Advances in Clinical Medicine
Vol. 11  No. 01 ( 2021 ), Article ID: 39999 , 7 pages
10.12677/ACM.2021.111039

儿童阻塞性睡眠呼吸暂停综合征患儿血清IL-35和IL-37水平的研究

李栋才1,程涵蓉2*,魏永莉2

1深圳市龙岗耳鼻咽喉医院,深圳耳鼻咽喉研究所,广东 深圳

2深圳市人民医院呼吸疾病研究所;南方科技大学第一附属医院,暨南大学第二临床医学院,广东 深圳

收稿日期:2020年12月25日;录用日期:2021年1月19日;发布日期:2021年1月26日

摘要

目的:探讨儿童OSAS患者血清的IL-35、IL-37的水平。方法:46例新诊断的OSAS患者和35例非呼吸暂停对照者被纳入本研究。人口学资料,既往神经肌肉病、遗传代谢病及药物史,习惯通过标准化问卷获得。所有患者均接受多导睡眠图评估。OSAS组平均年龄6.8 ± 3.3(5~9.5)岁。OSAS组中位呼吸暂停低通气指数为12.5 (6.5~21),中位体重指数为20.5 (18~24.2)。采用ELISA法检测血清IL-35和IL-37水平。结果:OSAS患者血清IL-35和IL-37水平均明显低于健康人。随着OSAS疾病的程度加重,血清IL-35、IL-37水平进一步降低,其差异也具有统计学意义。结论:本研究提示血清IL-35和IL-37可能是OSAS的新的生物标志物,提示调节这两种细胞因子的表达可能为OSAS的治疗提供新的可能靶点。

关键词

白细胞介素-35,白细胞介素-37,阻塞性睡眠呼吸暂停综合征,炎症

Serum IL-35 and IL-37 Levels in Pediatrics with Obstructive Sleep Apnea Syndrome

Dongcai Li1, Hanrong Cheng2*, Yongli Wei2

1Institute of Shenzhen ENT, Longgang ENT Hospital, Shenzhen Guangdong

2Institute of Respiratory Diseases, Shenzhen People’s Hospital; The Second Clinical Medical College of Jinan University, 1st Affiliated Hospital of Southern University of Science and Technology, Shenzhen Guangdong

Received: Dec. 25th, 2020; accepted: Jan. 19th, 2021; published: Jan. 26th, 2021

ABSTRACT

Objective: The aim of the present study was to investigate the serum level of IL-35. IL-37 in patients with OSAS. Methods: 46 newly diagnosed pediatrics OSAS patients and 35 non-apneic controls were enrolled in this study. Demographic data, previous history of diseases including metabolic diseases and drugs, and habits were obtained by a standardized questionnaire. All patients underwent polysomnographic evaluation. The mean age was 6.8 ± 3.3 (5~9.5) years in the OSAS group. Median apnea-hypopnea index was 12.5 (6.5~21) and median body mass index was 20.5 (18~24.2) in the OSAS group. Cytokine levels in serum were determined using ELISA. Results: The results showed that serums IL-35 and IL-37 levels were significantly decreased in OSAS patients compared with healthy subjects. The cytokine levels correlated inversely with OSAS severity. Conclusion: The study showed that serums IL-35 and IL-37 might be potentially novel biomarkers for OSAS, suggesting that regulating the expression of the two cytokines may provide a new possible target for the treatment of OSAS.

