Journal of Electrical Engineering
Vol.2 No.04(2014), Article ID:14500,6 pages
DOI:10.12677/JEE.2014.24012

Modeling and Control Research of Direct-Drive Permanent Magnet Synchronous Wind Power Generator

Gen Luo1, Xin Liu2, Bing Yu3, Jin Xu3

1Sichuan Electrical Company of State Grid, Chengdu

2Luzhou Power Company of State Grid, Luzhou

3School of Electrical Information, Southwest Petroleum University, Chengdu

Email: ananzhang@swpu.edu.cn

Received: Oct. 29th, 2014; revised: Nov. 6th, 2014; accepted: Nov. 21st, 2014

ABSTRACT

Permanent magnet synchronous generator (PMSG), with less maintenance, high efficiency, large unit capacity, has been widely used in wind power generation system (WECS). This paper analyzes the mathematical theory knowledge of the permanent magnet synchronous wind power system, and designs a rated power of 3 kW permanent magnet wind power system model under PSIM9.0 environment. When the wind speed signal generation has step change, we observe the change status of the output power signal on the machine side and the DC voltage signal changes on the grid side, analyze and debug system simulation results. The final result shows that, under different wind conditions, the output signal of wind power system is stable and waveform is good, which are consistent with the theoretical calculation. It provides a good foundation and new platform for further testing and research of permanent magnet wind power system.

Keywords:Wind Power System, PMSG, Dual PWM Vector Control, Modeling in PSIM9.0

1四川省电力公司，成都

2四川省电力公司泸州供电公司，泸州

3西南石油大学电气信息学院，成都

Email: ananzhang@swpu.edu.cn

1. 引言

2. 永磁风力发电机组结构

3. 永磁同步风力发电机组数学模型

3.1. 风力机的功率特性

Figure 1. Structure of PMSG

(1)

(2)

(3)

3.2. 永磁同步发电机模型

PMSG在运行过程中，转子和定子始终保持相对运动状态，绕组与绕组，永磁体与绕组之间互相影响，再加上磁路饱和等非线性因素，电磁关系十分复杂，要建立永磁发电机的精确数学模型相当困难。因此，为了分析方便，通常作如下假设[4] ：1) 定子绕组为Y型连接；2) 反电动势为正弦，不考虑空间谐波和磁路饱和的影响；3) 不计涡流和磁滞损耗；4) 励磁电流无动态响应过程。

PMSG的电压和电磁转矩在d-q轴旋转坐标系下的数学关系式如下所示

(4)

(5)

(6)

4. 控制策略及建模

4.1. 发电机侧控制策略及仿真模型

4.2. 并网侧控制策略及仿真模型

Figure 2. The generator-side control model of PMSG

Figure 3. The grid-side control model of PMSG

5. 仿真结果分析

Figure 4. Abrupt change in wind speed

Figure 5. Generator rotational speed changing

Figure 6. Electromagnetic torque

Figure 7. Output power of PMSG

Figure 8. 3-phase current signals

Figure 9. DC voltage

Figure 10. Output voltage of the inverter

Figure 11. The three-phase grid connected current

6. 结论

1. [1]   李德孚 (2013) 2012年中小型风力发电行业发展报告. 风能, 5, 44-50.

2. [2]   纪志成, 周寰, 李三东 (2004) 基于PSIM永磁同步电机矢量控制系统的仿真建模. 系统仿真学报, 5, 898-901.

3. [3]   Agarwal, V., Aggarwal, R.K., Patidar, P., et al. (2010) A novel scheme for rapid tracking of maximum power point in wind energy generation systems. IEEE Transactions on Energy Conversion, 25, 228-236.

4. [4]   Chinchilla, M., Arnaltes, S. and Burgos, J.C. (2006) Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion, 21, 130-135.

5. [5]   温春雪, 路国杰, 孙夏 (2012) 并网中小型风电系统最大功率跟踪控制. 可再生能源, 2, 47-50.

6. [6]   张纪杰, 张春香, 车延博, 等 (2013) 小型风力发电并网逆变系统的研究. 电气传动, 43, 35-39.

7. [7]   夏长亮 (2012) 永磁风力发电系统及其功率变换技术. 电工技术学报, 11, 1-13.

8. [8]   Arifujjaman, M. (2010) Modeling simulation and control of grid connected Permanent Magnet Generator (PMG)-based small wind energy conversion system. IEEE Electric Power and Energy Conference, Halifax, 25-27 August 2010, 1-6.