Applied Physics
Vol.
13
No.
05
(
2023
), Article ID:
65255
,
11
pages
10.12677/APP.2023.135024
余弦高斯光束在海洋湍流中的传输特性
李沪光,付静静,周健阳*
上海理工大学理学院,上海
收稿日期:2023年3月31日;录用日期:2023年5月7日;发布日期:2023年5月15日
摘要
基于光的相干偏振的统一理论和扩展的惠更斯–菲涅耳原理,研究了余弦高斯谢尔模型光束(CGSM)在海洋湍流中的传播。推导了CGSM光束在海洋湍流中传播的交叉谱密度的解析公式。通过数值模拟,解释了CGSM光束在海洋湍流中传播的光谱强度分布和光谱相干度的统计特征。此外,还详细讨论了海洋湍流参数对CGSM光束传输质量的影响。研究发现,单位质量湍流动能耗散率、湍流内尺度以及盐度引起的湍流涨落等对CGSM光束的传播特性均有影响。
关键词
余弦高斯光束,海洋湍流模型,光谱强度,光谱相干度
Propagation Properties of Cosine-Gaussian-Correlated Beams in Oceanic Turbulence
Huguang Li, Jingjing Fu, Jianyang Zhou*
College of Science, University of Shanghai for Science and Technology, Shanghai
Received: Mar. 31st, 2023; accepted: May 7th, 2023; published: May 15th, 2023
ABSTRACT
Based on the unified theory of coherence and polarization of light and the extended Huygens-Fresnel principle, we have investigated the propagation of Cosine-Gaussian spectral coherence Schell model (CGSM) beams in ocean turbulence. We have derived the analytical formula of cross spectral density of CGSM beam propagating in oceanic turbulence. Through numerical simulation, the statistical characteristics of spectral intensity distribution and coherence of CGSM beam propagating in oceanic turbulence are explained. In addition, we discussed in detail the effect of ocean parameters on the transmission quality of CGSM beams. It is found that the kinetic energy dissipation rate per unit fluid mass, turbulent internal scale of fluid per unit mass and turbulent fluctuation caused by salinity all have effects on the propagation characteristics of CGSM beam.
Keywords:Cosine-Gaussian-Correlated Beams, Ocean Turbulence Model, Spectral Density, Spectral Degree of Coherence
Copyright © 2023 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
近几十年来,激光光束的传输和变换问题得到了广泛而深入的讨论。该课题的研究在遥感、光学捕获、自由空间与大气光通信、水下光通信等领域具有大量的潜在应用 [1] [2] [3] [4] [5] 。海洋湍流是自然界中一种重要的随机湍流,与大气湍流不同,大气湍流主要由温度梯度影响折射率,而海洋湍流则由温度波动和盐度波动共同决定 [6] [7] [8] [9] [10] 。在过去的研究中,往往将盐度和温度波动所造成的影响分别进行讨论,直到Nikishov提出了将二者结合的理论模型 [11] ,得到海洋湍流的数学模型,此类研究全面展开 [12] - [19] 。
海洋湍流作为一种重要的自然随机现象,一直使用完全相干光束和高斯谢尔模部分相干光束来进行实验研究。自Gori提出构造相关结构函数的数学方法后,许多与部分相干光源的标量和矢量的特殊结构相关的方法被提出并在实验中得到,并充分研究其传输特性 [20] - [25] ,于是部分相干光束的非高斯模型相关函数引起了国内外学者的广泛关注。这种新型光源可以产生各种可调控的远场强度分布以及聚焦、偏移等新特性,在许多领域也具有潜在的应用价值,如多高斯谢尔模型光源 [26] [27] 、非均匀相关光源 [28] [29] 、拉盖尔高斯谢尔模光源和余弦高斯谢尔模光源 [30] [31] 。