Keywords:Interleukin-35, Interleukin-37, Obstructive Sleep Apnea Syndrome, Inflammation

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

阻塞性睡眠呼吸暂停综合征(Obstructive sleep apnea syndrome, OSAS)是一种广泛的疾病,其特征是睡眠时反复出现完全或部分上气道阻塞,伴随动脉血氧饱和度下降和睡眠唤醒,导致白天过度嗜睡并引起其他白天症状 [1]。在儿童,OSAHS的病因是腺样体肥大,扁桃体肥大等方面的因素,并导致炎症和间歇性低氧所致 [2]。白细胞介素(IL-35)和IL-37是新近发现的免疫抑制细胞因子。IL-35属于IL-12家族,含有IL-12,IL-23和IL-27。它由EB病毒诱导基因3 (Ebi3)和p35 (IL-12a)两个亚基组成 [3]。在小鼠中,IL-35由Foxp3+CD4+CD25+调节性T细胞(Tregs)分泌,在实验性自身免疫性脑脊髓炎(EAE)中,IL-35和CD138+浆细胞诱导的调节性T细胞群 [4] 分泌。利用实验数据库挖掘和统计分析方法,Li等人报道IL-35在人体组织中不是组成型表达,但在炎症刺激下是可诱导的 [5]。IL-37又称IL-1F7,是IL-1家族的一个新成员,具有类似桶状结构的共同特征。IL-37B是五种变异体中最大的同工型,在人类多种正常组织和肿瘤中表达 [6]。最早在骨髓中发现,中性粒细胞是其合成的主要场所。主要表达于血细胞,呼吸道,胃肠道,以及皮肤角质形成细胞 [7]。在本研究中,我们旨在调查血浆IL-35和IL-37水平与OSAS严重程度之间的关系,该严重程度由呼吸暂停低通气指数(AHI)确定。

2. 资料与方法

2.1. 患者选择

我们前瞻性评估了2019年2月至2020年2月间在深圳市龙岗耳鼻喉医院睡眠医学中心就诊的患者。这项研究得到了深圳市龙岗耳鼻喉医院伦理委员会的批准,所有患者都签署书面知情同意书。46例新诊断的OSAS患儿和35例年龄匹配的非呼吸暂停对照者被纳入本研究。排除中枢性睡眠呼吸暂停、上气道阻力综合征、肺部疾病、甲状腺功能低下及糖尿病等内分泌疾病、遗传代谢病及神经肌肉病患者。记录年龄,性别,体重指数(BMI)等人口统计学资料。用Epworth嗜睡量表对每位患者进行嗜睡评定。

2.2. 多导睡眠图评估

通过计算机化系统(康迪Compumedics Grael)对所有患者进行全夜诊断性多导睡眠描记术(PSG),记录脑电图,眼电图,颏下肌电图(EMG),双侧胫骨前肌电图,心电图,通过电感容积描记法进行的胸壁和腹壁运动,通过鼻压传感器测量,并辅以口腔热敏电阻器,脉冲血氧计,根据美国睡眠医学学会的标准,多导睡眠描记记录在30秒内对睡眠,呼吸和氧合进行评分。儿童睡眠呼吸暂停 [8] 是一种常见的睡眠呼吸障碍性疾病,是指睡眠过程中频繁发生部分或全部上气道阻塞,口、鼻气流停止持续时间至少为2个呼吸周期以上,分为中枢性(central sleep apnea, CSA)、阻塞性(obstructive sleep apnea, OSA)和混合性三类,其中最常见的是阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome, OSAHS),儿童OSAHS 是指口鼻气流停止或气流减少30%以上,但存在呼吸运动,引起呼吸暂停和通气不足持续时间至少为2个呼吸周期以上,伴有打鼾、睡眠结构紊乱,低通气事件伴有血氧饱和度下降3%以上,跟据AASM标准,AHI ≥ 1即诊断为儿童OSA。根据OSAS的严重程度分为AHI = 1~5的轻度OSAS组,AHI = 5~10的中度OSAS组和AHI ≥ 10的重度OSAS组 [9]。

2.3. IL-35和IL-37测定

在进行多导睡眠描记术后的第二天早晨抽取静脉血样本,在室温下以1500 × g离心20分钟,收集血清并在−80℃保存直,直到测定结果。用市售酶联免疫吸附试验(ELISA)试剂盒:IL-37 (Ab 213798),IL-35 (70-EK135-96)测定血清IL-35和IL-37。所有细胞因子测定均一式两份,并按照制造商的方案进行。

