Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62257 , 8 pages
10.12677/ACM.2023.133443

血小板衍生生长因子及受体在肥胖和糖尿病中的研究进展

王延淼1,2,信立霞2,张玉荣2,刘洋2,刘元涛3*

1山东第一医科大学研究生部,山东 济南

2青岛市市立医院内分泌科,山东 青岛

3山东大学齐鲁医院(青岛)内分泌科,山东 青岛

收稿日期:2023年2月6日;录用日期:2023年3月1日;发布日期:2023年3月9日

摘要

近年来肥胖和糖尿病的患病率逐年增加,严重影响人们的生活质量。随着科研的不断进展,这类疾病的相关分子及信号通路的研究成为热门。血小板衍生生长因子(platelet-derived growth factor, PDGF)作为一种促血管生成因子,成员有PDGF-AA,PDGF-BB,PDGF-CC,PDGF-DD,PDGF-AB五种类型,其受体(platelet-derived growth factor receptor, PDGFR)属于酪氨酸蛋白激酶受体家族,它们不仅参与血管再生和创伤修复等重要生理过程,还在肿瘤细胞增殖、迁移及器官组织纤维化方面发挥重要作用,PDGF/PDGFR已成为基础生物学与转化医学研究所关注的重要靶点。近年研究发现,PDGF配体及受体与脂肪组织扩增及糖代谢关系密切。本文总结了目前已知关于PDGF及受体的结构与功能,并对其在肥胖及糖尿病方面的研究进行了梳理,以期望其能为肥胖和糖尿病的研究和治疗提供新方向。

关键词

血小板衍生生长因子,受体,肥胖,糖尿病

Research Progress of Platelet-Derived Growth Factor and Its Receptor in Obesity and Diabetes

Yanmiao Wang1,2, Lixia Xin2, Yurong Zhang2, Yang Liu2, Yuantao Liu3*

1Department of Postgraduates, Shandong First Medical University, Jinan Shandong

2Department of Endocrinology, Qingdao Municipal Hospital, Qingdao Shandong

3Department of Endocrinology, Qilu Hospital of Shandong University (Qingdao), Qingdao Shandong

Received: Feb. 6th, 2023; accepted: Mar. 1st, 2023; published: Mar. 9th, 2023

ABSTRACT

In recent years, the prevalence of obesity and diabetes is increasing gradually, which seriously affects the quality of people’s life severely. With the advance of scientific research, the related molecules and signaling pathways of these diseases have become a hot topic. Platelet-derived growth factor (PDGF), as an angiogenic cytokines, consists of five molecular structures including PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD and PDGF-AB. Platelet-derived growth factor receptor (PDGFR) belongs to the tyrosine protein kinase receptor family. Platelet-derived growth factor receptor is not only involved in important physiological processes such as angiogenesis and wound repair, but also plays an important role in tumor cell proliferation, migration and organ tissue fibrosis. PDGF/PDGFR has become an important target in the research of basic biology and translational medicine. In recent years, it has been found that PDGFs and their receptors are closely related to adipose expansion and glucose metabolism. In this paper, the structure and function of PDGF and its receptors were summarized, and the research on its role in obesity and diabetes was reviewed in order to provide a new direction for the research and treatment of obesity and diabetes.

Keywords:PDGF, Receptor, Obesity, Diabetes

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着人口老龄化和人们生活方式的改变,肥胖与糖尿病患者人数越来越多,为家庭及社会带来严重的经济负担。随着近年来科学技术的进步,人们对于疾病的认识也从临床症状、组织病理,逐渐深入到基因蛋白、分子通路等更精细的领域。血小板衍生生长因子(platelet-derived growth factor, PDGF)作为一种经典的促血管生成因子,不仅参与血管再生和创伤修复等重要生理过程,还在肿瘤细胞增殖、迁移及器官组织纤维化方面发挥重要作用。近年研究发现,PDGF配体及受体与脂肪组织扩增及糖代谢关系密切,其可能是治疗肥胖症及糖尿病的重要潜在靶点。本文将对于目前已知PDGF受体及受体的结构与功能进行总结,并对其在肥胖及糖尿病方面的最新研究进行了梳理。

2. 肥胖与糖尿病现状及发病机制

伴随着社会经济发展和国民生活水平的提高,肥胖与糖尿病的患病率逐年升高,2020年全国调查报告显示,我国成年居民超重肥胖率超过50%,6岁至17岁的儿童青少年超重肥胖率接近20% [1] 。另有调查报告显示,我国18岁及以上成年人糖尿病患病率约11.2%,估计全国患病总数高达1.30亿 [2] 。在这些患者中,90%以上的患者诊断为2型糖尿病(Type 2 Diabetes, T2DM),1型糖尿病(Type 1 Diabetes, T1DM)及其他类型糖尿病占比不足10%,因此糖尿病典型的消瘦症状并不常见,很多T2DM患者伴随着不同程度的超重或肥胖 [3] 。

