Pure Mathematics
Vol. 14  No. 06 ( 2024 ), Article ID: 88936 , 6 pages
10.12677/pm.2024.146223

三维全可压缩磁流体力学方程的大时间行为

张馨

上海理工大学理学院,上海

收稿日期:2024年4月3日;录用日期:2024年5月6日;发布日期:2024年6月12日

摘要

本文主要研究可压缩三维全可压缩磁流体力学的大时间行为,该结论是在以初始质量很小为前提的强解的条件下,得到可方程的大时间行为。根据三维Navier-Stokes方程大时间行为的研究,我们用相同的方法得到结论。我们的结论在无穷远处可能有大的震荡并且包含真空状态。

关键词

全可压缩磁流体力学,大时间行为,真空

The Large Time Behavior for 3D Full Compressible Magnetohydrodynamic Flows

Xin Zhang

College of Science, University of Shanghai for Science and Technology, Shanghai

Received: Apr. 3rd, 2024; accepted: May 6th, 2024; published: Jun. 12th, 2024

ABSTRACT

This paper mainly studies the large time behavior of compressible three-dimensional fully compressible magnetohydrodynamics. The conclusion is that the large time behavior of the equation can be obtained under the condition of strong solution with small initial mass. According to the study of the large time behavior of the three-dimensional Navier-Stokes equation, we use the same method to get the conclusion. Our conclusion is that there may be large oscillations at infinity and contain the vacuum state.

Keywords:Full Compressible Magnetohydrodynamic Flows, Large Time Behavior, Vacuum

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

本文主要研究了三维全可压缩磁流体力学方程,其形式如下:

{ ρ t + d i v ( ρ u ) = 0 ( ρ u ) t + d i v ( ρ u u ) μ Δ u ( λ + μ ) d i v u + P = ( c u r l H ) × H c v [ ( ρ θ ) t + d i v ( ρ u θ ) ] k Δ θ + P d i v u = 2 μ | D ( u ) | 2 + λ ( d i v u ) 2 + ν | c u r l H | 2 H t c u r l ( u × H ) = ν Δ H , d i v H = 0 (1.1)

其中 D ( u ) 是变形张量由下式给出

D ( u ) = 1 2 ( u + ( u ) )

ρ = ρ ( x , t ) u = u ( x , t ) = ( u 1 , u 2 , u 3 ) ( x , t ) θ = θ ( x , t ) H = ( H 1 , H 2 , H 3 ) 分别是密度、速度、绝对温度和磁场。 P = R ρ θ ( R > 0 ) 是压强。常数 μ λ 是粘度系数,它们满足下面的物理限制

μ > 0 , λ + 2 3 μ 0

常数 c v k 分别是热容和导热系数除以热容的比值。接下来,因为压强函数中的常数 R 和内能中的常数 c v 在分析中不起作用,我们假设 R = c v = 1

此时(1.1)可以重写为如下式子

{ ρ t + d i v ( ρ u ) = 0 ( ρ u ) t + d i v ( ρ u u ) μ Δ u ( λ + μ ) d i v u + P = ( c u r l H ) × H ( ρ θ ) t + d i v ( ρ u θ ) k Δ θ + P d i v u = 2 μ | D ( u ) | 2 + λ ( d i v u ) 2 + ν | c u r l H | 2 H t c u r l ( u × H ) = ν Δ H , d i v H = 0 (1.2)

其中 ( ρ , u , θ , H ) 的初值为:

( ρ , u , θ , H ) | t = 0 = ( ρ 0 , u 0 , θ 0 , H 0 ) ( x ) , x 3 (1.3)

远场条件为: t 0 ,当 | x | 时,

ρ ( x , t ) 0 , u ( x , t ) 0 , θ ( x , t ) 0 , H ( x , t ) 0 (1.4)