2.4. 统计分析

用GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA)和SPSS19.0 (SPSS Inc., Chicago, IL, USA)进行统计评价。数据以均值±标准误差(SEM)表示。用方差分析评价血清中细胞因子表达的差异。在所有试验中,P < 0.05被认为是显著的。

3. 结果

本研究纳入了46例OSAS患者和35名对照受试者。表1列出了这两个研究组的基线特征和临床发现:OSAS患者与对照之间的年龄和性别无差异。OSAS组为6.8 ± 3.3 (5~9.5)岁,对照组为6.6 ± 3.6 (5.5~9.5)岁。81例患者中有46例(男26例,女性20例)被分类为OSAS,35例(20例男性,15例女性)作为对照组。对照组为健康受试者,无睡眠呼吸暂停。OSAS组中,AHI中位数为12.5 (6.5~21),BMI中位数为20.5 (18~24.2)。根据AHI将患者分为轻度OSAS组(n = 10, 21.7%),中度OSAS组(n = 20, 43.5%)和重度OSAS组(n = 16, 34.8%)。

OSAS 患者血清IL-35,IL-37水平降低。OSAS患者血清IL-35和IL-37浓度与健康对照(HC)相比,其差异具有统计学意义(表2)。轻度OSAS与中度OSAS,轻度OSAS与重度OSAS,中度OSAS与重度OSAS之间,随着OSAS疾病的程度加重,血清IL-35,IL-37水平进一步降低,其差异也具有统计学意义(P < 0.05) (表2)。

4. 讨论

阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome, OSAS)是指睡眠时出现上气道咽腔水平反复的塌陷为主要特征,主要表现为睡眠时打鼾并伴有呼吸暂停,夜间反复发生低氧血症、高碳酸血

Table 1. Comparison of OSAS and control group

表1. OSAS与对照组的比较

Table 2. Serum levels of IL-35 and IL-37 in OSAS and control groups

表2. OSAS与对照组血清IL-35和IL-37水平

各组之间IL-35水平比较,P < 0.05;各组之间IL-37水平比较,P < 0.05。

症和睡眠结构紊乱,可造成多脏器损害 [1] [10]。由于呼吸暂停引起反复发作的夜间低氧和高碳酸血症,可导致高血压、冠心病、心律失常、糖尿病等,而心、脑血管的合并症最为常见和严重,甚至出现夜间猝死。目前肥胖的发生率增加,因此,OSAS的发生率也随之升高。众所周知,多导睡眠图是其标准诊断,然而它具有一定的局限性,包括成本、有限可用性及需要患者的积极配合,因此炎症因子及代谢指标在评估OSAS并发症中起到了重要的作用 [11]。早期的预测因子为临床提供依据,早发现,早治疗,积极干预,提高患者的生活质量,减少发生不良事件具有非常重要的意义。

OSAS在儿童中表现为行为异常,注意力障碍,白天过度嗜睡、多动,严重者可引起肺心病,生长发育迟缓,对儿童的身体健康、智力发育和生长带来极大影响,严重威胁儿童健康。OSAHS的病因包括腺样体肥大,扁桃体肥大、鼻中隔偏曲、小下颌、鼻甲肥大、鼻息肉等解剖方面的因素,引起炎症因子TNF-a、IL-6、IL-10、CRP过度释放等相关,主要是间歇性低氧导致 [12] [13] [14]。

