Advances in Clinical Medicine
Vol. 12  No. 09 ( 2022 ), Article ID: 55704 , 7 pages
10.12677/ACM.2022.1291200

肠道菌群–大麻素系统与早泄的研究进展

郑俊,张俊勇,张唯力*

重庆医科大学第二附属医院泌尿外科,重庆

收稿日期:2022年8月9日;录用日期:2022年9月2日;发布日期:2022年9月13日

摘要

早泄是常见的性功能障碍疾病之一,选择性5-羟色胺再摄取抑制剂因提高5-羟色胺(5-hydroxytryptamine, 5-HT)浓度在治疗抑郁症时能有效延长射精潜伏时间。目前的研究指出大麻素系统与5-HT系统在功能上相互影响且相互依赖。肠道菌群能够调节机体代谢组成并以5-HT为介导最终影响个体情绪与应激,通过益生菌治疗能有效逆转肠道菌群的情绪反应。本文基于肠道菌群及大麻素系统,深入探讨肠道菌群与早泄疾病发生及治疗上的相关性。

关键词

早泄,肠道菌群,大麻素系统,5-HT,射精潜伏时间

Advances in the Study of Intestinal Flora-Cannabinoid System and Premature Ejaculation

Jun Zheng, Junyong Zhang, Weili Zhang*

Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Aug. 9th, 2022; accepted: Sep. 2nd, 2022; published: Sep. 13th, 2022

ABSTRACT

Premature ejaculation is one of the common sexual dysfunction diseases. Selective serotonin reuptake inhibitors can effectively prolong ejaculation latency in the treatment of depression by increasing the concentration of 5-HT. Current research points to the functional interaction and interdependence of the cannabinoid system and the 5-HT system. Intestinal flora can regulate the body’s metabolic composition and ultimately affect individual mood and stress through 5-HT. Probiotic treatment can effectively reverse the emotional response of gut flora. Based on the gut microbiota and cannabinoid system, this paper deeply explores the correlation between the gut microbiota and the occurrence and treatment of premature ejaculation.

Keywords:Premature Ejaculation, Intestinal Flora, Cannabinoid System, 5-HT, Ejaculation Latency

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

早泄目前已逐步成为泌尿外科男科领域中发病率最高的性功能障碍疾病,其国内的发病率为25%~40%,高于国外早泄发病率21%~33% [1] [2] [3]。随着发病率的提高,早泄所带来的危害由个体夫妻生活质量到集体社会稳定和谐 [4],据调查显示,约三分之一的成年男子一生中均不同程度地遭遇过早泄所带来的影响 [5]。腰骶部神经中枢作为高级中枢下行信息传导的重要枢纽,在此过程中,5-羟色胺(5-hydroxytryptamine, 5-HT)是研究最为广泛的神经递质并起着关键性的作用 [6]。5-HT和内源性大麻素(Endocannabinoids, ECB)系统之间存在高度的功能重叠,都参与调节体温、进食行为、睡眠和觉醒以及情绪过程。而内源性大麻素系统中受体的激活、传递效率、功能表达都需要5-HT系统的参与 [7] [8] [9] [10]。随着近年脑肠轴的深入研究,菌群种植后的肠道菌群失调可能涉及肠道内环境、肠道神经和免疫系统或某些代谢途径的变化,从而在受体中诱发抑郁或焦虑行为 [3] [11]。本文基于5-HT系统及大麻素系统对肠道菌群与早泄关系的研究进展作一综述,旨在为早泄的临床治疗提供新的思路。

2. 5-HT与早泄的关系

2.1. 5-HT介导系统在性功能过程中的作用

5-HT作为血管活性物质在中枢神经系统中是重要的抑制性神经递质。5-HT的浓度调节及功能实现最主要受制于5-HT转运体和5-HT自身受体 [12]。前者能经突触间隙通过载体将突触中5-HT快速转运,后者通过相关受体的激活以反馈调节的形式调节5-HT神经元的放电频率。在射精调节过程中,任何原因降低5-HT的合成或5-HT自身转运障碍,都会不同程度地降低5-HT的调节作用从而缩短射精潜伏时间 [13]。5-HT受体在早泄中的既往研究表示,一共有15种5-HT受体亚型,且各自在不同的解剖位置中发挥作用 [14]。其中参与射精过程的调节主要有5-HT1A、5-HT1B、5-HT2C受体亚型。1A受体的激活造成射精提前,1B和5-2C受体激活使得射精延缓 [15] [16]。