在特殊的空间关联函数相位的影响下,新光束表现出独特的传播特性。本文介绍了部分相干源(CGSM)光谱相干度的余弦高斯谢尔模型 [31] ,随着部分相干余弦–高斯光束的存在,一种新的CGSM源光谱相干度被余弦函数调制后,光谱密度呈现暗空心轮廓,并保持形状不变,在远场通过调制参数可以灵活控制暗空间区域,因此又称暗空心光束。部分相干CGSM光束的环形轮廓对散斑的敏感性低于完全相干环轮廓,因此可以用于原子光学实验,如粒子俘获、原子开关、原子透镜和光镊 [32] 。由于部分相干光束比完全相干光束受湍流影响小 [33] [34] [35] [36] ,考虑降低海洋湍流引起的退化,研究光波在海洋湍流中的传输质量对水下光通信具有重要意义 [37] 。在本文中,我们基于统一的相干和偏振理论和扩展的惠更斯–菲涅耳原理推导出解析表达式 [38] 。结合Nikishov在Kolmogorov能谱基础上提出的海洋湍流折射率能谱模型 [11] ,研究CGSM波束在海洋湍流中的传播特性。通过数值模拟研究了初始波束参数和海洋湍流对光谱强度和光谱相干性的影响。
2. 余弦高斯光束在海洋湍流中的传输
考虑一个在z = 0处的部分相干光束沿着z轴正方向传播,余弦高斯谢尔模光束源场的交叉谱密度函数可以被表示为 [31] :
(1)
这里的 和 代表了源平面上的任意两个向量。σ代表着均方根宽度。δ代表光束的相干长度。指数n可以控制光源相干度的数量,因此可以用来控制中心暗条纹的宽度。
在近轴近似的有效范围内,部分相干光束通过海洋湍流CSD矩阵的传播可以用扩展的惠更斯–菲涅尔原理来处理。考虑 和 作为沿着光轴传输截面上任意两个位置矢量。z轴正半轴横截面上的交叉谱密度函数可以表示为 [38] :
(2)
这里 表示为波数,λ表示部分相干光束的波长,Ψ表示海洋湍流带来的干扰相位 表示湍流
介质干扰项的平均系综。在湍流波动起伏的条件下,距离光轴足够近的点的扰动可以表示为 [39] :
(3)
这里的 是湍流介质的空间折射率功率谱。κ代表着空间频率。在这篇文章中,海洋湍流的空间折射率功率谱可以被表达为 [11] :
(4)
(5)
这里的ε表示单位质量液体中的湍流动能耗散率,范围在10−8 m2/s3到10−2 m2/s3之间, 是均方温度耗散率,范围在10−10 k2/s到10−4 k2/s之间,AT = 1.863 × 10−2,AS = 1.9 × 10−4,ATS = 9.41 × 10−3, ,η是海洋湍流模型的内部尺度,ω为温度和盐度的相对波动,在海水中的随机取值范围在[−5, 0]之间。在ω = 0时,湍流的变化主要由盐度引起。当ω = −5时温度的波动变为影响折射率功率谱的主要因素。我们将公式(5)带入公式(4)中,并结合公式(3)则公式(2)变为以下形式 [40] :
(6)
当T = 0时,公式(2)转变为在自由空间传播。结合公式(1),将公式(3)和公式(2)带入公式(6)中,通过复杂的积分计算,我们可以得到CGSM光束在海洋湍流中传输的交叉谱密度函数:
(7)
其中:
基于在海洋湍流中传输的交叉谱密度公式,我们可以得到CGSM光束在传输过程中的光谱强度S以及光谱相干度μ [41] :
(8)
(9)
3. 数值模拟和研究
本节通过所求的解析式来分析CGSM光束在海洋湍流中传输的二阶统计量,并利用MATLAB等模拟软件将结果以图片的形式展示出来。除了特殊强调,我们将数值固定为:σ = 1 cm,δ = 1 cm,λ = 632.8 nm, ,ε = 10−5 m2/s3,η = 10−3 m, = 10−7 k2/s,w = −2.5。
Figure 1. The evolution of spectral density S of the CGSM beam on propagation (a) in free space; (b) in ocean turbulence
图1. CGSM光束在传输中的光强的变化曲线:(a) 自由空间,(b) 海洋湍流
图1展示了CGSM光束在不同参数n条件下,光强随着传输距离的变化曲线。图1(a)是在自由空间中的传输曲线,在自由空间传输时,无论n取何值,光谱强度曲线都随着传输距离的变化而单调递减。图(b)是在海洋湍流中的传输曲线,从图1(b)中可以得出,当CGSM光束在海洋湍流中传输时,在传输距离为10 km左右时,不同参数n下的光谱强度曲线相重合,这意味着海洋湍流的负面效应破坏了CGSM光束的光强分布,最终分布变为高斯型分布继续传输下去。并且相比于图1(a)中CGSM光束在自由空间中传输,在海洋湍流中传输时,光谱强度曲线下降趋势更加快速。在100 m到10 km传输范围之内,图1(b)中的光强分布出现了明显的暗中心结构,在传输距离较大时,当n = 4时中心光强最低,暗中心结构最为明显,当n = 1时几乎不出现暗中心结构。
Figure 2. Side view and lateral distribution of the spectral intensity of a CGSM beam propagating in (a)~(h) ocean turbulence at several selected distances, where n = 0 of (a) (b), n = 1 of (c) (d), n = 2 of (e) (f), n = 3 of (g) (h)
图2. 在不同传输距离,不同参数n值条件下,CGSM光束在海洋湍流中传输归一化光谱强度的侧视图和强度分布,其中(a) (b) n = 0;(c) (d) n = 1;(e) (f) n = 2;(g) (h) n = 3
