﻿ 重载铁路小半径曲线地段钢轨波磨数值分析 Numerical Analysis of Rail Corrugation in Small Radius Curve Section of Heavy Haul Railway

Hans Journal of Civil Engineering
Vol. 08  No. 03 ( 2019 ), Article ID: 30433 , 13 pages
10.12677/HJCE.2019.83089

Numerical Analysis of Rail Corrugation in Small Radius Curve Section of Heavy Haul Railway

Jia He

Shenshuo Railway Branch, China Energy Company Ltd., Yulin Shaanxi

Received: May 5th, 2019; accepted: May 20th, 2019; published: May 27th, 2019

ABSTRACT

In the field of heavy haul railways, with the increase of the speed and the axle load, the wheel-rail force of the heavy haul railway curve section has also increased significantly, which has led to the deepening of the rail corrugation of the heavy haul railway curve section and directly also has affected the normal service of the line. This makes the Chinese government invest a lot of manpower and resources in the maintenance and repair of the rail every year. In this paper, the current situation of rail corrugation in the small radius curve section of Shenshuo heavy haul railway is combined with the dynamic simulation software SIMPACK to establish the following vehicle-track coupling model of small radius curve, and the mechanism and influencing factors of rail corrugation are analyzed. The study believes that when the train passes the small radius curve, the lateral natural vibration frequency of the wheel pair is close to or integral with the orbital vibration frequency, which is the main reason for the formation of the rail corrugation. Moreover, the curve radius and the running speed have a great influence on the rail corrugation.

Keywords:Heavy Haul Railway, Small Radius Curve, Rail Corrugation, Wheel-Rail Force, Curve Parameter

1. 引言

Table 1. Rail corrugation classification

2. 重载货物列车-轨道耦合模型的建立

2.1. 货车模型的建立

ZK6转向架主要由轮对轴箱装置、侧架以及弹簧悬挂装置组成。其中，弹簧悬挂装置的作用是减少线路不平顺对车辆各种振动的影响，包括一系悬挂和二系悬挂。转向架的模型如图1所示。

Figure 1. ZK6 bogie model

2.2. 轨道不平顺模型

Figure 2. ZK6 bogie model

2.3. 小半径曲线线路模型

2.4. 现场测试及模型的可靠性验证

2018年4月在山西忻州神朔重载铁路河东运输段上行的尧圪台工区进行了钢轨波磨现场测试试验，试验结果可用于模型可靠性的验证。试验里程为DK125~DK125 + 100 km。现场测试情况和试验数据如图3所示。

(a) 现场测试图 (b) 轮轨力时程图

Figure 3. Field test map of Shenshuo heavy-haul railway

Table 2. The field test and the simulation analysis result contrast statistics

3. 钢轨波磨的产生机理研究

3.1. 钢轨波磨产生机理的频域分析

Figure 4. The curve of characteristic wavelengths

Figure 5. The characteristic curve of longitudinal creepage

Figure 6. The characteristic curve of lateral creepage

Figure 7. The curve of lateral creepage frequency

Figure 8. The characteristic curve of lateral creepage (no excitation)

Figure 9. The characteristic curve of longitudinal creepage (no excitation)

Figure 10. The curve of lateral creepage frequency (no excitation)

3.2. 曲线地段内轨与外轨的对比

Figure 11. The diagram of lateral forces of internal and external rails

Figure 12. The diagram of wear number of internal and external rails

4. 钢轨波磨的影响因素分析

4.1. 曲线半径的影响

1) 磨耗指数

Figure 13. The curve of wear number with radius

2) 轮轨横向力

Figure 14. The curve of lateral force with radius

2) 脱轨系数

Figure 15. The curve of derailment coefficient with radius

4.2. 外轨超高的影响

1) 磨耗指数

Figure 16. The curve of wear number with elevation of outer rail

2) 轮轨横向力

Figure 17. The curve of wear number with elevation of outer rail

3) 脱轨系数

4.3. 货车速度的影响

1) 磨耗指数

Figure 18. The curve of wear number with speed

2) 轮轨横向力

Figure 19. The curve of lateral force with speed

3) 脱轨系数

5. 结论

1) 列车通过曲线时，当轨枕的通过频率与轮对的横向自振频率接近或成其整数倍时，轮对产生横向振动，导致内股轮轨间发生周期性的相对滑动，造成内股轨顶面的周期性的不均匀磨损，从而形成钢轨波磨。

2) 随着曲线半径的增加，轨道结构横向力和钢轨磨耗功率等都有较大幅度的降低。这表明曲线半径越大对减缓钢轨磨耗越有利，应尽量避免小半径曲线，建议曲线半径值大于等于500 m。

3) 随着外轨超高的减小，内轨横向力和磨耗指数都有所降低，但外轨横向力变化不大。总体来说，超高量的降低在一定程度上使得内外轨的轮轨磨耗情况得以缓解，有效地提高了列车曲线通过能力。

Numerical Analysis of Rail Corrugation in Small Radius Curve Section of Heavy Haul Railway[J]. 土木工程, 2019, 08(03): 759-771. https://doi.org/10.12677/HJCE.2019.83089

1. 1. 刘华伟. 神朔线重载运输发展模式探讨[J]. 铁道建筑技术, 2016(9): 116-119.

2. 2. 刘学毅. 钢轨波形磨耗成因研究[D]: [博士学位论文]. 成都: 西南交通大学, 1996.

3. 3. 温泽峰. 钢轨波浪形磨损研究[D]: [博士学位论文]. 成都: 西南交通大学, 2006.

4. 4. 国际重载协会. 国际重载铁路最佳应用指南[M]. 北京: 中国铁道出版社, 2009.

5. 5. 谷永磊. 高速铁路无砟轨道钢轨波浪形磨损机理研究[D]: [博士学位论文]. 北京: 北京交通大学, 2017.

6. 6. 翟婉明. 车辆—轨道耦合动力学[M]. 第四版. 北京: 科学出版社, 2015.

7. 7. 陈希. 重载铁路曲线参数对钢轨磨耗的影响分析[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2015.

8. 8. 钟智丰. 重载铁路小半径曲线钢轨磨耗研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2014.

9. 9. 金学松, 李霞, 李伟, 温泽峰. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273.

10. 10. 佐藤吉彦, 松本晃, 克诺特•克劳斯. 钢轨波磨研究综述[J]. 都市快轨交通, 2010, 23(3): 1-10.

11. 11. 范钦海. 钢轨波浪形磨耗形成机理及减缓措施研究[J]. 中国铁道科学, 1994(2): 22-40.

12. 12. 金学松, 温泽峰, 肖新标. 曲线钢轨初始波磨形成的机理分析[J]. 机械工程学报, 2008, 44(3): 1-8, 15.