既往研究表明5-HT系统基因多样性与原发型早泄的发生及疗效相关 [17]。SLC6A4基因片段的缺失或减少形成5-HT转运体基因连锁多态性区域,此区域作为等位基因的显现关键区域,不同基因型的表达可影响5-HTT的合成 [18]。既往研究还表示5-HT1A受体、5-HT2C受体基因多态性与原发型早泄相关, 5-HT1A受体高表达与G基因相关且减少5-HT释放,其中在早泄患者中基因型CG频率大于对照组,基因型GG频率小于对照组,基因型CC的射精潜伏时间小于基因型CG和GC [19] [20] [21]。尽管大多数研究都支持5-HT系统基因多态性与早泄的发生及药物疗效相关性存在明显的联系,然而基因多样性的研究都存在样本量较少的问题,缺少基因之间的相互影响及临床疗效的研究。

2.2. 5-羟色胺再摄取抑制剂在早泄的作用机制

脑部细胞外5-HT的浓度降低能够导致抑郁的发生,选择性5-羟色胺再摄取抑制剂(Selective Serotonin Reuptake Inhibitor, SSIRS)因其能激活5-HT2C受体,提高5-HT的浓度而作为一线抗抑郁药 [22],有趣的是,急性的5-HT升高会通过激活5-HT2C受体引起机体产生焦虑反应,而SSIRS却能通过下调5-HT受体的对5-HT反应的敏感性而缓慢提升5-HT的浓度水平 [23]。也充分解释了SSIRS在抗抑郁治疗中的长效作用,以及停药后因5-HT浓度急性升高的短暂焦虑副反应 [24]。

SSIRs因其副作用能延长射精潜伏时间而被用于早泄的治疗,也是目前唯一得到国家药监局批准用于治疗原发性早泄的药物。它的作用机制涉及到5-HT转运体和5-HT自身受体并同样存在一定的时效性。首先SSIRS能通过高效选择性的阻断并拮抗5-HT转运体,迅速提高中枢中5-HT的浓度,在此基础上,5-HT自身受体因5-HT浓度的提高迅速被激活,并开始通过负反馈调节降低突触中5-HT的浓度。随着SSIRS的持续用药,上述循环下最终会造成5-HT自身受体的脱敏而引起5-HT在突触中的大量聚集,从而达到更强的治疗效果。

3. ECB系统与5-HT水平的关系

3.1. ECB系统在焦虑中的作用机制

突触或者细胞外5-HT浓度的增加会在啮齿动物中引起焦虑样效应 [25] [26]。ECB主要通过刺激情绪相关回路中的CB1受体来调节焦虑和抑郁状态。既往研究表明:突触的5-HT浓度和焦虑表现受到CB1受体和SERT基因变异的影响,焦虑取决于细胞外5-HT的浓度 [27]。在没有药物的情况下,细胞外5-HT水平过高或低于正常水平可能会导致焦虑加剧 [28]。

ECB信号是焦虑抑郁行为的分子基础,在抑郁症患者中会发生CB1受体的表达重组。在焦虑抑郁相关情绪神经解剖结构和回路中,包括前额叶皮质、海马体、杏仁核、下丘脑和前脑单胺能回路中广泛分布着ECB分子元件 [29]。事实上,在相关动物实验及模型中,CB1受体的阻断可产生类抑郁样行为表态,而大麻素系统中CB1受体的直接激活在抑郁动物模型中差生抗抑郁效应 [30]。

ECB合成后作用于突触前CB1受体,通过逆行信息传导对神经递质起到抑制释放的功能。在不同神经元中CB1受体表达也有差异。有趣的是:高表达CB1受体的γ-氨基丁酸(Gamma-aminobutyric acid, GABA)能神经元中,CB1受体拮抗剂反而会增加焦虑样行为。说明GABA神经元中CB1受体可能不参与CB1受体拮抗剂的抗焦虑作用 [31] [32] [33]。