图2(a)、图2(c)、图2(e)、图2(g)说明了在不同的传输距离z,不同参数n条件下,CGSM光束在海洋湍流中传输的光谱强度侧视图以及强度分布。从图中可以得出,在传输距离接近源平面时,光强分布皆为高斯型分布,且随着n值得逐渐增大,原平面处,光束得中心光强束腰变窄,能量更加得集中。在n值相同且不等于0的条件下,伴随着透射距离增加,光束的中心光强和两峰强度逐渐降低,两峰之间的宽度增加,暗中心轮廓逐渐扩大,这意味着我们可以通过控制n的大小改变暗中心轮廓的大小以满足实际需求。在相同透射距离的条件下,随着参数n数值的增加,同一距离所对应的光束中心强度逐渐减小,暗中心轮廓变窄。根据图2(b)、图2(d)、图2(f)、图2(h),在传输距离固定为z = 200 m处时,随着光源参数n的增加,暗中心轮廓的面积逐渐增大,两峰的束腰变窄,光束轮廓更加的清晰,有效减小了海洋湍流带来的负面影响,这意味着n值的增大可以增加CGSM光束在海洋湍流中的传输质量。
Figure 3. (a)~(f) is the evolution of spectral intensity of CGSM beam propagating in oceanic turbulence at some selected distances: (a) z = 0 m; (b) z = 10 m; (c) z = 30 m; (d) z = 100 m; (e) z = 100 m and (f) z = 5000 m
图3. 在不同传输距离条件下,CGSM光束在海洋湍流中传输光谱强度随n值的演化,(a) z = 0 m;(b) z = 10 m;(c) z = 30 m;(d) z = 100 m;(e) z = 100 m;(f) z = 5000 m
图3展示了在几个固定距离条件下的传输界面,不同参数n对于截面归一化光谱强度演化的影响。当z = 1 m时,由于光的传输靠近源平面,不同的n值对于光强分布没有任何影响,光强分布保持高斯型对称分布,但n值的增大导致光束中心光强峰的宽度变窄,使得光束在源平面的能量更加的集中,有助于缓解海洋湍流对于传输的影响。在同一传输距离的条件下,n值得取值越大,光束中心光强变化越明显,暗中心结构越快出现。对于任意n的取值,随着传输距离的增大,光束光强分布平顶结构逐渐消失,中心光强开始降低,暗中心的轮廓开始变宽,当z = 10 m,n = 4时光强分布开始出现平顶结构。并且当z > 1000 m时,中心光强开始逐渐增大向两峰靠近,暗中心结构开始向平顶结构演化。当z = 5000 m,n = 1时的光强分布在此已经呈现为高斯型。
Figure 4. The transverse spectral degree of coherence μ of the CGSM beam propagating in oceanic turbulence for different values of n: (a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3
图4. 不同参数n条件下,CGSM光束的相干度μ随传输距离的变化;(a) n = 0,(b) n = 1,(c) n = 2,(d) n = 3
接着我们模拟了CGSM光束在海洋湍流中传输时不同n值条件下,不同传输距离时,相对于两点对称光轴横向相干度的演化。由图4可知,当n = 0时,无论横截面所处距离为何值,相干度都呈现高斯型,当z > 100 m时,相干度随着传输距离的增大下降的速度加快。随着n值发生变化,有海洋湍流所产生的影响使得光束的相干度分布开始出现类似于余弦函数的振动,并且传输距离越小,振动的次数越多,但最终都会收敛成高斯型。
随后本章研究了不同的海洋湍流参数对于CGSM光束在海洋湍流中传输的影响,并选定光源参数n = 2,且传输距离为z = 600 m。从图5(a)中可以看出,随着海洋湍流中盐度的升高,温度的降低,中心光强逐渐变大,而当海洋湍流的折射率功率谱主要由温度波动引起时,光束的归一化强度变化并不大,因此海洋湍流盐度对于湍流强度的影响要大于温度波动带来的影响。由图5(b)可知,随着单位质量液体中湍流动能耗散率ε变小,光束中心强度逐渐增大,也就是说ε的值越大,光束受到湍流的影响越大。图5(c)展示了,光强的变化曲线随湍流内尺度η的变化,随着湍流内尺度逐渐增大,光束暗中心面积越大。图5(d)展示了光强随着均方温度耗散率 的变化,在极低的 的变化下,光强分布几乎没有变化,只有当 增大到一定值时,使得光强中心强度分布明显增大。
Figure 5. Transverse cross section of the spectral density for CGSM beams with n = 2 at propagation distance z = 600 m in oceanic turbulence for different values of (a) ω; (b) ε; (c) η and (d)
图5. 在参数n = 2传输距离z = 600 m条件下不同海洋湍流参数对于CGSM光束归一化强度分布的影响:(a) ω;(b) ε;(c) η;(d)
Figure 6. Transverse spectral degree of coherence μ of the CGSM beams with n = 2 at propagation distance z = 100 m in oceanic turbulence for different values of (a) ω, (b) ε, (c) η and (d)
图6. 在参数n = 2传输距离z = 100 m条件下不同海洋湍流参数对于CGSM光束相干度分布的影响;(a) ω;(b) ε;(c) η;(d)
图6展示了在z = 100 m处横截面光谱相干度的分布随着海洋湍流参数的变化,当ω接近−5时,湍流折射率功率谱主要由温度波动变化主导,这时CGSM光束相干度在z = 100 m处下降速度最快。ω的值越小,下降的速率越快,并最终趋于高斯分布。当ε的值越大时,相干度最低点数值越低,光束受到湍流的影响越大。在图6(c)中可以看出,随着湍流内尺度η变大,光束相干度下降速率越快,这意味着减小湍流的内尺度可以有效缓解当z = 10 m,n = 4时光强分布开始出现平顶结构湍流对于光束传输产生的负面影响。而温度耗散率 数值越小,光束相干度突变的越快。
