设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(1),115-125
PublishedOnlineJanuary2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.111017
¹ëXÚ±Ï)•359õ)5
•••
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2020c1217F¶¹^Fϵ2021c119F¶uÙFϵ2021c126F
Á‡
©•¹ëXÚ











u
0
(t)+a(t)u(t) = λf(t,u(t),v(t)),0 ≤t≤1,
v
0
(t)+b(t)v(t) = λg(t,u(t),v(t)),0 ≤t≤1,
u(0) = u(1),v(0) = v(1),
Ù¥§λ´˜‡ëê§a,b: [0,1] →[0,∞) ´ëY¼ê…a,b3[0,1] ?¿f«mþØð•"§
f,g:[0,1]×[0,∞) ×[0,∞)→[0,∞)´ëY¼ê"©ÄuKrasnoselskill ØÄ:½n
˜~‡©XÚáõ‡±Ï)"
'…c
)§õ)§¹ë
ExistenceandMultiplicityofPositive
PeriodicSolutionsforSystems
withParameters
WeiYang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
©ÙÚ^:•.¹ëXÚ±Ï)•359õ)5[J].nØêÆ,2021,11(1):115-125.
DOI:10.12677/pm.2021.111017
•
Received:Dec.17
th
,2020;accepted:Jan.19
th
,2021;published:Jan.26
th
,2021
Abstract
Inthispaper, weconsidersystemswithparameters











u
0
(t)+a(t)u(t) = λf(t,u(t),v(t)),0 ≤t≤1,
v
0
(t)+b(t)v(t) = λg(t,u(t),v(t)),0 ≤t≤1,
u(0) = u(1),v(0) = v(1),
whereλisapositiveparameter,a,b:[0,1]→[0,∞)arecontinuousfunctionanddo
notvanishidenticallyonanysubintervalof[0,1],f,g: [0,1]×[0,∞)×[0,∞) →[0,∞) are
continuousfunction.Inthispaper,basedontheKrasnoselskillfixedpointtheorem,
aninfinitenumberofpositiveperiodicsolutionsforsystemswithparameters.
Keywords
PositiveSolutions,MultipleSolutions,Parametric
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
˜~‡©•§¯K3²LƧU©Æ§ÔnÆÚ)ÔšÆÃõ•¡ÑkXš~2•A
^"~X)ÔÆ¥)ÔoêCz¯K§ ÔnÆ¥‡Ñ„6¥œ1ì9†íÄ5-½5¯K§
~‡©•§|Àe¥Â\€²¯K"~X§Nicholson’sblowflies.[1]"
y
0
(t) = −a(t)y(t)+b(t)y(t−τ(t))e
β(t)y(t−τ(t))
,(1.1)
Ïd§é˜~‡©•§¯K)ïÄäk-‡y¢¿Â"
k˜Æö$^IþØÄ:½n§Leray-Schauder nاþe)•{9üNS“•{ó
DOI:10.12677/pm.2021.111017116nØêÆ
•
äéÙ?1ïÄ[2–8][9–14]"~X§Zhang[2]ïÄ˜±Ï>НK



u
0
(t)+a(t)u(t) = λh(t)f(u(t−τ(t))),t∈R,
u(t) = u(t+T),
(1.2)
Ù ¥§f∈C([0,∞),[0,∞))š~…f(0)>0"T©$^þe)•{ÚüNS“•{¼Ù)
•35§Ì‡(Ø•½nA"
½nA
(A1)a∈C(R,[0,∞)).h∈C(R,[0,∞)),τ∈C(R,R) þ•ω±Ï¼ê§…
R
ω
0
a(t)dt>0¶
(A2)f∈C([0,∞),[0,∞))š~…f(0) >0§
¤á§K¯K(1.2)–k˜‡)"
Ma[3]ïÄ˜±Ï>НK