目前,肥胖与糖尿病的发病机制仍未完全明确。两者皆属于常见的慢性代谢性疾病,在发病机制与病理状态方面关系密切,肥胖患者往往伴随着糖耐量异常及胰岛素抵抗,而糖尿病患者通过合理饮食及控制体重,高血糖状态会得到明显改善 [4] 。许多研究假说解释了两者之间的关联,炎症假说认为肥胖是一种慢性炎症状态,多种炎症巨噬细胞损伤胰岛β细胞,造成胰岛素分泌缺乏,其分泌的炎症因子加剧外周组织胰岛素抵抗 [5] 。脂毒学说认为肥胖伴T2DM患者体内游离脂肪酸增多,向外周组织输送增加,累积在肌肉、肝脏、胰腺等非脂肪组织中,导致胰岛β细胞损伤引起胰岛素分泌障碍,同时脂质的异位沉积也会加重外周组织胰岛素抵抗 [6] [7] 。此外,脂肪组织作为体内重要的内分泌器官,可分泌多种脂肪因子,如瘦素、脂联素、内脂素、抵抗素等,这些肽类激素可以调节机体的物质转运和能量代谢,参与机体的炎症反应,脂肪因子异常分泌会导致一系列代谢异常综合征 [8] 。PDGF是20世纪70年代后相继发现的一类细胞因子,具有刺激特定细胞趋化与生长的作用 [9] ,大量研究表明,在血管内皮细胞、神经组织、肿瘤组织中均可检测到PDGF及其受体的表达,其广泛参与机体正常发育和疾病病理过程 [10] [11] [12] 。最近研究发现,PDGF通过多种途径调节物质转运及能量代谢,影响激素生物效应的发挥,与肥胖和糖尿病的疾病发展密切相关。

3. PDGF配体与受体概述

3.1. PDGF配体

PDGF作为促血管生成因子,是多种间质细胞强效促有丝分裂原,正常生理状态下其绝大部分储存在血小板α颗粒中,但在内皮细胞、巨噬细胞、神经细胞等多种细胞中也有广泛分布。其释放形式主要为自分泌及旁分泌,可促进内皮与间质相互作用,在胚胎发育、细胞增殖、迁移、存活和趋化性的调节中起着重要作用 [13] 。PDGF是由不同染色体上原癌基因编码的A、B、C、D四种多肽链,常见的PDGFs是由两条多肽链通过二硫键连接而成的五种二聚体,即同型二聚体PDGF-AA、PDGF-BB、PDGF-CC、PDGF-DD和异型二聚体PDGF-AB,它们在不同的时间被相继发现,其生物功能也存在明显差异 [14] [15] 。PDGF均包含1个高度保守的生长因子结构域,即PDGF/血管内皮生长因子同源结构域,结构的不同决定了配体激活部位不同。PDGF-A与PDGF-B在胞内合成,向胞外分泌过程中前体蛋白被相应的酶水解而转化为激活状态。而PDGF-C和PDGF-D因含有更稳定的特殊结构域,须通过特定修饰才能在胞外被激活。其中,PDGF-C可被组织型纤溶酶原激活物(tissue-type plasminogen activator, tPA)激活,而PDGF-D则需尿激酶纤溶酶原激活物(urokinase-type plasminogen activator, uPA)激活 [16] 。PDGF在体内的病理生理作用多而复杂,例如研究发现,PDGF-A与高血压和动脉粥样硬化的平滑肌细胞增生相关 [17] ,PDGF-B在肾小球正常发育、脑血管发育、周细胞募集和血脑屏障的调节方面起重要作用 [10] [18] ,PDGF-C与肾间质纤维化、脑胶质瘤等疾病的发生有密切联系 [11] [19] ,PDGF-D则与胃癌、乳腺癌、子宫内膜癌等恶性肿瘤的细胞增殖及淋巴管形成相关 [20] [21] [22] 。在健康的血管系统中PDGF的表达较低,但在心血管病、组织纤维化和肿瘤等疾病中,可检测到多个种类的PDGF表达的上调 [23] 。