到目前为止,C反应蛋白(CRP)和肿瘤坏死因子等临床标志物已被报道与OSAS有关 [15] [16]。Mehra等人已经证明OSAS患者与对照组相比IL-6水平升高 [17]。虽然有一些有说服力的结果,但介体水平的升高被认为是OSAS患者缺氧和肥胖的继发性因素。Nural等人报道了持续气道正压(CPAP)治疗后血清CRP水平显著降低 [18]。在最近的一项研究中,作者发现在调整年龄、腰围和吸烟后,AHI和IL-6水平之间没有明显的相关性 [19]。Yokoe在Al的报告中也有类似的发现 [20]。除此之外,Vgontzas等人 [21] 发现OSAS患者的IL-6和TNF-a水平高于健康受试者。IL-37被认为具有转位到细胞核的功能,并能在细胞内外重新分布。IL-37向细胞内转移可能是血清中IL-37含量下降的原因。研究表明,血清IL-35和IL-37水平降低可能代表体内抗炎活性不足,并有望作为监测OSAS疾病严重程度的新生物标志物。在本研究中,我们首次证实OSAS患者血清IL-35和IL-37水平显著低于健康对照组,并且随着OSAS疾病的程度加重,血清IL-35,IL-37水平进一步降低,其差异也具有统计学意义。

IL-35和IL-37的作用机制目前尚不清楚。IL-35参与神经系统、消化系统、骨关节系统和呼吸系统的炎症性疾病。Zandian等人证明IL-35通过阻止自身侵袭性T细胞的发展而具有抑制脱髓鞘的作用 [22]。Kochetkova等人提示外源性IL-35可抑制CD4+T细胞,Th1和Th17细胞的活性,抑制胶原诱导性关节炎的炎症 [23]。同时,提示IL-35可以帮助呼吸系统从炎症中恢复 [24]。Wirtz等人最近证实IL-35能显著抑制Th1和Th17细胞的增殖,减少实验性结肠炎的发生,保护小肠免受免疫反应的影响 [25]。IL-35的一个亚单位Ebi3在EBV转化的B淋巴细胞和组织中广泛表达,如扁桃体和脾脏 [26]。Ebi3可负性调节IL-17,IL-22和Th17转录因子ROR T,发挥抗炎保护性免疫 [27]。IL-12亚单位p35可导致小鼠疱疹基质性角膜炎(HSK)的进展,与IL-12p40无关 [28]。IL-35的两个亚单位确实具有自身调节免疫和炎症过程的能力。当它们结合在一起形成异二聚体时,p35亚基可能起配体的作用,而另一个亚基EBI3可能主要发挥其免疫功能 [29]。到目前为止,IL-35的信号转导途径尚不清楚。同时,研究证实IL-35通过独特的受体链异源二聚体IL-12 R2和gp130或每条链的同源二聚体进行信号传递 [30]。通过IL-35受体的信号传导需要转录因子STAT1和STAT4,STAT1和STAT4形成独特的异源二聚体,结合到编码IL-12亚基p35和EBI3的基因启动子中的不同位点。IL-35可直接抑制Teff细胞增殖,将原始T细胞转化为产生IL-35的iTr35细胞,抑制Th17细胞的发育,并介导IL-10的产生。同样,IL-37是炎症、自身免疫和其他免疫学疾病的细胞因子。IL-37蛋白在类风湿性关节炎患者的滑膜细胞中高表达,但在健康人滑膜细胞中表达低水平 [31]。银屑病患者的皮损和克罗恩病皮损的巨噬细胞中IL-37的表达也显著增加 [27]。IL-37是作为前蛋白合成的,在刺激后,它被加工成成熟形式 [32]。脂多糖(LPS)与其他炎症刺激物和细胞因子一起激活caspase-1,被认为是负责IL-1家族前体成熟的主要裂解酶。IL-37具有抗菌,抗病毒,中和内毒素,抗肿瘤,免疫调节等广谱功能,对微生物具有普遍的杀灭作用。其作用机制主要是通过改变细菌细胞的通透性。它还具有提高IL-8等几种细胞因子的产生以扩大获得性免疫功能的能力 [33]。对小鼠模型的研究已经得出IL-37下调炎症的结果。TLR、肿瘤坏死因子(TNF)等细胞因子可诱导炎性细胞因子的产生。诺德等人报道IL-37减弱上述过程,从而发挥抗炎作用 [31]。