u
0
+f(t,u) = e(t),0 <t<T,
u(0) = u(T),
(1.3)
T©$^þe)•{¼Ù)•35"
Ï Léþã©Ù©Û§·‚uy3˜~‡©•§ïÄ¥§Ï•¤¦^óäÛ•5±
9˜‡©Žfšé¡5§¤±3ïÄL§¥•3õ(J§~X§•§þe)(½§
Green¼ê¦)9Ùþe.O¯K"·‚ „5 ¿§3ü‡˜~‡©•§ïÄ¥§¯K
(1.2)éA^‡(A2)§Ø=‡¦fš~…‡¦f(0) >0§¯K(1.3) ¥vkëê"
Tisdell[4]<$^Leray-SchaudernØïÄXÚ



x
0
+b(t)x= g(t,x),0 <t<1,
x(0) = x(1)
(1.4)
)•35"
3~‡©•§XÚïÄ¥§¯K(1.4) ¥•™Ñyëê§¿…Ú¯K(1.2)§¯K(1.3) ˜§
Ñ•)•35"@o§˜‡g,¯K´µéu•‡¦ëYš‚5‘f§¹ëXÚ
)õ)5(J´Ä•3ºXJ•3{§)‡ê´Ä•áõ‡º·‚é©zuy§3y
k©z¥§'u¹ëXÚ)õ)5ïăé§Äud§©•¹ëXÚ











u
0
(t)+a(t)u(t) = λf(t,u(t),v(t)),0 ≤t≤1,
v
0
(t)+b(t)v(t) = λg(t,u(t),v(t)),0 ≤t≤1,
u(0) = u(1),v(0) = v(1)
(1.5)
)•35Úõ)5"
••BQã§0±ePÒµ
DOI:10.12677/pm.2021.111017117nØêÆ
•
(i)z= (u,v)§Ù¥kzk= kuk
∞
+kvk
∞
,kuk
∞
=max
t∈[0,1]
|u(t)|,kvk
∞
=max
t∈[0,1]
|v(t)|¶
(ii)σ= min{σ
u
,σ
v
},σ
u
= e
−
R
1
0
a(θ)dθ
,σ
v
= e
−
R
1
0
b(θ)dθ
(iii)Λ
1
=
1−σ
2λσ
,Λ
2
=
1−σ
2λ
”
©oNbµ
(H1)a,b: [0,1] →[0,∞) ´ëY¼ê§…a,b3[0,1] ?¿f«mþØð•"¶
(H2)f,g: [0,1]×[0,∞)×[0,∞) →[0,∞)´˜‡ëY¼ê"
©Ì‡(JXeµ
½n1.1bm∈N∪{+∞},•3:{r
k
}
m
k=1
,{R
k
}
m
k=1
,¿…k
r
k+1
<R
k+1
<r
k
<R
k
,k= 1,2,...,m−1.
éuA∈(0,Λ
2
),B∈(Λ
1
,+∞)"?˜Úéz‡g,êk,·‚bf,g÷v
(C1)min
t∈[0,1]
{f(t,z(t),g(t,z(t))}≥Br
k
,σr
k
<z<r
k
,t∈[0,1],
(C2)max
t∈[0,1]
{f(t,z(t),g(t,z(t))}≤Ar
k
,0 <z<R
k
,t∈[0,1].
@o§e^‡(H1),(H2)•¤á§K¹ëXÚ(1.5)k2m−1‡)§©OP•
(i){α
k
}
m
k=1
,Ù¥§α
k
= (u
k
,v
k
)
T
,r
k
<kα
k
k<R
k
,k= 1,2,...,m,
(ii){β
k
}
m−1
k=1
,Ù¥§β
k
= (u
0
k
,v
0
k
)
T
,R
k+1
<kβ
k
k<r
k
,k= 1,2,...,m−1.
2.ý•£
½Â2.1[15]X´¢Banach˜m§XJK´X¥,š˜à48§¿…÷ve¡ü‡^
‡µ
(i)x∈K,λ≥0 ⇒λx∈K;
(ii)x∈K,−x∈K⇒x= θ,θL«K¥"ƒ§
K¡K´X¥˜‡I"
Ún2.1[15]X´Banach ˜m§K⊂X´˜‡I"b½Ω
1
,Ω
2
⊂K´k.m8§¿
…T: K∩(Ω
2
\Ω
1
) →K,´˜‡ëYŽf§e^‡
(i)kTuk≥kuk,u∈K∩∂Ω
1
,kTuk≤kuk,u∈K∩∂Ω
2
;½ö
(ii)kTuk≤kuk,u∈K∩∂Ω
1
,kTuk≥kuk,u∈K∩∂Ω
2
,
¤á§@oT3K∩(Ω
2
\Ω
1
)¥k˜‡ØÄ:"
•A^Ún2.1§½Â˜‡Banach ˜mXXeµ
DOI:10.12677/pm.2021.111017118nØêÆ
•
X= {z(·) ∈C([0,1],[0,∞)×[0,∞)) : z(0) = z(1)}§
K= {z= (u,v) ∈X: z(t) ≥0,min
06t61
u(t) >σ
u
kuk
∞
,min
06t61
v(t) >σ
v
kvk
∞
},
´X¥I§kmin
06t61
{|u|+|v|}≥σkzk,Ù¥z= (u,v) ∈K.
Ún2.2b(H1)-(H2)¤á§K¯K(1.5)duÈ©•§
u(t) = λ
Z
1
0
G
u
(t,s)f(s,z(s))ds,(2.1)
Ú
v(t) = λ
Z
1
0
G
v
(t,s)g(s,z(s))ds,(2.2)
Ù¥
G
u
(t,s) =