关于磁流体力学方程已经有了很多研究。在 [1] 中,Hou、Jiang和Peng在初始质量很小的前提下,得到了三维全可压缩磁流体力学方程的全局强解,结果表明强解可能有大的震荡并且包含真空状态。Hu和Wang [2] 通过绝热指数和常数粘度系数的三阶近似、能量估计和弱收敛,建立了全局弱解的存在性和大时性。Hu和Wang也在 [3] 中建立了具有大数据的三维全磁流体动力学方程的全局变分弱解的存在性。Chen [4] 考虑了三维磁流体力学方程在光滑边界和真空的条件下,得到了具有小能量但可能具有大的震荡的强经典解。Zhong [5] 建立了具有密度依赖黏度和初始密度允许在二维有界域中消失的非齐次磁流体动力学方程的强解的全局适定性,此外,他也得到了该解的指数衰减率。Li等人在 [6] 中也得到了强经典解,但其结论的条件是等熵流初始能量小但震荡大。Vol’pert等人在 [7] 中研究了可压缩磁流体力学方程的强解的局部存在性。Fan和Yu在 [8] 中证明了满足某些相容条件所有初始数据存在唯一的局部强解,它与 [7] 的区别在于它的初始密度不必为正,并且可以在开集中消失。除此之外,一维的情况也在 [9] [10] [11] [12] [13] 及其参考文献中被研究。

本文主要研究三维全可压缩磁流体力学方程在初始质量很小前提下解的大时间行为。

2. 符号说明和一些引理

对于 1 l ,我们记标准线性与非线性的索伯列夫空间如下:

L l = L l ( 3 ) , D k , l = { u L l o c 1 ( 3 ) : k u L l < } , u D k , l = k u L l ,

W k , l = L l D k , l , D k = D k , 2 , D 0 1 = { u L 6 : u L 2 < } , H k = W k , 2

此外 G : = ( 2 μ + λ ) d i v u P 是有效粘性通量, h ˙ : = h t + u h 是物质导数, m 0 : = 3 ρ 0 ( x ) d x 是初始质量。

值得注意的是在文献 [1] 中,Hou,Jiang和Peng通过能量方法得到了三维全可压缩磁流体力学方程在初始质量很小的时候的全局强解。Wen和Zhu [14] 通过能量方法得到了三维Navier-Stokes方程在初始质量很小的时候的全局强解,并进一步得到了解的大时间行为。受此启发,我们用同样的方法研究全压缩磁流体力学方程解的大时间行为。

首先通过文献 [1] 我们有如下结论:

引理1 (全局强解) 假设对一些常数 K > 1 , ρ ¯ > 0 , q ( 3 , 6 ) ,初始数据 ( ρ 0 , u 0 , θ 0 , H 0 ) 满足

ρ 0 0 , θ 0 0 , ρ 0 H 1 W 1 q L 1 , ( u 0 , θ 0 , H 0 ) D 2 D 0 1

{ 0 ρ ρ ¯ , m 0 = 3 ρ 0 , H 0 L 2 2 m 0 1 2 ( 1 + ν ) H 0 L 2 2 + ρ 0 θ 0 L 2 2 + μ u 0 L 2 + ( μ + λ ) d i v u 0 L 2 + 1 2 ( 2 μ + λ ) ρ 0 θ 0 L 2 2 + 3 | ρ 0 θ 0 d i v u 0 | + 3 ( | H 0 | 2 | d i v u 0 | + 2 | H 0 u 0 H 0 | ) K (2.1)

以及如下的兼容条件

μ Δ u 0 ( μ + λ ) d i v u 0 + R ( ρ 0 θ 0 ) + d 0 Δ d 0 = ρ 0 g 1

k Δ θ 0 + μ 2 | u 0 + ( u 0 ) T | 2 + λ ( d i v u 0 ) 2 + | Δ d 0 + | d 0 | 2 d 0 | 2 = ρ 0 g 2

则在 3 × [ 0 , T ] 上对任意 T > 0 存在一个唯一的全局强解 ( ρ , u , θ , H ) ,假如 m 0 ε 。其中 ε 是与是与 ρ ¯ , K , μ , λ 有关,但与t无关的常数。