本研究存在潜在的局限性。第一,样本量相对较小。尽管有这样的发现,显然需要进行大规模的前瞻性研究来确定OSAS及其亚组的IL-35、IL-37水平。其次,我们的研究不包含CPAP治疗后的受试者的随访记录,应进一步研究IL-35和IL-37的作用机制,以使其在今后的研究中得到应用。

5. 结论

综上所述,对OSAS患者炎症和氧化应激状态的进一步研究将有助于全面、深入地认识OSAS的发病机制。尽管各种研究证实炎症因子及代谢指标有助于OSAS的严重性的预测,但更准确、更理想的指标有待于进一步发现及临床验证应用。炎症因子和阻塞性睡眠呼吸暂停低通气综合征严重程度的相关性,提出了可能的新的检验指标,为深入探讨OSAHS的发病机制、临床评估、预后及疗效评估提供一定的参考价值。

文章引用

李栋才,程涵蓉,魏永莉. 儿童阻塞性睡眠呼吸暂停综合征患儿血清IL-35和IL-37水平的研究
Serum IL-35 and IL-37 Levels in Pediatrics with Obstructive Sleep Apnea Syndrome[J]. 临床医学进展, 2021, 11(01): 268-274. https://doi.org/10.12677/ACM.2021.111039

参考文献

  1. 1. Taioufis, C., Thornopoulos, K., Dimitriadis, K., Anastasia, A., Dimitris, T., Christodoulos, S., et al. (2007) The Incremental Effect of Obstructive Sleep Apnoea Syndrome on Arterial Stiffness in Newly Diagnosed Essential Hypertensive Subjects. Journal of Hypertension, 26, 141-146. https://doi.org/10.1097/HJH.0b013e32801092c1

  2. 2. Bhushan, B., Guleria, R., Misra, A., Pandey, R.M., Luthra, K., Vikram, N.K., et al. (2009) Obstructive Sleep Apnoea Correlates with C-Reactive Protein in Obese Asian Indians. Nutrition, Metabolism and Cardiovascular Diseases, 19, 184-189. https://doi.org/10.1016/j.numecd.2008.06.008

  3. 3. Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., et al. (2007) The Inhibitory Cytokine IL-35 Contributes to Regulatory T-Cell Function. Nature, 450, 566-569. https://doi.org/10.1038/nature06306

  4. 4. Chaturvedi, V., Collison, L.W., Guy, C.S., Workman, C.J. and Vignali, D.A.A. (2011) Cutting Edge: Human Regulatory T Cells Require IL-35 to Mediate Suppression and Infectious Tolerance. Journal of Immunology, 186, 6661-6666. https://doi.org/10.4049/jimmunol.1100315

  5. 5. Li, X., Mai, J., Virtue, A., Yin, Y., Gong, R., Sha, X., et al. (2012) IL-35 Is a Novel Responsive Anti-Inflammatory Cytokine—A New System of Categorizing Anti-Inflammatory Cytokines. PLoS ONE, 7, e33628. https://doi.org/10.1371/journal.pone.0033628

  6. 6. Lee, Y.K. and Mazmanian, S.K. (2010) Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? Science, 330, 1768-1773. https://doi.org/10.1126/science.1195568

  7. 7. Chen, P. and Fang, S. (2004) The Expression of Human Antimicrobial Peptide LL-37 in the Human Nasal Mucosa. The American Journal of Rhinology, 18, 381-385. https://doi.org/10.1177/194589240401800608

  8. 8. Guilleminault, C., Tilkian, A. and Dement, W.C. (1976) The Sleep Apnea Syndromes. Annual Review of Medicine, 27, 465-484. https://doi.org/10.1146/annurev.me.27.020176.002341

  9. 9. Marcus, C.L., Brooks, L.J., Draper, K.A., Gozal, D., Halbower, A.C., Jones, J., et al. (2012) Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome, Pediatrics, 130, 576-584. https://doi.org/10.1542/peds.2012-1671

  10. 10. 中华医学会呼吸病学分会睡眠呼吸障碍学组. 阻塞性睡眠呼吸暂停低通气合征诊治指南(2011年修订版)[J].中华结核和呼吸杂志, 2012, 35(1): 9-12.

