equation. Physical Review E, 80, Article ID: 026601. https://doi.org/10.1103/PhysRevE.80.026601

  11. 11. Akhmediev, N., Ankiewicz, A. and Taki, M. (2009) Waves That Appear from Nowhere and Disappear without a Trace. Physics Letters A, 373, 675-678. https://doi.org/10.1016/j.physleta.2008.12.036

  12. 12. Ankiewicz, A., Kedziora, D.J. and Akhmediev, N. (2011) Rogue Wave Triplets. Physics Letters A, 375, 2782-2785. https://doi.org/10.1016/j.physleta.2011.05.047

  13. 13. Yan, Z.Y. (2010) Financial Rogue Waves. Communications in Theoretical Physics, 54, 947-949. https://doi.org/10.1088/0253-6102/54/5/31

  14. 14. Yoshimasa, M. (2007) Multiloop Soliton and Multibreather Solu-tions of the Short Pulse Model Equation. Journal of the Physical Society of Japan, 76, Article ID: 084003. https://doi.org/10.1143/JPSJ.76.084003

  15. 15. Feng, B.F. (2015) Complex Short Pulse and Coupled Complex Short Pulse Equations. Physica D: Nonlinear Phenomena, 297, 62-75. https://doi.org/10.1016/j.physd.2014.12.002

  16. 16. Shen, S.F., Feng, B.F. and Ohta, Y. (2016) From the Real and Complex Coupled Dispersionless Equations to the Real and Complexshort Pulse Equations. Studies in Applied Mathe-matics, 136, 64-88. https://doi.org/10.1111/sapm.12092

  17. 17. Ling, L., Feng, B.F. and Zhu, Z.N. (2016) Mul-ti-Soliton, Multi-Breather and Higher Order Rogue Wave Solutions to the Complex Short Pulse Equation. Physica D: Nonlinear Phenomena, 327, 62-75. https://doi.org/10.1016/j.physd.2016.03.012

  18. 18. Feng, B.F., Ling, L. and Zhu, Z.N. (2016) Defocusing Complex Short-Pulse Equation and Its Multi-Dark-Soliton Solution. Physical Review E, 93, Article ID: 052227. https://doi.org/10.1103/PhysRevE.93.052227

  19. 19. Ji, J.L., Huang, Z.L. and Zhu, Z.N. (2017) Reverse Space and Time Nonlocal Coupled Dispersionless Equation and Its Solutions. Annals of Mathematical Sciences and Applications, 2, 409-429. https://doi.org/10.4310/AMSA.2017.v2.n2.a8

期刊菜单