e
R
s
t
a(θ)dθ
1−e
−
R
1
0
a(θ)dθ
,0 ≤s≤t≤1,
e
R
s
t
a(θ)dθ
e
R
1
0
a(θ)dθ
−1
,0 ≤t≤s≤1,
G
v
(t,s) =











e
R
s
t
b(θ)dθ
1−e
−
R
1
0
b(θ)dθ
,0 ≤s≤t≤1,
e
R
s
t
b(θ)dθ
e
R
1
0
b(θ)dθ
−1
,0 ≤t≤s≤1,
¿…Ù÷v
σ
1−σ
≤G
u
(t,s) ≤
1
1−σ
,
Ú
σ
1−σ
≤G
v
(t,s) ≤
1
1−σ
.
y²Äk•Ä
u
0
(t)+a(t)u(t) = λf(t,z(t)),(2.3)
3(2.3)ªüàÓž¦±e
R
t
0
a(θ)dθ
§nŒ
(e
R
t
0
a(θ)dθ
u(t))
0
= λe
R
t
0
a(θ)dθ
f(t,z(t)),(2.4)
ò(2.4)ª'u0tÈ©Œ
u(0) = u(t)e
R
t
0
a(θ)dθ
−λ
Z
t
0
f(s,z(s))e
R
s
0
a(θ)dθ
ds,
ò(2.4)ª'ut1È©Œ
u(1) =
u(t)e
R
t
0
a(θ)dθ
+λ
R
1
t
f(s,z(s))e
R
s
0
a(θ)dθ
ds
e
R
1
0
a(θ)dθ
,
DOI:10.12677/pm.2021.111017119nØêÆ
•
du(0) = u(1)Œ
u(t) = λ
Z
t
0
e
R
s
t
a(θ)dθ
1−e
−
R
1
0
a(θ)dθ
f(s,z(s))ds+λ
Z
1
t
e
R
s
t
a(θ)dθ
e
R
1
0
a(θ)dθ
−1
f(s,z(s))ds,(2.5)
l
G
u
(t,s) =









e
R
s
t
a(θ)dθ
1−e
−
R
1
0
a(θ)dθ
,0 ≤s≤t≤1,
e
R
s
t
a(θ)dθ
e
R
1
0
a(θ)dθ
−1
,0 ≤t≤s≤1.
ÓnŒ
v(t) = λ
Z
t
0
e
R
s
t
b(θ)dθ
1−e
−
R
1
0
b(θ)dθ
g(s,z(s))ds+λ
Z
1
t
e
R
s
t
b(θ)dθ
e
R
1
0
b(θ)dθ
−1
g(s,z(s))ds,(2.6)
G
v
(t,s) =









