Advances in Clinical Medicine
Vol. 10  No. 03 ( 2020 ), Article ID: 34797 , 5 pages
10.12677/ACM.2020.103065

A Study of LTA Zeolite in the Application of Dopamine Detection

Hongyang Dong, Yuting Yang, Xiaofeng Zhang, Guizhi Zhao, Kun Qian, Yifeng E

Jinzhou Medical University, Jinzhou Liaoning

Received: Mar. 5th, 2020; accepted: Mar. 20th, 2020; published: Mar. 27th, 2020

ABSTRACT

It has been noted that dopamine, as a catecholamine neurotransmitter, is usually used to help cells transmit impulses so that they can be connected with each other and cooperated closely. The addition of dopamine reveals a good adjuvant effect on the treatment of mental diseases, and may help to predict the response of drugs. For this reason, the detection of dopamine is focused by the scientific researchers. Also there are many very excellent results that have been further improved in the general detection methods after years of development. So it is worth studying to develop a method to detect dopamine quickly, sensitively and environmentally. A certain correlation has been shown between dopamine and LTA zeolite. After modifying, the LTA zeolite can be used in dopamine detection. The strategy may obtain a better detection limit and solve the problem of dopamine under complex conditions.

Keywords:Dopamine Detection, LTA Zeolite, Reactive

LTA沸石在多巴胺检测中的应用

董洪洋,杨钰婷,张晓枫,赵桂芝,钱昆,鄂义峰

锦州医科大学,辽宁 锦州

收稿日期:2020年3月5日;录用日期:2020年3月20日;发布日期:2020年3月27日

摘 要

研究表明,多巴胺作为一种儿茶酚胺类神经传导物质,其通常作用是帮助细胞传送脉冲,从而使他们能够相互联系、紧密合作。加入多巴胺对于治疗精神类疾病有着良好的辅助作用,并可能有助于预测药物的反应性。为此,多巴胺的检测就显得至关重要,经过多年发展一般检测多巴胺的手段中虽然不乏有很多非常好的结果,但他们仍需被进一步完善。所以研究出一种方法,使其可以快速、灵敏、环保地检测出多巴胺成为了一个很值得研究课题。经实验研究发现,多巴胺与LTA沸石(Linde Type A、林德型沸石A)存在着一定相关性。所以应用新修饰过的LTA沸石,利用其与多巴胺之间的相互作用,使LTA沸石应用到多巴胺检测中。目的在于能够获得更优检出限,解决复杂条件下的多巴胺问题。

关键词 :多巴胺检测,LTA沸石,反应性

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

多巴胺是一种儿茶酚胺类神经传导物质,其通常作用是帮助细胞传送脉冲,从而使他们能够相互联系、紧密合作。最早由阿维德·卡尔松发现多巴胺是一种神经递质 [1]。他发现导致帕金森氏症和精神分裂症的原因是由于在大脑中缺乏多巴胺这种神经递质,并可能导致药物无法有效地治疗这种疾病。虽然大脑多巴胺与运动和动机功能有关的一些动机假说已经受到挑战,并被发现一些说法论据不充分,但仍然清楚的是,多巴胺对于刺激–奖励和反应–奖励的关联的“冲击”是至关重要的 [2]。并且对于多巴胺在治疗精神病方面,还有很多正面的影响,药物之间逆激动作用导致受体阈值在长时间治疗后上调,并因此改变了多巴胺突触的某些性质。多巴胺受体受到刺激之后存在了多种不同的变异DNA序列,在某些情况下还有不同的氨基酸酸序列。这些有不同性质的变体可能改变了多巴胺和抗精神病药之间的相互作用。而患者中此类变异的测定可能有助于预测药物的反应性 [3]。所以,多巴胺的含量检测就显得尤为重要。

随着科学技术的发展,检测多巴胺含量的方法和技术手段也越来越多。经过大量文献查阅,总结出了近年来多巴胺检测的方法如表1

Table 1. System resulting data of standard experiment

表1. 多巴胺检测方法

表1可知在过去的几年里,多巴胺的检测技术变得越来越先进。最新技术将石墨–环氧树脂和合成沸石改性的石墨–环氧树脂复合大电极微型化作为准微电极,旨在体外,并且设想在体内同时电化学检测多巴胺(DA)和抗坏血酸(AA)神经递质,或在AA存在下进行DA检测。通过循环伏安法 [14] 和恒电位安培法 [15] 研究了设计材料在没有任何保护膜的情况下的电化学行为和对多巴胺和抗坏血酸的反应。证明了合成沸石改性的石墨–环氧复合准微电极对多巴胺检测的催化作用,除了多巴胺阳离子与合成沸石的负表面之间可能存在的静电吸引外,还提高了该分析物检测的灵敏度和选择性。同样,合成沸石改性的石墨–环氧复合准微电极提供了使用恒电位安培法检测多巴胺的最佳电分析参数,这是实际应用中最有用的技术 [16]。