3.2. PDGF受体

目前已知的PDGFR包括PDGFR-αα、PDGFR-ββ、PDGFR-αβ,它们是具有5个胞外结构域和1个胞内酪氨酸激酶结构域的跨膜蛋白,不同二聚化形式的PDGF可以识别不同的PDGFR,其中PDGF-AA、PDGF-BB、PDGF-AB和PDGF-CC与PDGFR-αα同源二聚体组合,PDGF-BB和PDGF-DD与PDGFR-ββ组合,PDGF-AB、PDGF-BB、PDGF-CC及PDGF-DD可与PDGFR-αβ组合并激活 [13] [14] [15] [16] 。在没有配体时,PDGFR以自抑制的单体形式存在,当PDGFR结合二聚化配体PDGF后,可以形成二聚化受体复合物,招募包含SH2/PTB结构域的下游信号分子,介导下游相关信号通路如MAPK/ERK、PI3K/AKT的传导,从而广泛参与机体生长发育与病理生理过程 [16] 。例如,PDGFR-α参与胚胎原肠胚及神经、骨骼、心脏、皮肤等多个系统器官的发育,PDGF-A和PDGF-C基因敲除的小鼠胚胎出现腭裂和隐匿性脊柱裂,而PDGFRα基因敲除的胚胎则具有更严重的颜面裂、脊柱裂及骨骼和血管缺陷 [10] [24] ,而PDGFR-β则是造血系统和血管形成建立的必要调节因素,PDGF-B和PDGFR-β敲除胚胎有严重的血管缺陷和畸形,同时伴有血细胞异常 [25] 。此外,还存在一些不依赖于PDGFs来激活PDGFR作用模式,研究发现非PDGF家族生长因子如表皮细胞生长因子(epidermal Growth Factor, EGF)、碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)、肝细胞生长因子(hepatocyte growth factor, HGF)和胰岛素等可间接激活PDGFRα,与增殖性玻璃体视网膜病变的发生密切相关 [26] 。

4. PDGF/PDGFR在肥胖及糖尿病中的研究进展

4.1. PDGF-AA

PDGF-AA与胰岛β细胞的增殖及肝脏胰岛素抵抗相关。胰岛素是由胰脏内的胰岛β细胞受内源性或外源性物质刺激而分泌的一种蛋白质激素,其分泌不足或生物作用受损,是糖尿病发生的基础,肝脏作为机体重要的代谢器官,在维持糖代谢的稳态中发挥重要作用。Chen等人 [27] 研究发现,血小板衍生生长因子PDGF-AA可激活胰岛β细胞表面PDGFR-α蛋白,通过PDGF/ERK信号通路促进Zeste同源物2 (enhancer of zeste homologue 2, Ezh2)的表达,而Ezh2可以抑制Cdkn2a基因表达,促进幼年小鼠胰岛中的β细胞增殖,延缓成年小鼠胰岛β细胞衰老。另外相关研究发现,衰老小鼠的胰岛素分泌受损与血清及胰腺中的PDGF-AA水平下降相关,增加外源性成骨细胞中PDGF-AA可促进β细胞增殖及增加胰岛素分泌,改善机体血糖水平 [28] 。基因组关联分析发现肥胖的T2DM患者PDGF-A相关DNA甲基化降低而PDGF-AA的表达增加,其主要原因可能与严重的高胰岛素血症引起机体的反馈调节相关。PDGF-AA在动物体内过表达会导致胰岛素抵抗和脂肪性肝炎风险增加,其机制可能是通过调控蛋白激酶C (protein kinase C, PKC)激活影响胰岛素受体底物1 (IRS1)和胰岛素受体(INSR)的结合,阻断AKT活化和下游信号传导。研究还发现,应用胰岛素增敏剂二甲双胍后PDGF-AA表达下调,肝脏对胰岛素的敏感性增加,从新的角度揭示了药物减轻胰岛素抵抗的作用机制 [29] 。

