﻿ 灭弧试验装置的参数设计 Parameter Design of the Test Device for Arc Extinguishing

Journal of Electrical Engineering
Vol.04 No.01(2016), Article ID:17077,8 pages
10.12677/JEE.2016.41004

Parameter Design of the Test Device for Arc Extinguishing

Xiaoling Zhao1, Juntao Jiao1, Su Zhao1, Dengming Xiao1, J. D. Yan2

1Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai

2University of Liverpool, Liverpool, UK

Received: Feb. 12th, 2016; accepted: Feb. 26th, 2016; published: Mar. 4th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Based on the mathematic theory for arc extinguishing, Mayr’s equation, we theoretically derived parameters of the test device for arc extinguishing, including the average speed of the contacts, size of nozzle, distance of the contacts, etc. Through qualitative analysis of elements and character parameters in arc extinguished chamber, as well as the experience of GCB design, mathematic theoretical calculation and arc extinguishing test, we came up with a tentative calculation and an estimation method for pressed arc extinguished chamber, which provide accordance for relative arc extinguishing test study.

Keywords:Test Device for Arc Extinguishing, Mayr’s Equation, Parameter Design

1上海交通大学电气工程系，上海

2利物浦大学，利物浦，英国

1. 引言

2. 参数设计的数学理论依据

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

3. 灭弧试验装置的设计

3.1. 平均分闸速度vf的设计

(14)

tak (ms)是从起弧瞬时到恢复电压上升到峰值所需要的最短时间，即：

E1 (kV/mm)为GCB在SF6操作闭锁气压时允许的雷电冲击场强。由于开断小电容电流时少量电弧分解物对绝缘有影响，计算时灭弧室断口间允许场强取0.9E1

K7为断口电场分布不均匀系数，它与触头结构和开距有关。在切小电容电流开距较小时，K7值较大，参照部分产品电场数值计算的经验数据，K7推荐按如表2取值。

(15)

3.2. 触头开距lk的设计

(16)

(17)

Table 1. The shortest extinguishing time tad for arc in long lines

Table 2. Electrical field uniformity K7 in arc extinguishing chamber

Table 3. Reference value in designing smooth conductors at different gas pressures in SF6 gas

，带入得，考虑需要一定的裕量，

3.3. 喷嘴设计

1) 上游区设计

a)

b)

c) 气流入口侧表面积

(18)

(19)

2) 喷嘴喉径Dk的设计

(20)

3) 喉颈部的长度设计

3.4. 触头设计

3.5. 灭弧室尺寸设计

4. 总语

Parameter Design of the Test Device for Arc Extinguishing[J]. 电气工程, 2016, 04(01): 23-30. http://dx.doi.org/10.12677/JEE.2016.41004

1. 1. 清华大学, 西安交通大学. 高电压绝缘[M]. 北京: 电力工业出版社, 1980.

2. 2. 邱毓昌. GIS装置极其绝缘技术[M]. 北京: 水利电力出版社, 1994.

3. 3. Christophorou, L.G. and Olthoff, J.K. (2000) Electron Interactions with SF6. Journal of Physical and Chemical Reference Data, 29, 267-330. http://dx.doi.org/10.1063/1.1288407

4. 4. 李慧芬. SF6气体替代面临诸多挑战[J]. 高电压技术, 2000, 26(3): 50-51.

5. 5. Qiu, Y. and Chalmers, I.D. (1993) Effect of Electrode Surface Roughness on Breakdown in SF6-N2 and SF6-CO2 Gas Mixtures. Journal of Physics D: Applied Physics, 26, 1928-1932. http://dx.doi.org/10.1088/0022-3727/26/11/014

6. 6. Buttkau, A., Pfeiffer, J. and Sojka, B. (1984) Simens SF6/N2 Circuit-Breaker for Service at Low Temperature. Simens Power Engineering, 6, 32-37.

7. 7. Christophorou, L.G., Olthoff, J.K. and Green, D.S. (1997) Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to SF6. Technical Note, 1425, 1-44.

8. 8. Middleton, B. (2000) Cold Weather Applications of Gas Mixture (SF6/N2, SF6/CF4) Circuit Breakers: A User Utility’s Perspective. The US Environmental Protection Agency’s Conference on SF6 and the Environment: Emission Reduction Strategies, San Diego, 2-3 November 2000.

9. 9. Pradayroly, C., Casanovasz, A.M., Hernouney, A. and Casanovasy, J. (1996) Spark decomposition of SF6 and SF6 + 50% CF4 Mixtures. Journal of Physics D: Applied Physics, 29, 1941-1951. http://dx.doi.org/10.1088/0022-3727/29/7/031

10. 10. 肖登明, 邱毓昌, 李彦明. SF6混合气体中电子崩放电特性的研究[D]: [博士学位论文]. 西安: 西安交通大学, 1994.

11. 11. 李正瀛. 电负性混合气体临界击穿场强与电子附着速率的探讨[J]. 物理学报, 1990, 39(9): 1400-1406.

12. 12. Larin, A.V., Meurice, N., Trubnikov, D.N. and Vercauteren, D.P. (2004) Theoretical Analysis of the Synergism in the Dielectric Strength for SF6/CF4 Mixtures. Journal of Applied Physics, 96, 109-117. http://dx.doi.org/10.1063/1.1751637

13. 13. Wu, C. and Kunhardt, E.E. (1988) Formulation and Propagation of Streamers in N2 and N2-SF6 Mixtures. Physical Review A, 37, 4396-4406. http://dx.doi.org/10.1103/PhysRevA.37.4396

14. 14. Govinda Raju, G.R. and Dincer, M.S. (1982) Measurement of Ionization and Attachment Coefficients in SF6 and SF6 + N2. Journal of Applied Physics, 53, 8562-8567. http://dx.doi.org/10.1063/1.330502