3.2. ECB系统与5-HT的功能联系

中缝背侧是前脑5-HT的主要来源,CB1mRNA在中缝背侧的表达可能与5-HT纤维靶向的脑区的蛋白表达有关,而在中缝背侧的谷氨酸能传入神经元和非5-HT细胞的终末(如GABA能中间神经元)上表达CB1受体蛋白。因此,CB1受体信号可以调节中缝背侧5-羟色胺神经元的平衡 [34] [35]。另外,单酰甘油脂肪酶(Monoacylglycerol, MAGL)抑制可以提高2-花生酰甘油三酯(2-Arachidonoylglycerol, 2-AG)水平,通过突触前CB1受体减少5-HT的释放。除了对突触前5-HT的释放起作用外,研究报道CB1受体还可以调节5-HT的代谢。大麻素受体激动剂的急性刺激能通过大麻素-5-HT系统减少5-HT前体的合成。2种内源性大麻素水解酶脂肪酸酰胺水解酶(Fatty Acid Amide Hydrolase, FAAH)和单酰甘油脂肪酶(Monoacylglycerol, MAGL)的抑制剂可通过维持下丘脑–垂体–肾上腺轴负反馈调节机制的稳定,抑制炎症反应,从而对抑郁产生作用 [36]。

ECB通过激活CB1受体减少中枢神经系统中5-HT的释放。此方式可发生在5-HT神经元胞体及其投射区。细胞水平CB1受体激活后通过调节突触自身传递强度调节5-HT兴奋性,投射区水平则通过调节5-HT受体的功能来控制5-HT释放的速率 [37] [38]。

已经证实ECB系统能够通过与特定的5-HT受体亚型进行直接和间接的相互作用来调节5-HT的传递和释放 [39]。5-HT能激活突触后的5-HT2C受体,从而刺激GQ/11蛋白并引起磷脂酶CB介导的二酰甘油(Diacylglycerol, DAG)的产生。DAG脂肪酶可将DAG转化为2-AG,从而对CB1受体产生逆行刺激,从而抑制Ca2+内流和5-HT的释放 [27]。ECB信号的慢性改变强烈影响5-HT2受体的表达和敏感性,CB1受体基因缺失导致5-HT2C受体重组,CB1受体的慢性激活也会影响5-HT受体的表达和功能 [40]。5-HT已被证明直接调节各种合成的大麻激动剂与CB1受体的结合以及CB1受体与G蛋白第二信使系统的偶联能力。而5-HT活性不足也可以通过CB1受体脱敏间接影响ECB系统的表达和功能 [41]。

研究表明大麻素激动剂以CB1受体依赖的方式直接影响并减少小鼠新皮质脑片上钙离子诱导的5-HT释放。而大麻素类药物则是通过间接增加伏隔核内5-HT的外流导致突触后5-HT神经元的去抑制 [39]。

SSRIs是通过抑制载体平衡快速提高5-HT浓度,这就会激活受体通过反馈来达到平衡,而越高浓度会激活更多的受体,这样可部分或全部抵消SSRIs类药物引起的5-HT浓度增高。导致前期5-HT的浓度并不会大幅度的增高,只能在长期给药致受体脱敏后,抑制载体的功效才真正显现出来,给药的副作用在早期比较明显,长期给药以后逐渐变得可以耐受。而大麻素系统主要通过抑制受体平衡来调控5-HT浓度,MAGL水解大麻素降低大麻素对5-HT释放和其受体功能的抑制,从而刺激5-HT的释放和5-HT2C受体的激活,提高5-HT的浓度且引起焦虑。所以可能也会存在受体脱敏的时效性过程,因脱敏后还存在载体平衡,可能MAGL引起的5-HT浓度的增高并没有SSRIs的作用明显。

4. 肠道菌群与抑郁

海马区的改变是抑郁症重要发病机制环节之一。抗抑郁药物和替代抗抑郁药物干预措施刺激成年海马体神经发生,进而抑制应激反应,恢复正常行为 [42]。肠道微生物群组成失调已在抑郁症患者中得到印证。研究表明,肠道微生物群通过释放可直接或间接影响大脑稳态的细菌代谢物来调节焦虑和与回路功能障碍相关的神经疾病的发作 [43]。