4.2. PDGF-BB

PDGF-BB和PDGFR-β与脂肪组织扩增及血管重塑相关。哺乳动物白色脂肪广泛分布在皮下及内脏组织中,主要的功能是将体内过剩的能量以中性脂肪的形式存储起来。脂肪组织扩张需要充足的营养和氧气,因此充足的血管生成是脂肪组织的扩张的必要因素。研究发现,巨噬细胞分泌的PDGF-BB是血管生成起始阶段重要的调节因子,其以浓度依赖性方式引起周细胞从血管脱离,促进脂肪组织新生血管的发芽及生长 [30] 。肥胖和高糖等代谢应激促进脂肪组织巨噬细胞(ATM)中的糖酵解,并通过ERK途径增加PDGF-B的表达,促进饮食诱导肥胖的新生血管形成 [30] [31] 。在PDGFRβ基因敲除的高脂饮食(high-fat diet, HFD)的小鼠中,PDGFRβ系统性缺失抑制了白色脂肪组织中新生血管的形成,减少内脏脂肪组织中的脂肪堆积和慢性炎症,改善肝脏及骨骼肌的糖代谢损伤 [32] 。过氧化物酶体增生激活受体γ (Peroxisome proliferator-activated receptor gamma, Pparg; PPARγ)是脂肪生成的重要调节因子,Shao等人 [33] 在转基因小鼠实验中发现,Pparg编码基因过表达可增加PDGFRβ+前体脂肪细胞的成脂能力,使体内生成数量更多、体积更小的健康脂肪组织,并且改善脂联素依赖的葡萄糖稳态,而Pparg下调则会导致脂肪细胞出现纤维化、炎症等病理性损伤。众所周知有氧运动是减轻肥胖及预防心血管疾病的有效方式,相关研究发现定期有氧运动可减轻肥胖相关的炎症反应,降低炎症因子及血糖负荷,其可能与激活PDGF-BB/PDGFR-β/PI3K/Akt/eNOS信号通路相关 [34] 。因此,通过调控PDGF-BB/PDGFR-β通路改善肥胖与糖代谢异常可能是一种可靠且效果显著的方法。

4.3. PDGF-CC

PDGF-CC可促进血管生成和组织伤口愈合,参与脂肪组织中脂质储存和能量代谢的调控。大量研究表明,PDGF-CC具有独特的促新生血管生成作用,可以促进成纤维细胞和周细胞的增殖、存活和迁移,增加血管内皮细胞的存活率,其还可以显著上调许多重要血管生成基因的表达,如PDGF-B、PDGFR-β、血管内皮生长因子(vascular endothelial growth factor, VEGF)等,阻断PDGF-CC/PDGFRα可以从多方面抑制病理性血管的生成 [35] 。对于抗VEGF-A治疗耐药的肿瘤疾病,联合应用PDGF-CC抑制剂在抑制病理性血管生成效果更好 [36] 。与此相反,研究发现PDGF-CC在糖尿病小鼠中表达下调,同时伴随着血管生成受损和血运障碍,注射VEGF并不能显著改善血运状况,而增加PDGF-CC可改善缺血后的血运重建 [37] 。另一方面,Cox等人 [38] 研究发现HFD诱导下脂肪组织常驻巨噬细胞PDGF-CC相关表达上调,可以增加白色脂肪组织中脂肪的合成与储存。阻断PDGF-CC信号通路并没有影响食物的摄入和吸收,但棕色脂肪组织产热相关基因表达出现了明显的上调,说明PDGF-CC可以通过特殊途径限制棕色脂肪组织的能量消耗进而增加脂肪的储存。PDGFR-α+前脂肪细胞具有分化为白色脂肪与棕色脂肪两种极性,有研究发现寒冷刺激下血管内皮VEGF、PDGF-CC等因子表达增加,PDGF-CC会通过旁分泌促进PDGFR-α+祖细胞向高表达解耦联蛋白1 (UCP1)的成熟棕色脂肪分化,促进机体耗能产热,而抑制PDGF-CC及阻断PDGF-α可显著降低产热相关的能量消耗 [39] 。PDGF-CC相关基因敲除的脂肪细胞中胰岛素刺激下葡萄糖摄取减少,脂肪细胞生成、分化等方面存在明显缺陷,这进一步说明PDGF-CC对于脂质及糖代谢的作用不可或缺 [40] 。如何通过调控PDGF-CC更好地改善血管病理状态及能量代谢紊乱,仍需更广泛而深入的探索研究。

4.4. PDGF-DD

目前对于PDGF-DD的研究较少,有少量研究表明其与动脉血管粥样硬化及脂肪干细胞(adipose-derived stem cells, ASCs)的分裂相关。研究发现PDGF-DD在动脉粥样硬化的内皮细胞中被诱导上调,通过降低包括平滑肌α-肌动蛋白(smooth muscle α-actin, SMA-α)和平滑肌球蛋白重链(smooth muscle myosin heavy chain, SM-MHC)在内的多种血管平滑肌细胞(smooth muscle cell, SMC)基因的表达,在血流动力学紊乱的情况下促进SMC表型的转变而加速血管动脉粥样硬化的病变 [41] 。ASCs作为一种具有多向分化潜能的干细胞,能够被诱导分化成骨、软骨、肌肉、脂肪等组织,预先诱导的ASCs移植后可明显改善骨骼及平滑肌功能,修复机体组织的病理损伤 [42] 。有研究发现PDGF-DD在ASCs的有丝分裂过程中发挥重要作用,PDGF-DD通过PI3K/Akt通路调节ASCs的增殖和迁移,通过产生线粒体活性氧(mitochondrial reactive oxygen species, mtROS)和线粒体裂变来增加ASCs的增殖和迁移,因此PDGF-DD被认为是一种新型的ASCs刺激剂,可以用作ASCs移植前的预处理剂 [43] 。