  11. 11. De Luca Canto, G., Pacheco-Pereira, C., Aydinoz, S., Major, P.W., Flores Mir, C. and Gozal, D. (2014) Biomarkers Associated with Obstructive Sleep Apnea: A Scoping Review. Sleep Medicine Reviews, 23, 28-45. https://doi.org/10.1016/j.smrv.2014.11.004

  12. 12. Katz, E.S. and D’Ambrosio, C.M. (2010) Pediatric Obstructive Sleep Apnea Syndrome. Clinics in Chest Medicine, 31, 221-234. https://doi.org/10.1016/j.ccm.2010.02.002

  13. 13. Farber, J.M. (2002) Clinical Practice Guideline: Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome. Pediatrics, 110, 1255-1257. https://doi.org/10.1542/peds.110.6.1255-a

  14. 14. Ryan, S., Taylor, C.T. and McNicholas, W.T. (2009) Systemic Inflammation: A Key Factor in the Pathogenesis of Cardiovascular Complications in Obstructive Sleep Apnoea Syndrome. Thorax, 64, 631-636.

  15. 15. Minoguchi, K., Tazaki, T., Yokoe, T., Minoguchi, H., Watanabe, Y., Yamamoto, M., et al. (2004) Elevated Production of Tumor Necrosis Factor-Alpha by Monocytes in Patients with Obstructive Sleep Apnea Syndrome. Chest, 126, 1473-1479. https://doi.org/10.1378/chest.126.5.1473

  16. 16. Lui, M.M., Lam, J.C., Mak, H.K., Xu, A., Ooi, C., Lam, D.C., et al. (2009) C-Reactive Protein Is Associated with Obstructive Sleep Apnea Independent of Visceral Obesity. Chest, 135, 950-956. https://doi.org/10.1378/chest.08-1798

  17. 17. Mehra, R., Storfer-Isser, A., Kirchner, H.L., Johnson, N., Jenny, N., Tracy, R.P., et al. (2006) Soluble Interleukin 6 Receptor: A Novel Marker of Moderate to Severe Sleep-Related Breathing Disorder. Archives of Internal Medicine, 166, 1725-1731. https://doi.org/10.1001/archinte.166.16.1725

  18. 18. Nural, S., Gunay, E., Halici, B., Celik, S. and Unlu, M. (2013) Inflammatory Processes and Effects of Continuous Positive Airway Pressure (CPAP) in Overlap Syndrome. Inflammation, 36, 66-74. https://doi.org/10.1007/s10753-012-9520-z

  19. 19. Svensson, M., Venge, P., Janson, C. and Lindberg, E. (2012) Relationship between Sleep-Disordered Breathing and Markers of Systemic Inflammation in Women from the General Population. Journal of Sleep Research, 21, 147-154. https://doi.org/10.1111/j.1365-2869.2011.00946.x

  20. 20. Yokoe, T., Minoguchi, K., Matsuo, H., Oda, N., Minoguchi, H., Yoshino, G., et al. (2003) Elevated Levels of C-Reactive Protein Andinterleukin-6 in Patients with Obstructive Sleep Apnea Syndrome Are Decreased by Nasal Continuous Positive Airway Pressure. Circulation, 107, 1129-1134. https://doi.org/10.1161/01.CIR.0000052627.99976.18

  21. 21. Vgontzas, A.N., Papanicolaou, D.A., Bixler, E.O., Kales, A., Tyson, K. and Chrousos, G.P. (1997) Elevation of Plasma Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity. The Journal of Clinical Endocrinology and Metabolism, 82, 1313-1316. https://doi.org/10.1210/jcem.82.5.3950

  22. 22. Zandian, M., Mott, K.R., Allen, S.J., Dumitrascu, O., Kuo, J.Z. and Ghiasi, H. (2011) Use of Cytokine Immunotherapy to Block CNS Demyelination Induced by a Recombinant HSV-1 Expressing IL-2. Gene Therapy, 18, 734-742. https://doi.org/10.1038/gt.2011.32