2017年,Chandra等在2017年用火柴棒烧蚀简单石墨铅笔电极(GPE)头并在蚀刻部分观察到一种深黑色的沉积。通过x射线衍射(XRD)和扫描电镜对这部分GPE的腐蚀进行了表征。此外,将蚀刻电极同时用于检测pH 7.4、0.2 M磷酸缓冲液中的多巴胺和抗坏血酸。改良的GPE进行多巴胺的检测不仅稳定而且重现性好。检测限为3.4708 × 10−7 M,定量限为11.5693 × 10−7 M。火焰蚀刻电极用于抗坏血酸、尿酸存在时多巴胺的检测。结果表明,该电极对多巴胺、抗坏血酸和尿酸的溶出有较好的选择性,且分别具有氧化峰和还原峰电位。采用差分脉冲伏安法,通过改变一种物质的浓度来检测干扰的效果,而另外两种物质的浓度则保持不变 [5]。

Yanmei Xin等人在2017年以TiO2纳米管光子晶体(TiO2 NTPCs)为光电极,多巴胺(DA)分子为敏化剂和目标分析物,提出了一种具有自清洁活性的识别生物分子无单元光电电化学(PEC)传感平台原型。独特的吸附DA和二氧化钛之间NTPC诱导电荷转移形成的复合物,这不仅消耗二氧化钛在可见光区域的光学吸收,从而显著提高可见光的照明下压电陶瓷的性能,而且实现了DA在二氧化钛光电极的选择性检测。该简易高效的PEC分析平台检测DA的检出限为0.15 nm,结合微透析探针,可实现对小鼠脑内DA释放的灵敏、选择性测定,具有实际应用价值。DA功能化的TiO2 NTPCs PEC传感平台开辟了一种新的PEC检测模型,无需生物分子外辅助,只需将目标分子自然吸附在电极上进行灵敏选择性检测,为极简主义思想的生物传感器设计开辟了新途径 [6]。

这些方法经过多年发展虽然不乏有很多非常好的结果,但他们仍需被进一步完善。而在研究中发现多巴胺与LTA之间存在着良好的相关性。Yuan和他的团队受到海洋贻贝生物粘附能力的启发,在2017年用一种简单、多用途、有效且绿色的合成技术制定了制备致密、相纯、可再生的膜的方法。利用多多巴胺(PDA)作为新型共价连接剂形成强的非共价和共价化学键,分子筛LTA的营养物质可以被吸引并结合到载体表面,从而促进均匀、良好、相纯的沸石的成核和无核膜生长。对改性的Al2O3圆盘上制备的沸石LTA膜进行了单一气体渗透和混合气体分离的研究。由此,制备了经PDA修饰的沸石LTA膜载体,而经修饰后的载体具有较高的气体分离选择性。在373 K和1 bar时,其中混合物H2/CO 2,H2/N2 ,H2/CH4和H2/C3 H8的分离因子分别为7.8、7.2、6.6和18.3超过相应的克努森系数。此外,与之前相比提出了一种化学改性方法,用PDA对其进行改性环境(DPA的缓冲水溶液在室温下简单浸泡)有助于大规模制备沸石膜,降低膜的成本制造业 [17]。而沸石LTA膜的耐酸性能较差。氧化石墨烯保护层的加入改善了沸石膜的酸性稳定性,提高了膜的选择性和稳定性 [18]。

经过实验,在众多的多巴胺检测方法中电化学监测是最佳选择 [19]。而电化学检测的最关键的一步是电极材料的选择 [20]。在众多电极材料中,LTA分子筛 [21] 就具有很好的电化学性质。特别是改性后的LTA沸石 [7] [22] 具有良好的吸附性能和稳定性,可以用无毒无害的电化学方法更快速、灵敏地检测多巴胺 [5] [6] [16]。