e
R
s
t
b(θ)dθ
1−e
−
R
1
0
b(θ)dθ
,0 ≤s≤t≤1,
e
R
s
t
b(θ)dθ
e
R
1
0
b(θ)dθ
−1
,0 ≤t≤s≤1.
´„
σ
u
1−σ
u
≤G
u
(t,s) ≤
1
1−σ
u
,
Ú
σ
v
1−σ
v
≤G
v
(t,s) ≤
1
1−σ
v
,
2(Üσ= min{σ
u
,σ
v
}Œ
σ
1−σ
≤G
u
(t,s) ≤
1
1−σ
,(2.7)
Ú
σ
1−σ
≤G
v
(t,s) ≤
1
1−σ
.(2.8)

½ÂŽfT
λ
:K→X, K
T
λ
z(t) := (T
u
λ
z(t),T
v
λ
z(t)),(2.9)
Ù¥
T
u
λ
z(t) := λ
Z
1
0
G
u
(t,s)f(s,z(s))ds,(2.10)
T
v
λ
z(t) := λ
Z
1
0
G
v
(t,s)g(s,z(s))ds.(2.11)
Ún2.3b(H1)-(H2)^‡¤á§KT
λ
(K) ⊂K"
DOI:10.12677/pm.2021.111017120nØêÆ
•
y²bz= (u,v) ∈K§(Ümin
06t61
{|u|+|v|}≥σkzk§K
T
u
λ
z(t) ≥λ
σ
u
1−σ
u
Z
1
0
f(s,z(s))ds
≥λσ
u
1
1−σ
u
Z
1
0
f(s,z(s))ds
≥σ
u
sup
t∈[0,1]
|T
u
λ
z(t)|
≥σ
u
kuk
∞
,(2.12)
ÓnŒ
T
v
λ
z(t) ≥σ
v
kvk
∞
,(2.13)
l
min
06t61
T
λ
z(t) ≥σkzk.(2.14)
=T
λ
(K) ⊂K.

Ún2.4b(H1)-(H2)^‡¤á§KŽfT
λ
: K→K´˜‡;Žf"
y²Äk•Ä(2.10) ª"S⊂C[0,1] ´˜‡k.8§@o•3~êB>0§¦é?¿
z∈S,kzk≤B.2(ÜfëY5§f3[0,1]×[0,B] ´˜—ëY"l§•3A>0§
¦|F(t,z(t))|≤A,z∈[0,B]§K
|T
u
λ
z(t)|= |λ
Z
1
0
G
u
(t,s)f(s,z(s))ds|
≤λ
Z
1
0
|G
u
(t,s)f(s,z(s))|ds
≤
λ
1−σ
Z
1
0
|f(s,z(s))|ds
≤
λ
1−σ
A,(2.15)
Ïd§ŽfT
u
λ
: K→K´˜—k."
DOI:10.12677/pm.2021.111017121nØêÆ
•
é?¿t
1
,t
2
∈[0,1](t
1
<t
2
),z∈S§¿…•3ξ∈[0,1]§K
|T
u
λ
z(t
1
)−T
u
λ
z(t
2
)|= λ|
Z
1
0
G
u
(t
1
,s)f(s,z(s))ds−
Z
1
0
G
u
(t
2
,s)f(s,z(s))ds|
≤λA|
Z
1
0
G
u
(t
1
,s)ds−
Z
1
0
G
u
(t
2
,s)ds|
≤λA|G
0
u
(ξ,s)||t
1
−t
2
|
≤λA|1+a(ξ)u(ξ)||t
1
−t
2
|
≤D|t
1
−t
2
|,(2.16)
Ù¥§D:=max
06t61
{λA|1+a(t)u(t)|}.
l§é?¿ε>0§δ=
1
D
§@oé?¿t
1
,t
2
∈[0,1]§e|t
1
−t
2
|<δ§é?¿
z∈C[0,1]§Ñk
|T
u
λ
z(t
1
)−T
u
λ
z(t
2
)|<ε.(2.17)
Ïd§ŽfT
u
λ
: K→K´ÝëY"ŠâArzela-Ascoli½n[15]§ŽfT
u
λ
: K→K´;
"ÓnŒ§ŽfT
v
λ
: K→K•´;"
nþ¤ã§ŽfT
λ
: K→K´;"

