Hans Journal of Biomedicine
Vol. 14  No. 02 ( 2024 ), Article ID: 84562 , 9 pages
10.12677/hjbm.2024.142017

氨基酸转运体SLC1家族作为肿瘤治疗靶点的 研究进展

吴红霖,罗鹏飞,晏玲英,安静,彭小珍*

湖南医药学院公共卫生与检验医学院,湖南 怀化

收稿日期:2024年2月23日;录用日期:2024年4月5日;发布日期:2024年4月16日

摘要

目的:整理综述氨基酸转运体SLC1家族的生理特性以及目前作为肿瘤治疗靶点方面的研究进展。方法:通过查找中国知网、PubMed等文献数据库,整理国内外有关SLC1家族生理特性以及影响肿瘤代谢的研究报告,整理出SLC1家族在靶向治疗肿瘤领域的相关研究进展。结果:SLC1家族成员在肿瘤代谢过程中可通过促进细胞内外谷氨酸合成谷胱甘肽、通过谷氨酰胺摄取和mTOR信号传导实现谷氨酰胺的过度表达、通过调节R-2-羟基戊二酸癌代谢物(R-2-HG)、HIF-1α以及p13K/AKT通路等促进肿瘤细胞的发展,除此之外,很多研究中也发现SLC1家族成员与肿瘤细胞的自噬和凋亡、氧化应激反应、细胞有丝分裂以及癌基因的表达等多种因素相关,靶向SLC1家族的抗肿瘤药物已成为目前肿瘤药物研究的热点。结论:本文通过大量文献综述,系统地整理总结四种SLC1家族成员与不同肿瘤细胞之间的影响机制研究进展,但目前多种氨基酸转运体在肿瘤细胞中的作用机制仍不够明确,在今后的研究中进一步探究SLC1家族成员抗肿瘤治疗的作用机制。

关键词

溶质载体家族1,肿瘤细胞,氨基酸转运体,靶向治疗

Research Progress of Amino Acid Transporter SLC1 Family as Tumor Therapeutic Targets

Honglin Wu, Pengfei Luo, Lingying Yan, Jing An, Xiaozhen Peng*

School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua Hunan

Received: Feb. 23rd, 2024; accepted: Apr. 5th, 2024; published: Apr. 16th, 2024

ABSTRACT

Objective: Summarize the physiological characteristics of the amino acid transporter SLC1 family and the current research progress as a target for tumor treatment. Methods: By searching literature databases such as China National Knowledge Infrastructure (CNKI) and PubMed, we have compiled research reports on the physiological characteristics of the SLC1 family and its impact on tumor metabolism both domestically and internationally, and summarized the relevant research progress of the SLC1 family in targeted therapy of tumors. Results: SLC1 family members can promote intracellular and extracellular glutamic acid synthesis of glutathione during tumor metabolism, achieve overexpression of glutamine through glutamine uptake and mTOR signaling, regulate R-2-hydroxyglutarate cancer metabolites (R-2-HG), HIF-1α, and the p13K/AKT pathway promotes the development of tumor cells. In addition, many studies have also found that members of the SLC1 family are associated with various factors such as autophagy and apoptosis, oxidative stress response, cell mitosis, and oncogene expression in tumor cells. Targeting SLC1 family anti-tumor drugs has become a hot topic in current cancer drug research. Conclusion: This article systematically summarizes the research progress on the impact mechanism between four SLC1 family members and different tumor cells through a large number of literature reviews. However, the mechanism of action of various amino acid transporters in tumor cells is still not clear. In future research, the mechanism of action of SLC1 family members in anti-tumor therapy will be further explored.