引理2 在引理1的条件下,有如下式子成立

3 ( ρ | u | 2 + | H | 2 ) + μ 0 T 3 | u | 2 d s + ν 0 T 3 | H | 2 d s C H L 2 2 + 0 T ( H t L 2 2 + Δ H L 2 2 ) d s C sup 0 t T 3 | u | 2 + 0 T 3 ρ | u ˙ | 2 C sup 0 t T 3 ρ θ 2 + 0 T 3 | θ | 2 C (2.2)

定理1 在引理1的条件下,有如下的结论成立

ρ u L 2 + H L 2 C t 1 2

ρ θ L 2 C t 1 2

3. 主要定理的证明

第一步: ρ u L 2 H L 2 的估计:

(1.2)2与(1.2)4分别乘以u和H,在 3 上分部积分,两式相加可得

1 2 d d t 3 ( ρ | u | 2 + | H | 2 ) + 3 μ | u | 2 + 3 ( ν | H | 2 + ( μ + λ ) | d i v u | 2 ) = 3 ρ θ d i v u + 3 ( c u r l H ) × H u + 3 c u r l ( u × H ) H (3.1)

由Cauchy不等式、Hölder不等式、Sobelev不等式可得

3 ρ θ d i v u + 3 ( c u r l H ) × H u + 3 c u r l ( u × H ) H ( μ + λ ) 3 | d i v u | 2 + 1 4 ( μ + λ ) 3 ρ 2 θ 2 + μ 4 u L 2 2 + C H L 2 2 (3.2)

根据(2.4)、(3.2)我们化简得

d d t 3 ( ρ | u | 2 + | H | 2 ) + 3 μ | u | 2 + 3 ν | H | 2 C θ L 2 2 (3.3)

在(3.3)式左右两边乘以t可得

d d t t [ 3 ( ρ | u | 2 + | H | 2 ) ] + t 3 μ | u | 2 + t 3 ν | H | 2 C t θ L 2 2 (3.4)

对(3.4)式两边对t进行积分并由(2.2)可得

sup 0 t T t [ 3 ( ρ | u | 2 + | H | 2 ) ] + 0 t ( t 3 μ | u | 2 + t 3 ν | H | 2 ) d t C 0 t t θ L 2 2 d t C (3.5)

证毕。

第二步: ρ θ L 2 的估计:

对(1.2)3式两边同乘以 θ ,在 3 上分部积分可得

1 2 d d t 3 ρ | θ | 2 d x + k 3 | θ | 2 d x = 3 ρ θ 2 d i v u d x + 3 μ 2 | ( u ) + ( u ) | 2 θ d x + 3 λ ( d i v u ) 2 θ d x + ν 3 | c u r l H | 2 θ d x (3.6)

由(3.6)、Hölder不等式、Sobolev不等式、(2.3)可得

1 2 d d t 3 ρ | θ | 2 d x + k 3 | θ | 2 d x κ 2 θ L 2 2 + C u L 2 3 ( ρ u ˙ L 2 + | H | | H | L 2 ) + C u L 2 2 ρ θ L 2 ( ρ u ˙ L 2 + | H | | H | L 2 ) + C u L 2 θ L 2 2 + C H L 2 3 2 H L 2 (3.7)

(3.7)乘以t可得

t d d t 3 ρ | θ | 2 d x + k t 3 | θ | 2 d x C t u L 2 3 ( ρ u ˙ L 2 + | H | | H | L 2 ) + C t u L 2 2 ρ θ L 2 ( ρ u ˙ L 2 + | H | | H | L 2 ) + C t u L 2 θ L 2 2 + C t H L 2 3 2 H L 2 (3.8)

对(3.8)式两边对t积分,由(2.2)式可得

sup 0 t T t ρ θ L 2 2 + k 0 T t θ L 2 2 d t C (3.9)

证毕。

文章引用

张 馨. 三维全可压缩磁流体力学方程的大时间行为
The Large Time Behavior for 3D Full Compressible Magnetohydrodynamic Flows[J]. 理论数学, 2024, 14(06): 21-26. https://doi.org/10.12677/pm.2024.146223