ECB系统中的情绪调节是通过激活CB1受体来发生。在抑郁症患者中观察到CB1受体基因CNR1突变等位基因的频率更高。长期压力已证明会降低大脑中的ECB信号。肠道微生物群失调能通过损害海马体中的ECB系统来启动抑郁,患有抑郁症的患者血清中2-AG和其他主要ECB配体花生四烯酰乙醇胺(Anandamide, AEA)水平较低 [44]。

动物实验模型中,慢性轻度应激小鼠肠道微生物群组成可发生失调,将这些小鼠体内的异常微生物群移植到无菌小鼠体内,会在受体鼠中诱发抑郁或焦虑行为并减少受体小鼠的神经发生。而通过益生菌治疗可以改善小鼠的肠道菌群失调并有效改善小鼠的抑郁样行为 [43] [44]。乳杆菌菌株给药对情绪的积极影响可能依赖于多种机制,机制之一是通过调节ECB前体的生物利用度 [45]。相关代谢组学分析发现受体小鼠的ECB的脂质前体缺乏,从而导致大脑中ECB系统的活性受损。若用药理学阻断ECB降解酶后ECB水平的增加或饮食与ECB脂质前体的互补,均能不同程度改善受体小鼠中微生物失调引起的抑郁样行为和海马损伤。血清中脂质前体水平与抑郁样行为的严重程度呈负相关,而在海马体中也存在类似的现象发生 [43] [46] [47]。

代谢组学分析:慢性轻度应激小鼠和受体小鼠的单酰甘油和二酰甘油水平都显著降低,供体血清中短链脂肪酸特有的某些脂质水平显著降低,包括n-6多不饱和脂肪酸(polyunsaturated fatty acid, PUFA)、亚油酸和n6-PUFA生物合成中间体,受体小鼠中几种中长链脂肪酰肉碱的水平相当高 [43]。

既往研究也表明:与微生物处理受体小鼠相比,用JZL184处理的微生物群受体小鼠的海马p-mTOR、p-p70S6K和p-rpS6水平显著增加,而此效应能被中枢选择性CB1受体拮抗剂所逆转,说明JZL184的作用依赖于CB1受体,既往研究也表明中枢CB1受体信号在抗抑郁中起着重要作用,因为将上述中枢拮抗剂更换成另外一种脑外拮抗剂AM6545,则并不会逆转JZL184的抗抑郁作用 [43]。

5. 结论

综上所述,大麻素系统可通过调节肠道菌群的构成来影响突触中5-HT的浓度,5-HT的浓度与情绪及早泄的发生息息相关,肠道菌群的失调可能是早泄的又一病因。但目前仍存在许多问题。内源性大麻素作用于CB1受体,抑制5-HT在神经元投射区的释放以及各种5-HT受体的功能和表达,降低5-HT在突出间隙的浓度,FAAH和MAGL抑制剂是减少其水解而间接增加内源性大麻素水平,因此比直接补充外源性大麻素引起的副作用更少。但不清楚肠道菌群是否直接通过调节5-HT来影响早泄的发生,目前也无法评估益生菌的补充是否可逆转肠道菌群的失调来治疗早泄。未来的研究可以从动物水平研究大麻素导致射精提前的实验证据,并利用FAAH抑制剂URB597和MAGL抑制剂JZL184对动物实验进行干预,进而研究MAGL在早泄中的治疗作用及其作用机制,并寻找治疗早泄的新路径。

文章引用

郑 俊,张俊勇,张唯力. 肠道菌群–大麻素系统与早泄的研究进展
Advances in the Study of Intestinal Flora-Cannabinoid System and Premature Ejaculation[J]. 临床医学进展, 2022, 12(09): 8330-8336. https://doi.org/10.12677/ACM.2022.1291200

参考文献

  1. 1. 袁亦铭, 辛钟成. 射精功能神经调节机制研究进展[J]. 中国男科学杂志, 2004, 18(6): 54-57.

  2. 2. 闫向前, 等. 伊木萨克片联合盐酸达泊西汀治疗原发性早泄的临床观察[J]. 中华男科学杂志, 2016(9): 817-822.