5. PDGFs相关药物的应用及机制研究

PDGFs相关产物早已开始应用于临床,且许多药物在PDGF/PDGFR方面作用逐渐被揭示。在组织修复及肿瘤的治疗方面,基因重组人类血小板衍生生长因子(recombinant human Platelet derived growth factor, rhPDGF)被应用于烧伤溃疡的清创修复、骨关节修复、抗衰老等方向 [44] [45] ,靶向受体拮抗剂已被批准用于胃肠道间质瘤、卵巢癌等多种肿瘤的治疗。伊马替尼(imatinib)是最早被用于临床的激酶抑制剂,它可以靶向拮抗BCR-ABL,c-Kit和PDGFR的活性,已成功用于治疗慢性粒细胞白血病、胃肠道间质瘤、皮肤纤维肉瘤和与PDGF受体融合相关的髓样恶性肿瘤 [46] 。近年来研究发现,伊马替尼对肿瘤伴T2DM的患者具有明显的降糖和改善血脂的作用,研究发现其通过多种机制保护胰岛β细胞并减轻胰岛素抵抗促进白色脂肪褐变及减轻肥胖炎症,其效果也在治疗糖尿病的相关临床试验中得到肯定 [47] [48] [49] 。值得注意的是,众所周知一些降糖药物的应用会影响患者的体重,然而其中的机制并不清楚。有研究发现二甲双胍可以改善患者的肝脂肪变性和纤维化,减轻脂肪组织巨噬细胞引起的慢性炎症,从而达到控制肥胖患者体重的效果,其作用机制与PDGF/PDGFR相关联 [29] [50] 。噻唑烷二酮(Thiazolidinediones, TZDs)类药物作为经典的胰岛素增敏剂,能够通过作用于PPARγ等受体调节特定基因基因的表达,改善机体对胰岛素的敏感性,促进肥胖小鼠的健康内脏白色脂肪组织重塑,而研究发现PPARγ的表达与前脂肪细胞PDGFRβ介导的信号关系密切 [33] [51] 。由此可见,调节PDGFs和其受体活性在治疗肥胖及T2DM方面具有重要的潜在价值。

6. 小结与展望

当今社会肥胖及糖尿病发病率不断升高,与其相关的分子研究也越来越深入。PDGFs及受体广泛分布在各种组织细胞中,在生物胚胎发育、细胞增殖迁移、疾病发展过程中起着重要作用。近年来许多研究发现,PDGFs及其受体在脂肪组织的生长代谢过程中发挥重要作用,并且与糖代谢与胰岛素抵抗等密切相关。但到目前为止,仍未完全清楚PDGFs驱动哪些信号来影响脂质及糖代谢,以及造成的病理损伤能否逆转。肥胖和糖尿病的发展是复杂的病理过程,大量细胞因子及信号通路参与其中,PDGFs家族作为促血管生成因子家族重要的一员,其生物作用及表达变化贯穿着疾病的整体发展过程。相信会有更多的研究帮助我们明确其中的机制,而且针对PDGFs及其受体的靶向治疗,或将成为治疗肥胖与糖尿病等代谢疾病的新手段。

文章引用

王延淼,信立霞,张玉荣,刘 洋,刘元涛. 血小板衍生生长因子及受体在肥胖和糖尿病中的研究进展
Research Progress of Platelet-Derived Growth Factor and Its Receptor in Obesity and Diabetes[J]. 临床医学进展, 2023, 13(03): 3117-3124. https://doi.org/10.12677/ACM.2023.133443

参考文献

  1. 1. 中国居民营养与慢性病状况报告(2020年) [J]. 营养学报, 2020, 42(6): 521.

  2. 2. Li, Y., Teng, D., Shi, X., et al. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. BMJ, 369, Article No. m997. https://doi.org/10.1136/bmj.m997

  3. 3. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 国际内分泌代谢杂志, 2021, 41(5): 482-548.