4. 结论
本文研究了标量的余弦高斯光束在海洋湍流中的传输,随着光源参数n值的增大光源在传输过程中光强暗中心面积增大,光源的传输质量更好。在对于湍流参数的研究中,我们分别探究了温度、盐度、单位质量液体湍流动能耗散率、湍流内尺度和温度耗散率。探究发现,海洋湍流中盐度波动对于湍流的强度的影响要远大于温度波动所带来的影响。单位质量液体湍流动能耗散率的数值越大,对于光束的负面影响越大,光束光强和相干度更快的演化为高斯型。归一化的光谱强度和光谱相干度对于湍流内尺度变化也十分的敏感,湍流的内尺度越小,湍流对于光束的负面影响越小。温度耗散率数值越小,光谱相干度的突变速度越快。这些意味着,增加CGSM光束参数n的值,或在盐度较低,温度较为稳定,波动较为平缓的海域进行激光的水下传输,可以有效提高CGSM光束的传输质量。本章的研究结果有助于水下光通讯的研究,为CGSM光束在海洋中的传输提供了理论支持。
文章引用
李沪光,付静静,周健阳. 余弦高斯光束在海洋湍流中的传输特性
Propagation Properties of Cosine-Gaussian-Correlated Beams in Oceanic Turbulence[J]. 应用物理, 2023, 13(05): 202-212. https://doi.org/10.12677/APP.2023.135024
参考文献
- 1. Dogariu, A. and Amarande, S. (2003) Propagation of Partially Coherent Beams: Turbulence-Induced Degradation. Optics Letters, 28, 10-12. https://doi.org/10.1364/OL.28.000010
- 2. Arnon, S. and Kedar, D. (2009) Non-Line-of-Sight Underwater Optical Wireless Communication Network. Journal of the Optical Society of America A: Optics Image Science and Vision, 26, 530-539. https://doi.org/10.1364/JOSAA.26.000530
- 3. Zhao, C.L. and Cai, Y.J. (2011) Trapping Two Types of Par-ticles Using a Focused Partially Coherent Elegant Laguerre-Gaussian Beam. Optics Letters, 36, 2251-2253. https://doi.org/10.1364/OL.36.002251
- 4. Li, J.H., Wang, W.W., Duan, M.L. and Wei, J.L. (2016) Influence of Non-Kolmogorov Atmospheric Turbulence on the Beam Quality of Vortex Beams. Optics Express, 24, 20413-20423. https://doi.org/10.1364/OE.24.020413
- 5. Wang, F. and Korotkova, O. (2017) Circularly Symmetric Cusped Random Beams in Free Space and Atmospheric Turbulence. Optics Express, 25, 5057-5067. https://doi.org/10.1364/OE.25.005057
- 6. Xu, H.F., Zhang, Z., Qu, J. and Huang, W. (2014) Propagation Factors of Cosine-Gaussian-Correlated Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Express, 22, 22479-22489. https://doi.org/10.1364/OE.22.022479
- 7. Song, Z.Z., Liu, Z.J., Zhou, K.Y., Sun, Q.G. and Liu, S.T. (2016) Propagation Factors of Multi-Sinc Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Express, 24, 1804-1813. https://doi.org/10.1364/OE.24.001804
- 8. Zhu, J., Li, X.L., Tang, H.Q. and Zhu, K.C. (2017) Propagation of Multi-Cosine-Laguerre-Gaussian Correlated Schell- Model Beams in Free Space and Atmospheric Turbulence. Optics Express, 25, 20071-20086. https://doi.org/10.1364/OE.25.020071