  3. 3. Lach, G., et al. (2018) Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics, 15, 36-59. https://doi.org/10.1007/s13311-017-0585-0

  4. 4. Byers, E.S. and Grenier, G. (2003) Premature or Rapid Ejacula-tion: Heterosexual Couples’ Perceptions of Men’s Ejaculatory Behavior. Archives of Sexual Behavior, 32, 261-270. https://doi.org/10.1023/A:1023417718557

  5. 5. Carson, C. and Gunn, K. (2006) Premature Ejaculation: Definition and Prevalence. International Journal of Impotence Research, 18, S5-S13.

  6. 6. Xu, C., et al. (2006) Identification of Lumbar Spinal Neurons Controlling Simultaneously the Prostate and the Bulbospongiosus Muscles in the Rat. Neuro-science, 138, 561-573. https://doi.org/10.1016/j.neuroscience.2005.11.016

  7. 7. Egashira, N., et al. (2006) In-volvement of 5-hydroxytryptamine1A Receptors in Delta9-Tetrahydrocannabinol-Induced Catalepsy-Like Immobilization in Mice. European Journal of Pharmacology, 550, 117-122. https://doi.org/10.1016/j.ejphar.2006.08.051

  8. 8. Murillo-Rodríguez, E., et al. (2008) The Anandamide Membrane Transporter Inhibitor, VDM-11, Modulates Sleep and c-Fos Expression in the Rat Brain. Neuroscience, 157, 1-11. https://doi.org/10.1016/j.neuroscience.2008.08.056

  9. 9. Ward, S.J., et al. (2008) Effects of a Cannabinoid1 Recep-tor Antagonist and Serotonin2C Receptor Agonist Alone and in Combination on Motivation for Palatable Food: A Dose-Addition Analysis Study in Mice. Journal of Pharmacology & Experimental Therapeutics, 325, 567-576. https://doi.org/10.1124/jpet.107.131771

  10. 10. Marco, E.M., et al. (2005) Involvement of 5-HT1A Receptors in Be-havioural Effects of the Cannabinoid Receptor Agonist CP 55,940 in Male Rats. Behavioural Pharmacology, 15, 21-27. https://doi.org/10.1097/00008877-200402000-00003

  11. 11. Simpson, C.A., et al. (2021) The Gut Microbiota in Anxiety and Depression—A Systematic Review. Clinical Psychology Review, 83, Article ID: 101943. https://doi.org/10.1016/j.cpr.2020.101943

  12. 12. 肖福兴, 王福才, 谢赞兵. 达泊西汀治疗早泄的临床研究[J]. 皮肤病与性病, 2018, 40(3): 456-457.

  13. 13. Viveka, et al. (1998) Facilitation and Inhibition of Male Rat Ejaculatory Be-haviour by the Respective 5-HT1A and 5-HT1B Receptor Agonists 8-OH-DPAT and Anpirtoline, as Evidenced by Use of the Corresponding New and Selective Receptor Antagonists NAD-299 and NAS-181. British Journal of Pharmacol-ogy, 125, 1733-1743.

  14. 14. Wolters, J.P. and Hellstrom, W.J. (2006) Current Concepts in Ejaculatory Dysfunction. Re-views in Urology, 8, S18-S25.

  15. 15. Olivier, B., van Oorschot, R. and Waldinger, M.D. (1998) Serotonin, Serotonergic Receptors, Selective Serotonin Reuptake Inhibitors and Sexual Behaviour. International Clinical Psychopharmacology, 13, S9-S14. https://doi.org/10.1097/00004850-199807006-00003

  16. 16. Waldinger, M.D., et al. (1998) Familial Occurrence of Primary Premature Ejaculation. Psychiatric Genetics, 8, 37-40. https://doi.org/10.1097/00041444-199800810-00007

  17. 17. 杨德威. 原发性早泄与5-HT系统基因多态性相关性的研究进展[J]. 中华男科学杂志, 2021, 27(8): 748-752.