  4. 4. Heilbronn, L.K., Noakes, M. and Clifton, P.M. (1999) Effect of Energy Restriction, Weight Loss, and Diet Composition on Plasma Lipids and Glucose in Patients with Type 2 Diabetes. Diabetes Care, 22, 889-895. https://doi.org/10.2337/diacare.22.6.889

  5. 5. Saltiel, A.R. and Olefsky, J.M. (2017) Inflammatory Mechanisms Linking Obesity and Metabolic Disease. Journal of Clinical Investigation, 127, 1-4. https://doi.org/10.1172/JCI92035

  6. 6. Montgomery, M.K., De Nardo, W. and Watt, M.J. (2019) Impact of Lipo-toxicity on Tissue “Cross Talk” and Metabolic Regulation. Physiology, 34, 134-149. https://doi.org/10.1152/physiol.00037.2018

  7. 7. Marmugi, A., Parnis, J., Chen, X., et al. (2016) Sorcin Links Pancreatic β-Cell Lipotoxicity to ER Ca2+ Stores. Diabetes, 65, 1009-1021. https://doi.org/10.2337/db15-1334

  8. 8. Kumari, R., Kumar, S. and Kant, R. (2019) An Update on Metabolic Syn-drome: Metabolic Risk Markers and Adipokines in the Development of Metabolic Syndrome. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 2409-2417. https://doi.org/10.1016/j.dsx.2019.06.005

  9. 9. Kaplan, D.R., Chao, F.C., Stiles, C.D., et al. (1979) Platelet Alpha Granules Contain a Growth Factor for Fibroblasts. Blood, 53, 1043-1052. https://doi.org/10.1182/blood.V53.6.1043.bloodjournal5361043

  10. 10. Corsinovi, D., Giannetti, K., Ce-ricola, A., Naef, V. and Ori, M. (2019) PDGF-B: The Missing Piece in the Mosaic of PDGF Family Role in Craniofacial Development. Developmental Dynamics, 248, 603-612. https://doi.org/10.1002/dvdy.47

  11. 11. Li, X., Pontén, A., Aase, K., et al. (2000) PDGF-C Is a New Prote-ase-Activated Ligand for the PDGF α-Receptor. Nature Cell Biology, 2, 302-309. https://doi.org/10.1038/35010579

  12. 12. Junkunlo, K., Söderhäll, K., Noonin, C. and Söderhäll, I. (2017) PDGF/VEGF-Related Receptor Affects Transglutaminase Activity to Control Cell Migration during Crustacean Hema-topoiesis. Stem Cells and Development, 26, 1449-1459. https://doi.org/10.1089/scd.2017.0086

  13. 13. Klinkhammer, B.M., Floege, J. and Boor, P. (2018) PDGF in Organ Fibrosis. Molecular Aspects of Medicine, 62, 44-62. https://doi.org/10.1016/j.mam.2017.11.008

  14. 14. Fredriksson, L., Li, H. and Eriksson, U. (2004) The PDGF Family: Four Gene Products Form Five Dimeric Isoforms. Cytokine & Growth Factor Reviews, 15, 197-204. https://doi.org/10.1016/j.cytogfr.2004.03.007

  15. 15. Kazlauskas, A. (2017) PDGFs and Their Receptors. Gene, 614, 1-7. https://doi.org/10.1016/j.gene.2017.03.003

  16. 16. 王媚媚, 秦晓红, 米立志. 血小板衍生生长因子受体结构与功能的研究[J]. 中国科学(生命科学), 2019, 49(6): 683-697.

  17. 17. Miller-Kasprzak, E., Niemir, Z.I. and Czekalski, S. (2004) The Role of Platelet-Derived Growth Factor A (PDGF-A) in Hypertension and Renal Diseases. Part 1: Struc-ture and Regulation of the PDGF-A Gene Expression and Its Role in Hypertension. Polski Merkuriusz Lekarski, 16, 398-401. (In Polish)

  18. 18. Wu, W.-B., Chiang, H.-S., Fang, J.-Y. and Hung, C.-F. (2007) Inhibitory Effect of Lycopene on PDGF-BB-Induced Signalling and Migration in Human Dermal Fibroblasts: A Possible Target for Cancer. Biochem-ical Society Transactions, 35, 1377-1378. https://doi.org/10.1042/BST0351377

  19. 19. Lee, C., Zhang, F., Tang, Z., Liu, Y. and Li, X. (2013) PDGF-C: A New Performer in the Neurovascular Interplay. Trends in Molecular Medicine, 19, 474-486. https://doi.org/10.1016/j.molmed.2013.04.006

  20. 20. Huang, F., Wang, M., Yang, T., et al. (2014) Gastric Cancer-Derived MSC-Secreted PDGF-DD Promotes Gastric Cancer Progression. Journal of Cancer Research and Clinical Oncology, 140, 1835-1848. https://doi.org/10.1007/s00432-014-1723-2

  21. 21. Wang, Y., Qiu, H., Hu, W., Li, S. and Yu, J. (2014) Over-Expression of Platelet-Derived Growth Factor-D Promotes Tumor Growth and Invasion in Endometrial Cancer. International Journal of Molecular Sciences, 15, 4780-4794. https://doi.org/10.3390/ijms15034780