- 9. Tang, M.M., Zhao, D.M., Li, X.Z. and Wang, J.G. (2018) Propa-gation of Radially Polarized Multi-Cosine Gaussian Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Communications, 407, 392-397. https://doi.org/10.1016/j.optcom.2017.09.067
- 10. Liu, Z.L. and Zhao, D.M. (2019) Propagation of Partially Coherent Vortex Beams in Atmospheric Turbulence by a Spatial Light Modulator. Laser Physics Letters, 16, Article ID: 056003. https://doi.org/10.1088/1612-202X/ab0a6b
- 11. Nikishov, V.V. and Nikishov, V.I. (2000) Spec-trum of Turbulent Fluctuations of the Sea-Water Refraction Index. International Journal of Fluid Mechanics Re-search, 27, 82-98. https://doi.org/10.1615/InterJFluidMechRes.v27.i1.70
- 12. Zhang, Q.W., Li, W.D., Liu, K., Zhou, L.W., Wang, Z.M. and Gu, Y.J. (2019) Effect of Oceanic Turbulence on the Visibility of Underwater Ghost Imaging. Journal of the Optical Society of America A: Optics Image Science and Vision, 36, 397-402. https://doi.org/10.1364/JOSAA.36.000397
- 13. Liu, D.J., Chen, L., Wang, Y.C., Wang, G.Q. and Yin, H.M. (2016) Average Intensity Properties of Flat-Topped Vortex Hollow Beam Propagating through Oceanic Turbulence. Optik, 127, 6961-6969. https://doi.org/10.1016/j.ijleo.2016.04.142
- 14. Pan, Y.Q., Zhao, M.L., Zhang, M.M., Dou, J.T., Zhao, J., Li, B. and Hu, Y.Y. (2023) Propagation Properties of Rotationally-Symmetric Power-Exponent-Phase Vortex Beam through Oceanic Turbulence. Optics and Laser Technology, 159, Article ID: 109024. https://doi.org/10.1016/j.optlastec.2022.109024
- 15. Ata, Y. and Toselli, I. (2023) Aperture-Averaged Scin-tillation for a Weak Underwater Turbulence-Affected Gaussian Beam Using the OTOPS Model. Journal of the Op-tical Society of America A: Optics Image Science and Vision, 40, 492-501. https://doi.org/10.1364/JOSAA.479018
- 16. Elmabruk, K. and Bayraktar, M. (2023) Propagation of Hollow Higher-Order Cosh-Gaussian Beam in Oceanic Turbulence. Physica Scripta, 98, Article ID: 035519. https://doi.org/10.1088/1402-4896/acbbfd
- 17. Wang, S.L., Yu, Z., Yang, D.H., Hu, Z.D., Zhang, Y.X. and Zhu, Y. (2023) Vortex X-Wave Propagation through von K?rm?n Oceanic Turbulence with Anisotropy. Journal of the Optical Society of America A: Optics Image Science and Vision, 40, 637-644. https://doi.org/10.1364/JOSAA.468840
- 18. Dingwall, J., Chor, T. and Taylor, J.R. (2023) Large Eddy Simu-lations of the Accumulation of Buoyant Material in Oceanic Wind-Driven and Convective Turbulence. Journal of Fluid Mechanics, 954, A27. https://doi.org/10.1017/jfm.2022.969