  18. 18. Bradley, S.L., et al. (2005) Relationship of Serotonin Transporter Gene Polymorphisms and Haplotypes to mRNA Transcription. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 136, 58-61. https://doi.org/10.1002/ajmg.b.30185

  19. 19. Roaiah, M.F., et al. (2019) 5HT-1A Receptor Polymorphism Effects Ejaculatory Function in Egyptian Patients with Lifelong Premature Ejaculation. Revista Internacional de Andrología, 17, 138-142. https://doi.org/10.1016/j.androl.2018.07.004

  20. 20. Janssen, P.K., et al. (2014) The 5-HT1A Receptor C(1019)G Polymorphism Influences the Intravaginal Ejaculation Latency Time in Dutch Caucasian Men with Lifelong Premature Ejaculation. Pharmacology Biochemistry and Behavior, 121, 184-188. https://doi.org/10.1016/j.pbb.2014.01.004

  21. 21. Jern, P., et al. (2012) A Study of Possible Associations between Single Nucleotide Polymorphisms in the Serotonin Receptor 1A, 1B, and 2C Genes and Self-Reported Ejaculation La-tency Time. The Journal of Sexual Medicine, 9, 866-872. https://doi.org/10.1111/j.1743-6109.2011.02618.x

  22. 22. Waldinger, M.D., et al. (1998) Premature Ejaculation and Serotonergic Antidepressants-Induced Delayed Ejaculation: The Involvement of the Serotonergic System. Behavioural Brain Research, 92, 111-118. https://doi.org/10.1016/S0166-4328(97)00183-6

  23. 23. Waldinger, M.D., Schweitzer, D.H. and Olivier, B. (2005) On-Demand SSRI Treatment of Premature Ejaculation: Pharmacodynamic Limitations for Relevant Ejaculation Delay and Consequent Solutions. The Journal of Sexual Medicine, 2, 121-131. https://doi.org/10.1111/j.1743-6109.2005.20112.x

  24. 24. Bagdy, G., et al. (2001) Anxiety-Like Effects Induced by Acute Fluoxetine, Sertraline or m-CPP Treatment Are Reversed by Pretreatment with the 5-HT2C Receptor Antagonist SB-242084 but Not the 5-HT1A Receptor Antagonist WAY-100635. International Journal of Neuropsychopharmacol-ogy, 4, 399-408. https://doi.org/10.1017/S1461145701002632

  25. 25. Kantor, S., et al. (2001) Rapid Desensitization of 5-HT(1A) Re-ceptors in Fawn-Hooded Rats after Chronic Fluoxetine Treatment. European Neuropsychopharmacology, 11, 15-24. https://doi.org/10.1016/S0924-977X(00)00126-7

  26. 26. Dekeyne, A., et al. (2000) Citalopram Reduces Social Inter-action in Rats by Activation of Serotonin (5-HT)2C Receptors. Neuropharmacology, 39, 1114-1117. https://doi.org/10.1016/S0028-3908(99)00268-3

  27. 27. Lazary, J., et al. (2009) Promoter Variants of the Canna-binoid Receptor 1 Gene (CNR1) in Interaction with 5-HTTLPR Affect the Anxious Phenotype. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150, 1118-1127. https://doi.org/10.1002/ajmg.b.31024

  28. 28. 张永超. 5-羟色胺受体与抑郁症相关性的研究进展[J]. 医学综述, 2014, 20(5): 772-775.

  29. 29. Colangeli, R., Teskey, G.C. and Di Giovanni, G. (2021) Endocannabinoid-Serotonin Systems Interaction in Health and Disease. Progress in Brain Research, 259, 83-134. https://doi.org/10.1016/bs.pbr.2021.01.003

  30. 30. Lazary, J., et al. (2011) Personalized Medicine Can Pave the Way for the Safe Use of CB1 Receptor Antagonists. Trends in Pharmacological Sciences, 32, 270-280. https://doi.org/10.1016/j.tips.2011.02.013

  31. 31. Freund, T.F., Katona, I. and Piomelli, D. (2003) Role of Endogenous Cannabinoids in Synaptic Signaling. Physiological Reviews, 83, 1017-1066. https://doi.org/10.1152/physrev.00004.2003

  32. 32. Szabo, B. and Schlicker, E. (2005) Effects of Cannabinoids on Neurotransmission. Handbook of Experimental Pharmacology, Vol. 168, Springer, Berlin, 327-365. https://doi.org/10.1007/3-540-26573-2_11

  33. 33. Pacher, P., Bátkai, S. and Kunos, G. (2006) The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacological Reviews, 58, 389-462. https://doi.org/10.1124/pr.58.3.2