  22. 22. Ustach, C.V. and Kim, H.R. (2005) Platelet-Derived Growth Factor D Is Activated by Urokinase Plasminogen Activator in Prostate Carcinoma Cells. Molecular and Cellular Biology, 25, 6279-6288. https://doi.org/10.1128/MCB.25.14.6279-6288.2005

  23. 23. Folestad, E., Kunath, A. and Wågsäter, D. (2018) PDGF-C and PDGF-D Signaling in Vascular Diseases and Animal Models. Molecular Aspects of Medicine, 62, 1-11. https://doi.org/10.1016/j.mam.2018.01.005

  24. 24. Ding, H., Wu, X., Boström, H., et al. (2004) A Specific Require-ment for PDGF-C in Palate Formation and PDGFR-α Signaling. Nature Genetics, 36, 1111-1116. https://doi.org/10.1038/ng1415

  25. 25. Andrae, J., Gallini, R. and Betsholtz, C. (2008) Role of Platelet-Derived Growth Factors in Physiology and Medicine. Genes & Development, 22, 1276-312. https://doi.org/10.1101/gad.1653708

  26. 26. Pennock, S., Haddock, L.J., Eliott, D., Mukai, S. and Kazlauskas, A. (2014) Is Neutralizing Vitreal Growth Factors a Viable Strategy to Prevent Proliferative Vitreoretinopathy? Progress in Retinal and Eye Research, 40, 16-34. https://doi.org/10.1016/j.preteyeres.2013.12.006

  27. 27. Chen, H., Gu, X., Liu, Y., et al. (2011) PDGF Signalling Controls Age-Dependent Proliferation in Pancreatic Β-Cells. Nature, 478, 349-355. https://doi.org/10.1038/nature10502

  28. 28. Liu, X., Zhang, F., Chai, Y., Wang, L. and Yu, B. (2020) The Role of Bone-Derived PDGF-AA in Age-Related Pancreatic β Cell Proliferation and Function. Biochemical and Biophysical Re-search Communications, 524, 22-27. https://doi.org/10.1016/j.bbrc.2019.12.057

  29. 29. Abderrahmani, A., Yengo, L., Caiazzo, R., et al. (2018) Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes. Diabetes, 67, 1310-1321. https://doi.org/10.2337/db17-1539

  30. 30. Watanabe, E., Wada, T., Okekawa, A., et al. (2020) Stromal Cell-Derived Factor 1 (SDF1) Attenuates Platelet-Derived Growth Factor-B (PDGF-B)-Induced Vascular Remodeling for Adipose Tissue Expansion in Obesity. Angiogenesis, 23, 667-684. https://doi.org/10.1007/s10456-020-09738-6

  31. 31. Onogi, Y., Wada, T., Okekawa, A., et al. (2020) Pro-Inflammatory Macrophages Coupled with Glycolysis Remodel Adipose Vasculature by Producing Platelet-Derived Growth Factor-B in Obesity. Scientific Reports, 10, Article No. 670. https://doi.org/10.1038/s41598-019-57368-w

  32. 32. Onogi, Y., Wada, T., Kamiya, C., et al. (2017) PDGFRβ Regu-lates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity. Diabetes, 66, 1008-1021. https://doi.org/10.2337/db16-0881

  33. 33. Shao, M., Vishvanath, L., Busbuso, N.C., et al. (2018) De Novo Adipocyte Differentiation from Pdgfrβ+ Preadipocytes Protects against Pathologic Visceral Adipose Expansion in Obesity. Nature Communications, 9, Article No. 890. https://doi.org/10.1038/s41467-018-03196-x

  34. 34. Wang, X., Yi, X. and Tang, D. (2021) Regular Aerobic Exercise Activates PDGF-BB/PDGFR-β Signaling and Modulates the Inflammatory-Anti-Inflammatory Balance in Diet-Induced Obese Mice. Obesity Research & Clinical Practice, 15, 387-394. https://doi.org/10.1016/j.orcp.2021.04.003

  35. 35. Hou, X., Kumar, A., Lee, C., et al. (2010) PDGF-CC Blockade In-hibits Pathological Angiogenesis by Acting on Multiple Cellular and Molecular Targets. Proceedings of the National Academy of Sciences of the United States of America, 107, 12216-12221. https://doi.org/10.1073/pnas.1004143107

  36. 36. Crawford, Y., Kasman, I., Yu, L., et al. (2009) PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell, 15, 21-34. https://doi.org/10.1016/j.ccr.2008.12.004