- 19. Ferron, B., Aubertot, P.B., Cuypers, Y. and Vic, C. (2023) Re-moving Biases in Oceanic Turbulent Kinetic Energy Dissipation Rate Estimated from Microstructure Shear Data. Journal of Atmospheric and Oceanic Technology, 40, 129-139. https://doi.org/10.1175/JTECH-D-22-0035.1
- 20. Pan, K.M., Xu, J., Zeng, Z.S. and Zhao, D.M. (2022) Prop-agation Properties and Application of Radially Polarized Partially Coherent Twisted Vortex Hermite-Gaussian Schell-Model Beams. Annalen Der Physik, 534, Article ID: 2200017. https://doi.org/10.1002/andp.202200017
- 21. Xu, J., Liu, Z.L., Pan, K.M. and Zhao, D.M. (2022) Asymmetric Rotating Array Beams with Free Movement and Revolution. Chinese Optics Letters, 20, Article ID: 022602. https://doi.org/10.3788/COL202220.022602
- 22. Zhou, Y.J. and Zhao, D.M. (2021) Research on Statistical Properties and Application of Off-Axis Gaussian Schell- Model Beams. Annalen Der Physik, 533, Article ID: 2100017. https://doi.org/10.1002/andp.202100017
- 23. Zhou, X.Y., Pang, Z.H. and Zhao, D.M. (2021) Gen-eralized Ring Pearcey Beams with Tunable Autofocusing Properties. Annalen Der Physik, 533, Article ID: 2100110. https://doi.org/10.1002/andp.202100110
- 24. Pan, K.M., Xu, J. and Zhao, D.M. (2021) Partially Coherent Sources with the Combined Quadratic Phase. Optics Communications, 478, Article ID: 126392. https://doi.org/10.1016/j.optcom.2020.126392
- 25. Hyde, M.W., Korotkova, O. and Spencer, M.F. (2023) Partially Coherent Sources Whose Coherent Modes Are Spatiotemporal Optical Vortex Beams. Journal of Optics, 25, Article ID: 035606. https://doi.org/10.1088/2040-8986/acba2d
- 26. Sahin, S. and Korotkova, O. (2012) Light Sources Generating Far Fields with Tunable Flat Profiles. Optics Letters, 37, 2970-2972. https://doi.org/10.1364/OL.37.002970
- 27. Korotkova, O., Sahin, S. and Shchepakina, E. (2012) Mul-ti-Gaussian Schell-Model Beams. Journal of the Optical Society of America A: Optics Image Science and Vision, 29, 2159-2164. https://doi.org/10.1364/JOSAA.29.002159
- 28. Lajunen, H. and Saastamoinen, T. (2011) Prop-agation Characteristics of Partially Coherent Beams with Spatially Varying correlations. Optics Letters, 36, 4104-4106. https://doi.org/10.1364/OL.36.004104
- 29. Tong, Z.S. and Korotkova, O. (2012) Electromagnetic Nonuniformly Correlated Beams. Journal of the Optical Society of America A: Optics Image Science and Vision, 29, 2154-2158. https://doi.org/10.1364/JOSAA.29.002154