Keywords:SLC1, Tumor Cell, Amino Acid Transporter, Targeted Therapy

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肿瘤作为目前危害人类健康最主要的疾病之一,它具有的种类多样性和复杂性,赋予了其难以治愈的特点,其中恶性肿瘤细胞具有不断增殖、逃避细胞死亡、血管生成以及侵入和转移的能力,而肿瘤在机体内的整个代谢过程都离不开细胞代谢的支持 [1] 。为提高肿瘤细胞对不利条件的适应度以及满足自身高代谢的需求,肿瘤细胞会在致癌基因和抑癌基因的共同影响下重新调整代谢水平平衡,重点表现在能量、氨基酸和脂肪酸的代谢异常,这种现象被称之为代谢重编程 [2] 。目前,代谢重编程已被证明为肿瘤的重要标志之一,为保证肿瘤高速增殖提供所需的能量和生物合成的前体物质,并降低肿瘤细胞的氧化应激水平,因此肿瘤细胞会摄取大量的葡萄糖和氨基酸等营养物质,通过糖酵解大量消耗葡萄糖提供能量,同时摄入的氨基酸(如谷氨酰胺)为肿瘤细胞提供大量的碳源和氮源,并维持氧化还原稳态 [3] ,其中氨基酸代谢重编程是肿瘤代谢重编程重要环节一环。

氨基酸是蛋白质合成的基础原料,是肿瘤细胞生长代谢的重要营养物质,同时肿瘤细胞对氨基酸也具有特殊需求 [4] [5] ,一方面迅速生长的肿瘤细胞对于氨基酸的需求十分旺盛,另一方面肿瘤细胞利用氨基酸促进自身的增殖和侵袭,促进免疫细胞表达免疫逃避相关蛋白,激发肿瘤细胞的免疫逃避机制 [6] 。而氨基酸具有亲水性,无法以自由扩散的形式跨越细胞膜,需要借助各种氨基酸转运体的协助 [7] ,因此,上调氨基酸转运体的表达成为肿瘤细胞加快摄取氨基酸的重要机制。

大部分的氨基酸转运体属于溶质载体(solute carrier, SLC)家族,由SLCs基因编码合成,是典型的跨膜蛋白,并基于基因特异性在不同组织和不同细胞中差异性表达 [8] ,其主要负责细胞膜上氨基酸、核苷酸、糖、无机离子和药物的跨膜转运。根据目前发现并鉴定出的SLC转运蛋白基因,可将氨基酸转运体归类为SLC1、SLC2、SLC3等65个基因家族 [9] ,其中有11个SLC基因家族中含有编码氨基酸转运体的成员,包括有SLC1、SLC6、SLC7、SLC15、SLC16、SLC17、SLC25、SLC32、SLC36、SLC38和SLC43 [10] 。肿瘤细胞对氨基酸的大量摄取主要是通过上调氨基酸转运体的过表达而实现的,因此,通过靶向控制氨基酸转运体实现治疗肿瘤疾病成为一个有效的策略,目前关于抗肿瘤治疗的氨基酸转运体主要针对SLC家族的成员,包括有SLC1A5、SLC38A2、SLC6A14、SLC7A1、SLC7A2、SLC7A3、SLC7A5(LAT1)、SLC7A8(LAT2)、SLC7A11等氨基酸转运体 [7] 。本文主要介绍在肿瘤代谢中发挥重要作用的SLC1家族的四位成员及其抗肿瘤治疗的作用机制研究进展,包括有SLC1A1、SLC1A3、SLC1A4、SLC1A5。

2. SLC1A1

SLC1A1又被称为EAAC1或EAAT3,是一种Na+依赖性谷氨酸转运蛋白 [11] [12] [13] 。SLC1A1主要在大脑中表达,也在肾脏和肠黏膜中表达,同时也低水平存在于肌肉和肺中 [14] 。研究表明,SLC1A1促进一系列肿瘤的发展,包括肺癌、自然杀伤性T细胞淋巴瘤、实体瘤等。