  37. 37. Moriya, J., Wu, X., Zavala-Solorio, J., et al. (2014) Platelet-Derived Growth Factor C Promotes Revascularization in Ischemic Limbs of Diabetic Mice. Journal of Vascular Surgery, 59, 1402-1409. https://doi.org/10.1016/j.jvs.2013.04.053

  38. 38. Cox, N., Crozet, L., Holtman, I.R., et al. (2021) Diet-Regulated Production of PDGFcc by Macrophages Controls Energy Storage. Science, 373, eabe9383. https://doi.org/10.1126/science.abe9383

  39. 39. Seki, T., Hosaka, K., Lim, S., et al. (2016) Endothelial PDGF-CC Regulates Angiogenesis-Dependent Thermogenesis in Beige Fat. Nature Communications, 7, Article No. 12152. https://doi.org/10.1038/ncomms12152

  40. 40. Chen, Z., Yu, H., Shi, X., et al. (2020) Functional Screening of Candi-date Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes. Circulation Research, 126, 330-346. https://doi.org/10.1161/CIRCRESAHA.119.315246

  41. 41. Thomas, J.A., Deaton, R.A., Hastings, N.E., et al. (2009) PDGF-DD, a Novel Mediator of Smooth Muscle Cell Phenotypic Modulation, Is Upregulated in Endothelial Cells Ex-posed to Atherosclerosis-Prone Flow Patterns. American Journal of Physiology-Heart and Circulatory Physiology, 296, H442-H452. https://doi.org/10.1152/ajpheart.00165.2008

  42. 42. Kapur, S.K., Dos-Anjos Vilaboa, S., Llull, R. and Katz, A.J. (2015) Adipose Tissue and Stem/Progenitor Cells: Discovery and Development. Clinics in Plastic Surgery, 42, 155-167. https://doi.org/10.1016/j.cps.2014.12.010

  43. 43. Kim, J.H., Park, S.G., Kim, W.-K., Song, S.U. and Sung, J.-H. (2015) Functional Regulation of Adipose-Derived Stem Cells by PDGF-D. Stem Cells, 33, 542-556. https://doi.org/10.1002/stem.1865

  44. 44. Kovacevic, D., Gulotta, L.V., Ying, L., et al. (2015) RhPDGF-BB Pro-motes Early Healing in a Rat Rotator Cuff Repair Model. Clinical Orthopaedics and Related Research, 473, 1644-1654. https://doi.org/10.1007/s11999-014-4020-0

  45. 45. Daniels, T.R., Younger, A.S., Penner, M.J., et al. (2015) Pro-spective Randomized Controlled Trial of Hindfoot and Ankle Fusions Treated with rhPDGF-BB in Combination with a β-TCP-Collagen Matrix. Foot & Ankle International, 36, 739-748. https://doi.org/10.1177/1071100715576370

  46. 46. Pardanani, A., D’Souza, A., Knudson, R.A., et al. (2012) Long-Term Follow-up of FIP1L1-PDGFRA-Mutated Patients with Eosinophilia: Survival and Clinical Outcome. Leuke-mia, 26, 2439-2441. https://doi.org/10.1038/leu.2012.162

  47. 47. Han, M.S., Chung, K.W., Cheon, H.G., et al. (2009) Imatinib Mesylate Reduces Endoplasmic Reticulum Stress and Induces Remission of Diabetes in db/db Mice. Diabetes, 58, 329-336. https://doi.org/10.2337/db08-0080

  48. 48. Choi, S.-S., Kim, E.-S., Jung, J.-E., et al. (2016) PPARγ An-tagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue. Diabetes, 65, 829-839. https://doi.org/10.2337/db15-1382

  49. 49. Gitelman, S.E., Bundy, B.N., Ferrannini, E., et al. (2021) Imatinib Therapy for Patients with Recent-Onset Type 1 Diabetes: A Multicentre, Randomised, Double-Blind, Place-bo-Controlled, Phase 2 Trial. The Lancet Diabetes and Endocrinology, 9, 502-514. https://doi.org/10.1016/S2213-8587(21)00139-X

  50. 50. Jing, Y., Wu, F., Li, D., et al. (2018) Metformin Improves Obesity-Associated Inflammation by Altering Macrophages Polarization. Molecular and Cellular Endocrinology, 461, 256-264. https://doi.org/10.1016/j.mce.2017.09.025

  51. 51. Soccio, R.E., Li, Z., Chen, E.R., et al. (2017) Target-ingPPARγ in the Epigenome Rescues Genetic Metabolic Defects in Mice. Journal of Clinical Investigation, 127, 1451-1462. https://doi.org/10.1172/JCI91211

  52. NOTES

    *通讯作者。

期刊菜单