  23. 23. Kochetkova, I., Golden, S., Holderness, K., Callis, G. and Pascual, D.W. (2010) IL-35 Stimulation of CD39+ Regulatory T Cells Confers Protection against Collagen II-Induced Arthritis via the Production of IL-10. Journal of Immunology, 184, 7144-7153. https://doi.org/10.4049/jimmunol.0902739

  24. 24. Whitehead, G.S., Wilson, R.H., Nakano, K., Burch, L.H., Nakano, H. and Cook, D.N. (2012) IL-35 Production by Inducible Costimulator (ICOS)-Positive Regulatory T Cells Reverses Established IL-17-Dependent Allergic Airways Disease. Journal of Allergy and Clinical Immunology, 129, 207-215.E5. https://doi.org/10.1016/j.jaci.2011.08.009

  25. 25. Wirtz, S., Billmeier, U., McHedlidze, T., Blumberg, R.S. and Neurath, M.F. (2011) Interleukin-35 Mediates Mucosal Immune Responses That Protect against T-Cell-Dependent Colitis. Gastroenterology, 141, 1875-1886. https://doi.org/10.1053/j.gastro.2011.07.040

  26. 26. Devergne, O., Birkenbach, M. and Kieff, E. (1997) Epstein-Barr Virus-Induced Gene 3 and the p35 Subunit of Interleukin 12 form a Novel Heterodimeric Hematopoietin. Proceedings of the National Academy of Sciences of the United States of America, 94, 12041-12046. https://doi.org/10.1073/pnas.94.22.12041

  27. 27. Yang, J., Yang, M., Htut, T.M., Ouyang, X., Hanidu, A., Li, X., et al. (2008) Epstein-Barr Virus-Induced Gene 3 Negatively Regulates IL-17, IL-22 and ROR𝛾t. European Journal of Immunology, 38, 1204-1214. https://doi.org/10.1002/eji.200838145

  28. 28. Frank, G.M., Divito, S.J., Maker, D.M., Xu, M. and Hendricks, R.L. (2010) A Novel P40-Independent Function of IL-12P35 Is Required for Progression and Maintenance of Herpes Stromal Keratitis. Investigative Ophthalmology and Visual Science, 51, 3591-3598. https://doi.org/10.1167/iovs.09-4368

  29. 29. Ye, S., Wu, J., Zhou, L., Lv, Z., Xie, H. and Zheng, S. (2013) Interleukin-35: The Future of Hyperimmune-Related Diseases? Journal of Interferon and Cytokine Research, 33, 285-291. https://doi.org/10.1089/jir.2012.0086

  30. 30. Collison, L.W., Delgoffe, G.M., Guy, C.S., Vignali, K.M., Chaturvedi, V., Fairweather, D.L., et al. (2012) The Composition and Signaling of the IL-35 Receptor Are Unconventional. Nature Immunology, 13, 290-299. https://doi.org/10.1038/ni.2227

  31. 31. Nold, M.F., Nold-Petry, C.A., Zepp, J.A., Palmer, B.E., Bufler, P. and Dinarello, C.A. (2010) IL-37 Is a Fundamental Inhibitor of Innate Immunity. Nature Immunology, 11, 1014-1022. https://doi.org/10.1038/ni.1944

  32. 32. Boraschi, D., Lucchesi, D., Hainzl, S., Leitner, M., Maier, E., Mangelberger, D., et al. (2011) IL-37: A New Anti-Inflammatory Cytokine of the IL-1 Family. European Cytokine Network, 22, 127-147. https://www.jle.com/10.1684/ecn.2011.0288

  33. 33. de Smet, K. and Contreras, R. (2005) Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins. Biotechnology Letters, 27, 1337-1347. https://doi.org/10.1007/s10529-005-0936-5

期刊菜单