2.1. SLC1A1调节细胞内外谷氨酸促进谷胱甘肽(GSH)合成,抵抗活性氧(ROS)生成从而促进 肿瘤发展

通过研究Gprc5a-ko (敲除小鼠Gprc5a基因中的ko)小鼠模型中肺肿瘤的代谢重编程,SLC1A1上调,增加了谷氨酸的流入,减少细胞外谷氨酸,从而打破细胞外谷氨酸与系统Xc (一种不依赖钠的反转运蛋白)对胱氨酸摄取的竞争性抑制作用,促进了胱氨酸的摄取 [14] [15] ;谷氨酸、胱氨酸、甘氨酸是GSH (细胞中最丰富的抗氧化剂)的组要组成部分,促进GSH生物合成,抵抗ROS的氧化毒性 [16] ,从而促进了肺肿瘤的发展。结合实验,预计靶向癌症干细胞中的抗氧化系统,如SLC1A1和轻链亚基(xCT),结合化疗,将提高癌症治疗的疗效 [14] 。

2.2. 天冬酰胺酶靶向治疗SLC1A1诱导谷氨酰胺对自然杀伤性T细胞淋巴瘤(NKTCL)的 依赖性

NKTCL的研究中显示SLC1A1是谷氨酰胺成瘾的关键诱导物。SLC1A1编码兴奋性氨基酸转运蛋白EAAT3,在谷氨酸跨细胞膜转运中至关重要 [17] 。在NKTCL患者中,SLC1A1提高谷氨酰胺利用率,激活谷胱甘肽代谢通量,从而增加氧化型谷胱甘肽产量,进而介导谷氨酰胺成瘾。天冬酰胺酶消耗细胞外天冬酰胺和抑制谷氨酰胺依赖性肿瘤细胞生长 [11] [18] ,SLC1A1诱导的细胞外谷氨酰胺对NKTCL细胞的依赖性在体外和体内均被天冬酰胺酶处理后克服。SLC1A1在以天冬酰胺酶为基础的抗代谢治疗时是NKTCL的一个潜在治疗靶点 [19] 。除此之外,SLC1A1的高度表达可介导异常的谷氨酰胺代谢和肿瘤进展,从而提高治疗敏感性并独立预测优异的无进展生存期和总生存期。通过RNA测序分析(RNA-sep)、聚合酶反应测定和桑格测序,分析表明SLC1A1-RIC1融合基因通过重编程谷氨酰胺代谢促进细胞生长。天冬酰胺酶治疗可靶向具有SLC1A1-RIC1融合的NKTCL [11] 。

2.3. SLC1A1通过调节R-2-羟基戊二酸癌代谢物(R-2-HG)和HIF-1α-SLC1A1轴来促进肿瘤 发展

实体瘤的研究发现,突变性异柠檬酸脱氢酶1 (mIDH1)的肿瘤细胞获得异常的酶活性,大量将α-酮戊二酸(α-KG)转化为R-2-HG [20] 。R-2-HG处理增强了原代人脐静脉内皮细胞(HUVEC)的迁移率,可以促进肿瘤生长和血管生成,从而不受其对免疫细胞的影响。SLC1A1负责在不同细胞环境中转运R-2-HG,SLC1A1的预抑制阻断了R-2-HG促进细胞迁移率、三维大量主动脉环血管生成等过程,同时也预防了R-2-HG诱导的线粒体Ca2+信号。R-2-HG刺激的细胞骨架重排需要Na内流和相关的Na+/Ca2+交换 [21] 。Ca2+线粒体复合物I的流入和相关活化是R-2-HG线粒体呼吸升高的原因,NCX (钠钙交换体)的抑制消除了R-2-HG对HUVEC迁移的影响和主动脉环萌芽。HH2301 (新型mIDH1抑制剂)控制肿瘤生长中的治疗效果和抑制肿瘤血管生成,生成的抑制肿瘤血管可能赋予体内mIDH1抑制的功效,使肿瘤脉管系统正常化 [12] 。