2. 结语与展望

多巴胺与LTA沸石存在着很多很好的相关性,研究一种方法怎样应用新修饰过的LTA沸石利用多巴胺之间的某种联系使LTA沸石应用到多巴胺检测中,使其能够获得更优检出限,解决复杂条件下的多巴胺问题,帮助预测药物的反应性。

致谢

感谢国家自然科学基金项目批准号:21701069,辽宁省自然基金指导计划,2019-ZD-0607,大学生创新创业项目,《复合材料的制备及分离天然产物分子的应用研究》,2019054;《分子筛孔道限域的离子液体载药前体制备技术》,201910160028,《纳米孔ITQ-44分子筛限域合成碳量子点的研究》,2019048,《水解扩散限域作用协同药物释放模型的应用研究》2019049对本文章的支持。

文章引用

董洪洋,杨钰婷,张晓枫,赵桂芝,钱 昆,鄂义峰. LTA沸石在多巴胺检测中的应用
A Study of LTA Zeolite in the Application of Dopamine Detection[J]. 临床医学进展, 2020, 10(03): 413-417. https://doi.org/10.12677/ACM.2020.103065

参考文献

  1. 1. Lin, Y., Yin, M., Pu, F., Ren, J. and Qu, X. (2011) DNA-Templated Silver Nanoparticles as a Platform for Highly Sensitive and Selective Fluorescence Turn-On Detection of Dopamine. Small, 7, 1557-1561. https://doi.org/10.1002/smll.201002351

  2. 2. Chandra, U., Swamy, B.K., Kumar, M., Gebisa, A.W. and Praveen, M.J. (2017) Simple Flame Etching of Pencil Electrode for Dopamine Oxidation in Presence of Ascorbic Acid and Uric Acid. International Journal of Nanotechnology, 14, 739-751. https://doi.org/10.1504/IJNT.2017.086760

  3. 3. Xin, Y., Li, Z., Wu, W., Fu, B., Wu, H. and Zhang, Z. (2017) Bioelectronics, Recognition Unit-Free and Self-Cleaning Photoelectrochemical Sensing Platform on TiO2 Nanotube Photonic Crystals for Sensitive and Selective Detection of Dopamine Release from Mouse Brain. Biosensors & Bioelectronics, 87, 396-403. https://doi.org/10.1016/j.bios.2016.08.085

  4. 4. Gong, H., Lee, S.S. and Bae, T.-H. (2017) Mixed-Matrix Mem-branes Containing Inorganically Surface-Modified 5A Zeolite for Enhanced CO2/CH4 Separation. Microporous and Mesoporous Materials, 237, 82-89. https://doi.org/10.1016/j.micromeso.2016.09.017

  5. 5. Kim, Y.-R., Bong, S., Kang, Y.-J., Yang, Y., Mahajan, R.K., Kim, J.S. and Kim, H.J.B. (2010) Bioelectronics, Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes. Biosensors & Bioelectronics, 25, 2366-2369. https://doi.org/10.1016/j.bios.2010.02.031

  6. 6. Falat, L. and Cheng, H. (1982) Voltammetric Differentiation of Ascorbic Acid and Dopamine at an Electrochemically Treated Graphite/Epoxy Electrode. Analytical Chemistry, 54, 2108-2111. https://doi.org/10.1021/ac00249a046

  7. 7. Lees, A.J., Tolosa, E. and Olanow, C.W. (2015) Four Pioneers of L-Dopa Treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Movement Disorders, 30, 19-36. https://doi.org/10.1002/mds.26120

  8. 8. Yue, Y., Hu, G., Zheng, M., Guo, Y., Cao, J. and Shao, S. (2012) A Mesoporous Carbon Nanofiber-Modified Pyrolytic Graphite Electrode Used for the Simultaneous Determi-nation of Dopamine, Uric Acid, and Ascorbic Acid. Carbon, 50, 107-114. https://doi.org/10.1016/j.carbon.2011.08.013

  9. 9. Baghayeri, M., Rouhi, M., Lakouraj, M.M. and Amiri-Aref, M. (2017) Bioelectrocatalysis of Hydrogen Peroxide Based on Immobilized Hemoglobin onto Glassy Carbon Electrode Modified with Magnetic Poly (indole-co-thiophene) Nanocomposite. Journal of Electroanalytical Chemistry, 784, 69-76. https://doi.org/10.1016/j.jelechem.2016.12.006