  34. 34. Egertová, M., et al. (1998) A New Perspective on Cannabinoid Signalling: Complementary Localization of Fatty Acid Amide Hydrolase and the CB1 Receptor in Rat Brain. Proceedings: Biological Sciences, 265, 2081-2085. https://doi.org/10.1098/rspb.1998.0543

  35. 35. Moldrich, G. and Wenger, T. (2000) Localization of the CB1 Canna-binoid Receptor in the Rat Brain. An Immunohistochemical Study. Peptides, 21, 1735-1742. https://doi.org/10.1016/S0196-9781(00)00324-7

  36. 36. Nawata, Y., et al. (2019) Inhibition of Monoacylglycerol Li-pase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats. International Journal of Neuropsychopharmacology, 22, 165-172. https://doi.org/10.1093/ijnp/pyy086

  37. 37. Haj-Dahmane, S. and Shen, R.Y. (2005) The Wake-Promoting Peptide Orexin-B Inhibits Glutamatergic Transmission to Dorsal Raphe Nucleus Serotonin Neurons through Retrograde Endo-cannabinoid Signaling. Journal of Neuroscience, 25, 896-905. https://doi.org/10.1523/JNEUROSCI.3258-04.2005

  38. 38. Haj-Dahmane, S. and Shen, R.Y. (2009) Endocanna-binoids Suppress Excitatory Synaptic Transmission to Dorsal Raphe Serotonin Neurons through the Activation of Pre-synaptic CB1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 331, 186-196. https://doi.org/10.1124/jpet.109.153858

  39. 39. Tao, R. and Ma, Z. (2012) Neural Circuit in the Dorsal Raphe Nucle-us Responsible for Cannabinoid-Mediated Increases in 5-HT Efflux in the Nucleus Accumbens of the Rat Brain. ISRN Pharmacology, 2012, Article ID: 276902. https://doi.org/10.5402/2012/276902

  40. 40. Moranta, D., Esteban, S. and García-Sevilla, J.A. (2004) Differential Ef-fects of Acute Cannabinoid Drug Treatment, Mediated by CB1 Receptors, on the in Vivo Activity of Tyrosine and Tryp-tophan Hydroxylase in the Rat Brain. Naunyn-Schmiedeberg’s Archives of Pharmacology, 369, 516-524. https://doi.org/10.1007/s00210-004-0921-x

  41. 41. Nakazi, M., et al. (2000) Inhibition of Serotonin Release in the Mouse Brain via Presynaptic Cannabinoid CB1 Receptors. Naunyn-Schmiedeberg’s Archives of Pharmacology, 361, 19-24. https://doi.org/10.1007/s002109900147

  42. 42. Sheline, Y.I., et al. (1996) Hippocampal Atrophy in Recurrent Major Depression. Proceedings of the National Academy of Sciences of the United States of America, 93, 3908-3913. https://doi.org/10.1073/pnas.93.9.3908

  43. 43. Chevalier, G., et al. (2020) Effect of Gut Microbiota on Depres-sive-Like Behaviors in Mice Is Mediated by the Endocannabinoid System. Nature Communications, 11, Article No. 6363. https://doi.org/10.1038/s41467-020-19931-2

  44. 44. Yang, C., et al. (2017) Bifidobacterium in the Gut Microbiota Confer Resilience to Chronic Social Defeat Stress in Mice. Scientific Reports, 7, Article No. 45942. https://doi.org/10.1038/srep45942

  45. 45. Dinan, T.G. and Cryan, J.F. (2013) Melancholic Microbes: A Link between Gut Microbiota and Depression? Neurogastroenterology & Motility, 25, 713-719. https://doi.org/10.1111/nmo.12198

  46. 46. Cani, P.D., et al. (2016) Endocannabinoids—At the Crossroads between the Gut Microbiota and Host Metabolism. Nature Reviews Endocrinology, 12, 133-143. https://doi.org/10.1038/nrendo.2015.211

  47. 47. Möhle, L., et al. (2016) Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Reports, 15, 1945-1956. https://doi.org/10.1016/j.celrep.2016.04.074

  48. NOTES

    *通讯作者。

期刊菜单