实体瘤已经发展出强大的铁死亡耐药性(即铁死亡抗性),铁死亡是一种铁和活性氧(ROS)的依赖性程序性细胞死亡,肿瘤细胞发展出对铁死亡的抗性以抵抗细胞死亡,HIF-1α (缺氧诱导因子1α)是缺氧下铁死亡抗性的主要驱动因素 [22] 。补充乳酸可以促进铁死亡抗性(尤其是在缺氧条件下) [23] ,乳酸脱氢酶(LDH)是HIF-1α的已知靶向基因。SLC1A1的表达被缺氧有效促进,HIF-1α还增强重要谷氨酸转运蛋白SLC1A1的转录,失调的SLC1A1通过系统Xc主动将细胞外谷氨酸回收到细胞中,同时提高胱氨酸摄取的效率 [14] ,以促进铁死亡抵抗。HIF-1α-SLC1A1轴通过增强xCT介导的胱氨酸摄取来驱动肿瘤细胞铁死亡耐药性,HRE1-HRE3是SLC1A1启动子区域中潜在的HIF1α结合位点。缺氧缓解和FIN (RSL3和erastin)治疗的结合是一种新型的有前途的实体瘤干预策略 [13] 。

3. SLC1A3

SLC1A3是一种Na+依赖性谷氨酸转运蛋白,在神经胶质细胞中高度表达 [24] 。SLC1A3也被称为EAAT1和GLAST,在整个神经系统的组织中高度表达,包括小脑、心室区、视网膜和耳蜗。SLC1A3也被描述为在天冬氨酸的摄取中起作用的转运体 [25] 。研究表明,SLC1A3与肿瘤代谢相关,并有助于一系列肿瘤的进展,包括胃癌、甲状腺癌、胶质母细胞瘤、乳腺癌脑转移等。

3.1. SLC1A3通过调节p13K/AKT通路促进胃癌细胞的发展

在胃癌的代谢过程中,SLC1A3参与调节p13K/AKT通路,过表达的SLC1A3通过激活p13K/AKT通路促进葡萄糖转运蛋白1 (GLUT1)的表达和质膜易位 [26] [27] 、增强哺乳动物雷帕霉素靶蛋白(MTOR)活性和HIF-1α上调己糖激酶2 (HK II)和乳酸脱氢酶(LDHA)的表达 [28] [29] ,达到调节癌症细胞中糖酵解的条件,确保肿瘤细胞充足的能量供应;除此之外,高表达的SLC1A3还可同时利用天冬氨酸合成谷氨酸、谷氨酰胺和核苷酸,补充癌症发展过程中对谷氨酰胺的高需求,并维持电子传输链(ETC)和三羧酸循环(TCA)的活性 [30] ,综上研究充分表明,高表达的SLC1A3在胃癌中的致癌作用,以及将SLC1A3作为治疗胃癌新靶点的可能性。

3.2. SLC1A3与CD133+协同作用维持甲状腺癌症细胞的自我更新

在甲状腺癌症的代谢影响因素相关研究中发现,激活谷氨酸—天冬氨酸转运蛋白SLC1A3的高水平表达提高CD133+甲状腺癌症细胞中的谷氨酸水平,挽救CD133+敲低对甲状腺癌细胞自我更新能力的负面影响,与CD133+共同促进甲状腺癌症细胞的自我更新能力;与此同时,CD133+也通过NF-KB途径的激活促进CD133+甲状腺癌症细胞中SLC1A3的转移 [31] ,进一步佐证CD133+可部分通过激活SLC1A3而促进甲状腺癌症细胞的自我更新能力,此上关于SLC1A3和CD133+关系的发现,提供了一种维持癌症甲状腺干细胞自我更新的新机制。

3.3. 低表达的SLC1A3促进胶质细胞瘤的局部扩散

同样在神经胶质细胞瘤相关研究中,Western印迹显示,与低级别胶质瘤或对照组织相比,SLC1A3在从多形性简变性胶质母细胞瘤获得的胶质小体和突触体中表达显著降低,以及在棕榈酰化试验中表明,与低级别胶质瘤或对照组织相比,从多形性胶质母细胞瘤患者的间变性变体中获得的胶质小体中棕榈酰化显著减少了SLC1A3的脂质修饰 [32] ,导致谷氨酸和谷氨酸–维生素在细胞外液中的浓度增加 [33] [34] ,从而促进晚期胶质母细胞瘤的局部扩散 [35] [36] 。