3.̇(Jy²
½n1.1y²Äk•Äm8K¥ü‡ê{Ω
1,k
}
m
k=1
Ú{Ω
2,k
}
m
k=1
,Ù½ÂXe
{Ω
1,k
}= {z∈K: kzk<r
k
},k= 1,2,...,m,
Ú
{Ω
2,k
}= {z∈K: kzk<R
k
},k= 1,2,...,m.
éz˜‡½~êk§z∈K∩∂Ω
1,k
ž§k
σr
k
= σkr
k
k≤min
t∈[0,1]
|z(t)|≤z(s) ≤kzk= r
k
,
DOI:10.12677/pm.2021.111017122nØêÆ
•
é?¿s∈[0,1],(Ü^‡(C
1
)§k
kT
λ
zk= kT
u
λ
zk+kT
v
λ
zk
= λ
Z
1
0
G
u
(t,s)f(s,z(s))ds+λ
Z
1
0
G
v
(t,s)G(s,z(s))ds
≥λ
σ
1−σ
Z
1
0
(f(t,z(t))+g(t,z(t)))ds
≥λ
σ
1−σ
2min{f(t,z(t)),g(t,z(t))}
≥Br
k
λ
2σ
1−σ
≥r
k
= kzk.(3.1)
=^‡(C
1
)÷vž§k
kT
λ
zk≥kzk.(3.2)
,˜•¡§z∈K∩∂Ω
2,k
ž§k
z(s) ≤kzk,(3.3)
é?¿s∈[0,1]§(Ü^‡(C
2
)§k
kT
λ
zk= kT
u
λ
zk+kT
v
λ
zk
≤λ
1
1−σ
Z
1
0
(f(s,z(s))+g(s,z(s))ds
≤λ
1
1−σ
2max{f(s,z(s)),g(s,z(s))}
≤AR
k
λ
2
1−σ
≤R
k
= kzk.(3.4)
=^‡(C
2
)÷vž§k
kT
λ
zk≤kzk.(3.5)
ŠâÚn2.1^‡(i)§ŒŽfT
λ
km‡ØÄ:"ØÄ:^α
k
5L«§KÙ÷v
r
k
≤kα
k
k≤R
k
,k= 1,2,...,m.
Ùg§•Äm8K¥ê{Ω
3,k
}
m
k=1
§Ù½ÂXe
{Ω
3,k
}= {z∈K: kzk<R
k+1
},k= 1,2,...,m−1.
DOI:10.12677/pm.2021.111017123nØêÆ
•
éz˜‡½~êk§z∈K∩∂Ω
3,k
ž§k
z(s) ≤kzk,
é?¿s∈[0,1],(Ü^‡(C
2
)§k
kT
λ
zk= kT
u
λ
zk+kT
v
λ
zk
≤λ
1
1−σ
Z
1
0
(f(s,z(s))+G(s,z(s)))ds
≤λ
1
1−σ
2max{f(s,z(s)),g(s,z(s))}
≤AR
k+1
λ
2
1−σ
≤R
k+1
= kzk.(3.6)
=^‡(C
2
)÷vž§k
kT
λ
zk≤kzk.
,˜•¡§(Ü(3.2) ª9Ún2.1 ^‡(ii)§ŒŽfT
λ
km−1 ‡ØÄ:"ØÄ:^
β
k
5L«§KÙ÷v
R
k+1
≤kβ
k
k≤r
k
,k= 1,2,...,m−1.
nþŒ§¯K(1.5)k2m−1‡)"(Üm∈N∪{+∞}§K¯K(1.5)káõ‡)"
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11671322§11361054)"
ë•©z
[1]Joseph,W., So, H.and Yu, J.S. (1994)Global Attractivity andUniformPersistence in Nichol-
son’sBlowflies.DifferentialEquationsandDynamicalSystems,2,11-18.
[2]Zhang,G.andCheng,S.S.(2002)PositivePeriodicSolutionofNon-AutonomousFunctional
DifferentialEquationsDependingonaParameter.AbstractandAppliedAnalysis,7,Article
ID:276930.https://doi.org/10.1155/S1085337502000878
[3]Ma,R.Y.andZhang,L.(2015)ConstructionofLowerandUpperSolutionsforFirst-Order
PeriodicProblem.BoundaryValueProblems,2015,ArticleNo.190.
https://doi.org/10.1186/s13661-015-0457-7
DOI:10.12677/pm.2021.111017124nØêÆ
•
[4]Tisdell,C.C. (2006)Existence ofSolutionstoFirst-Order PeriodicBoundaryValueProblems.
JournalofMathematicalAnalysisandApplications,323,1325-1332.