  10. 10. Karim-Nezhad, G., Khorablou, Z. and Dorraji, P. (2016) Modification of Glassy Carbon Electrode with a Bilayer of Multiwalled Carbon Nanotube/Poly(l-Arginine) in the Presence of Surfactant: Application to Discrimination and Simultaneous Electrochemical Determination of Dihydroxybenzene Isomers. Journal of the Electrochemical Society, 163, B358. https://doi.org/10.1149/2.1051607jes

  11. 11. Yu, Y., Yu, C., Yin, T., Ou, S., Sun, X., Wen, X., Zhang, L., Tang, D. and Yin, X. (2017) Bioelectronics, Functionalized Poly(ionic liquid) as the Support to Construct a Ratiometric Elec-trochemical Biosensor for the Selective Determination of Copper Ions in AD Rats. Biosensors & Bioelectronics, 87, 278-284. https://doi.org/10.1016/j.bios.2016.08.066

  12. 12. Kissinger, P.T. and Heineman, W.R. (1983) Cyclic Voltammetry. Journal of Chemical Education, 60, 702. https://doi.org/10.1021/ed060p702

  13. 13. Reilley, C.N., Everett, G. and Johns, R. (1955) Voltammetry at Constant Current: Experimental Evaluation. Analytical Chemistry, 27, 483-491. https://doi.org/10.1021/ac60100a002

  14. 14. Ilinoiu, E.C., Manea, F., Serra, P.A. and Pode, R. (2013) Simultane-ous/Selective Detection of Dopamine and Ascorbic Acid at Synthetic Zeolite-Modified/Graphite-Epoxy Composite Macro/Quasi-Microelectrodes. Sensors, 13, 7296-7307. https://doi.org/10.3390/s130607296

  15. 15. Yuan, C., Liu, Q., Chen, H. and Huang, A. (2014) Mussel-Inspired Polydopamine Modification of Supports for the Facile Synthesis of Zeolite LTA Molecular Sieve Membranes. RSC Advances, 4, 41982-41988. https://doi.org/10.1039/C4RA05400H

  16. 16. Xu, K., Jiang, Z., Feng, B. and Huang, A. (2016) A Graphene Oxide Layer as an Acid-Resisting Barrier Deposited on a Zeolite LTA Membrane for Dehydration of Acetic Acid. RSC Ad-vances, 6, 23354-23359. https://doi.org/10.1039/C6RA00802J

  17. 17. Cejka, J., van Bekkum, H.J.Z. and Progress, O.M.M. (2005) Prospects: The 1st FEZA School on Zeolites, P., Czech Republic, August 20, Advanced Applications of Zeolites, 21, 263.

  18. 18. Berenguer-Murcia, á., Ruiz-Rosas, R.R., García-Aguilar, J., Nueangnoraj, K., Nishihara, H., Morallón, E., Kyotani, T. and Cazorla-Amorós, D. (2013) Binderless Thin Films of Zeolite-Templated Carbon Electrodes Useful for Electrochemical Microcapacitors with Ultrahigh Rate Performance. Physical Chemistry Chemical Physics, 15, 10331-10334. https://doi.org/10.1039/c3cp51945g

  19. 19. Dimitrijevi?, R., Dondur, V. and Kremenovi?, A. (1996) Thermally In-duced Phase Transformations of Ca-Exchanged LTA and FAU Zeolite Frameworks: Rietveld Refinement of the Hex-agonal CaAl2Si2O8 Diphyllosilicate Structure. Zeolites, 16, 294-300. https://doi.org/10.1016/0144-2449(95)00154-9

  20. 20. Wise, R.A. (2004) Dopamine, Learning and Motivation. Nature Reviews Neuroscience, 5, 483-494. https://doi.org/10.1038/nrn1406

  21. 21. Strange, P.G. (2001) Antipsychotic Drugs: Importance of Dopamine Re-ceptors for Mechanisms of Therapeutic Actions and Side Effects. Pharmacological Reviews, 53, 119-134.

  22. 22. Shirazian, S. and Ashrafizadeh, S. (2015) Synthesis of Sub-strate-Modified LTA Zeolite Membranes for Dehydration of Natural Gas. Fuel, 148, 112-119. https://doi.org/10.1016/j.fuel.2015.01.086

期刊菜单