参考文献

  1. 1. Hou, X.F., Jiang, M.N. and Peng, H.Y. (2022) Global Strong Solution to 3D Full Compressible Magnetohydrodynamic Flows with Vacuum at Infinity. Zeitschrift für Angewandte Mathematik und Physik, 73, 13. https://doi.org/10.1007/s00033-021-01639-y

  2. 2. Hu, X.P. and Wang, D.H. (2010) Global Existence and Large-Time Behavior of Solutions to the Three Dimensional Equations of Compressible Magnetohydrodynamic Flows. Archive for Rational Mechanics and Analysis, 197, 203-238. https://doi.org/10.1007/s00205-010-0295-9

  3. 3. Hu, X.P. and Wang, D.H. (2008) Globa Solutions to the Three Dimensional Full Compressible Magnetohydrodynamic Flows. Communications in Mathematical Physics, 283, 255-284. https://doi.org/10.1007/s00220-008-0497-2

  4. 4. Chen, Y.Z., Huang, B. and Shi, X.D. (2023) Global Strong Solutions to the Compressible Magnetohydrodynamic Equations with Slip Boundary Conditions in 3D Bounded Domins. Journal of Differential Equations, 365, 274-325.

  5. 5. Zhong, X. (2022) Global Well-Posedness and Exponential Decay of 2D Nonhomogeneous Navier-Stokes and Magnetohydrodynamic Equations with Density-Dependent Viscosity and Vacuum. Journal of Geometric Analysis, 32, 19. https://doi.org/10.1007/s12220-021-00754-6

  6. 6. Li, H.L., Xu, X.Y. and Zhang, J.W. (2013) Global Classical Solutions to 3D Compressible Magnetohydrodynamic Equations with Large Oscillations and Vacuum. SIAM Journal on Mathematical Analysis, 45, 1356-1387. https://doi.org/10.1137/120893355

  7. 7. Vol’pert, A.I. and Hudjaev, S.I. (1972) The Cauchy Problem for Composite Systems of Nonlinear Differential Equations. Mathematics of the USSR-Sbornik, 87, 504-528.

  8. 8. Fan, J.S. and Yu, W.H. (2009) Strong Solution to the Compressible Magnetohydrodynamic Equations with Vacuum. Nonlinear Analysis: Real World Applications, 10, 392-409. https://doi.org/10.1016/j.nonrwa.2007.10.001

  9. 9. Chen, G.Q. and Wang, D.H. (2003) Existence and Continuous Dependence of Large Solutions for the Magnetohydrodynamic Equations. Zeitschrift für Angewandte Mathematik und Physik, 54, 608-632. https://doi.org/10.1007/s00033-003-1017-z

  10. 10. Chen, G.Q. and Wang, D.H. (2002) Global Solution of Nonlinear Magnetohydrodynamics with Large Initial Data. Journal of Differential Equations, 182, 344-376. https://doi.org/10.1006/jdeq.2001.4111

  11. 11. Kawashima, S. and Okada, M. (1982) Smooth Global Solutions for the One Dimensional Equations in Magnetohydrodymatics. Proceedings of the Japan Academy, Ser. A Mathematical Sciences, 58, 384-387. https://doi.org/10.3792/pjaa.58.384

  12. 12. Fan, J.S., Jiang, S. and Nakamura, G. (2007) Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations. Communications in Mathematical Physics, 270, 691-708. https://doi.org/10.1007/s00220-006-0167-1

  13. 13. Hoff, D. and Tsyganov, E. (2005) Uniqueness and Continuous Dependence of Weak Solutions in Compressible Magnetohydrodynamics. Zeitschrift für Angewandte Mathematik und Physik, 56, 791-804. https://doi.org/10.1007/s00033-005-4057-8

  14. 14. Wen, H.Y. and Zhu, C.J. (2017) Global Solutions to the Three-Dimensional Full Compressible Navier-Stokes Equations with Vacuum at Infinity in Some Classes of Large Data. SIAM Journal on Mathematical Analysis, 49, 162-221. https://doi.org/10.1137/16M1055414

期刊菜单