https://doi.org/10.1016/j.jmaa.2005.11.047
[5]Lakshmikantham,V.(2008)PeriodicBoundaryValueProblemsofFirstandSecondOrder
DifferentialEquations.JournalofAppliedMathematicsandSimulation,2,131-138.
[6]Peng,S.G.(2004)PositiveSolutionsfor FirstOrderPeriodic BoundaryValueProblem. Applied
MathematicsandComputation,158,345-351.https://doi.org/10.1016/j.amc.2003.08.090
[7]Wu,X.R.andWang,F.(2008)ExistenceofPositiveSolutionsofSingularSecond-OrderPeri-
odicBoundaryValueProblems.MathematicsinPracticeandTheory,38,227.
[8]Ma,R.Y.,Chen,R.P.andHe,Z.Q.(2014)PositivePeriodicSolutionsofSecond-OrderD-
ifferentialEquationswithWeakSingularities.AppliedMathematicsandComputation,232,
97-103.https://doi.org/10.1016/j.amc.2013.12.142
[9]Torres,P.J.(2003)ExistenceofOne-SignedPeriodicSolutionsofSomeSecond-OrderDiffer-
entialEquationsviaaKrasnoselskiiFixedPointTheorem.JournalofDifferentialEquations,
190,643-662.https://doi.org/10.1016/S0022-0396(02)00152-3
[10]Ma,R.Y.,Gao,C.H.andChen,R.P.(2010)ExistenceofPositiveSolutionsofNonlinear
Second-OrderPeriodicBoundaryValueProblems.BoundaryValueProblems,2010,Article
No.626054.https://doi.org/10.1155/2010/626054
[11]Jiang,D.Q.,Chu,J.F.andZhang,M.R.(2005)MultiplicityofPositivePeriodicSolutionsto
SuperlinearRepulsiveSingularEquations.JournalofDifferentialEquations,211,282-302.
https://doi.org/10.1016/j.jde.2004.10.031
[12]Zhang,Z.X. and Wang,J.Y. (2003) OnExistence and Multiplicity of PositiveSolutionstoPe-
riodicBoundaryValueProblemsforSingularNonlinearSecond-OrderDifferentialEquations.
JournalofMathematicalAnalysisandApplications,281,99-107.
https://doi.org/10.1016/S0022-247X(02)00538-3
[13]Ma,R.Y.,Xie,C.J.andAbubaker,A.O.M.(2013)PositiveSolutionsoftheOne-Dimensional
p-LaplacianwithNonlinearityDefinedonaFiniteInterval.AbstractandAppliedAnalysis,
2013,ArticleID:492026.
[14]Wang,H.Y.(2003)OntheNumberofPositiveSolutionsofNonlinearSystem.Journalof
MathematicalAnalysisandApplications,281,287-306.
https://doi.org/10.1016/S0022-247X(03)00100-8
[15]HŒ.š‚5•¼©Û[M].LH:ìÀ‰ÆEâч,1985.
DOI:10.12677/pm.2021.111017125nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.