- 30. Mei, Z.R. and Korotkova, O. (2013) Random Sources Generating Ring-Shaped Beams. Optics Letters, 38, 91-93. https://doi.org/10.1364/OL.38.000091
- 31. Mei, Z.R. and Korotkova, O. (2013) Cosine-Gaussian Schell-Model Sources. Optics Letters, 38, 2578-2580. https://doi.org/10.1364/OL.38.002578
- 32. Gbur, G. and Visser, T.D. (2003) Can Spatial Coherence Effects Produce a Local Minimum of Intensity at Focus? Optics Letters, 28, 1627-1629. https://doi.org/10.1364/OL.28.001627
- 33. Gbur, G. and Wolf, E. (2002) Spreading of Partially Coherent Beams in Random Media. Journal of the Optical Society of America A: Optics Image Science and Vision, 19, 1592-1598. https://doi.org/10.1364/JOSAA.19.001592
- 34. Ponomarenko, S.A., Greffet, J.J. and Wolf, E. (2002) The Diffusion of Partially Coherent Beams in Turbulent Media. Optics Communications, 208, 1-8. https://doi.org/10.1016/S0030-4018(02)01474-8
- 35. Shirai, T., Dogariu, A. and Wolf, E. (2003) Mode Analysis of Spreading of Partially Coherent Beams Propagating through Atmospheric Turbulence. Journal of the Optical Society of America A: Optics Image Science and Vision, 20, 1094-1102. https://doi.org/10.1364/JOSAA.20.001094
- 36. Zhu, P.Y., Wang, G.Q., Yan, Y.T., Yin, Y., Zhong, H.Y., Liu, D.J. and Wang, Y.C. (2023) Propagation of a Radially Polarized Hermite-cos-Gaussian Correlated Schell-Model Beam in Oceanic Turbulence. Optik, 273, Article ID: 170487. https://doi.org/10.1016/j.ijleo.2022.170487
- 37. Liu, W.H., Xu, Z.Y. and Yang, L.Q. (2015) SIMO Detection Schemes for Underwater Optical Wireless Communication under Turbulence. Photonics Research, 3, 48-53. https://doi.org/10.1364/PRJ.3.000048
- 38. Andrews, L.C. and Phillips, R.L. (1998) Laser Beam Propagation through Random Media. SPIE, Bellingham.
- 39. Lu, W., Liu, L.R., Sun, J.F., Yang, Q.G. and Zhu, Y.J. (2007) Change in Degree of Coherence of Partially Coherent Electromagnetic Beams Propagating through Atmospheric Turbulence. Optics Communications, 271, 1-8. https://doi.org/10.1016/j.optcom.2006.09.058
- 40. Zhou, Z.T., Guo, M.W. and Zhao, D.M. (2017) Propagation of Specular and Anti-Specular Gaussian Schell-Model Beams in Oceanic Turbulence. Optics Communications, 383, 287-293. https://doi.org/10.1016/j.optcom.2016.09.013
- 41. Mandel, L. and Wolf, E. (1995) Optical Coher-ence and Quantum Optics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139644105
NOTES
*通讯作者。