3.4. SLC1A3通过支持谷氨酸转运和促进代谢重编排推动癌细胞脑转移

有相关研究发现,在乳腺癌症细胞向脑转移中,SLC1A3通过支持谷氨酸转运和促进细胞代谢,成为癌细胞脑转移过程中差异最大的基因之一,其中机制为:p53诱导SLC1A3的表达,支持细胞在谷氨酰胺不足的条件下产生ATP和乳酸,并促进AKT的磷酸化 [25] 。除此之外,SLC1A3自身有助于电子传输链,通过涉及胞质和线粒体转氨酶GOT1和GOT2的苹果酸–天冬氨酸穿梭物来产生谷氨酰胺 [30] ,从而促进乳腺癌细胞的代谢重编排。

4. SLC1A4

SLC1A4,又称ASCT1,既是一种Na+依赖性中性氨基酸转运蛋白,又是一种三聚体中性氨基酸转运体,且SLC1A4是编码大脑中的丙氨酸,丝氨酸,半胱氨酸,苏氨酸和谷氨酸的转运体 [37] ,在神经发育和肿瘤代谢中发挥着重要作用。研究发现,SLC1A4的缺失或变异是神经发育迟缓的重要原因 [38] 。研究表明,SLC1A4在多种肿瘤组织和细胞中呈高表达,包括肝癌、肾癌、肺癌、胃癌、胰腺导管癌、乳腺癌等,且SLC1A4的高表达与患者不良预后有关 [39] 。

4.1. SLC1A4作为丝氨酸转运载体在神经发育中发挥重要作用

神经发育过程中,SLC1A4作为一种三聚体中性氨基酸转运体,与星形胶质细胞标志物POAH定位,通过丝氨酸穿梭,异质交换输出L-丝氨酸,转运到神经元,为神经元提供合成L-丝氨酸的底物 [40] [41] 。因此,SLC1A4在神经发育中发挥着重要作用。一方面,在神经发育有关的动物实验显示,ASCT1-KO (SLC1A4敲降)小鼠表现出运动功能,空间学习和情感行为方面的缺陷,也表现出与人类ASCT1错义突变相似的神经发育缺陷 [42] 。另一方面,调查显示,SLC1A4双等位基因的患者常表现为患痉挛性四肢瘫痪,小头畸形,胼胝体薄等疾病 [40] 。

4.2. SLC1A4在肿瘤细胞增殖与发展发挥重要作用

在肿瘤有关研究中发现,肿瘤细胞需要大量的谷氨酰胺,氨基酸需求量大量增加,因此氨基酸转运体将呈现过表达的趋势,同时细胞增殖水平显著增加 [39] 。低表达的谷氨酰胺转运蛋白SLC1A4使得细胞内谷氨酰胺浓度降低,从而增加细胞毒性CD8+ T细胞的增殖和效应功能,导致血清调节性T细胞(Treg)增殖和功能降低,因此,SLC1A4可调节肿瘤微环境在HCC中的重要作用 [43] [44] 。同时,胰腺星状细胞(PSCs)利用SLC1A4与其它弥漫性转运蛋白协同作用维持胰腺导管癌(PDAC)中丙氨酸的浓度,调节其肿瘤的微环境 [45] 。研究表明,PDAC的一个非典型作用HOTTIP-WDR5-MLL1复合物通过直接在其启动子处诱导H3k3me3 (组蛋白第三个氨基酸甲基化)反式激活致癌蛋白SLC1A4 [46] 。

5. SLC1A5

SLC1A5又叫ASCT2,是一种Na+依赖性中性氨基酸协同转运蛋白,主要用于将谷氨酰胺、丙氨酸、丝氨酸、苏氨酸以及其他小分子中性氨基酸转运到细胞内,也可诱导谷氨酰胺、天冬酰胺、丝氨酸等排出细胞外 [47] ,因此,SLC1A5为中性氨基酸的双向转运体。近年来,SLC1A5被证实在多种肿瘤组织和细胞中呈高表达,包括乳腺癌、结肠癌、肺癌、黑色素瘤、神经母细胞瘤、胶质母细胞瘤、前列腺癌、胰腺癌、舌癌、子宫内膜癌、肝细胞癌、食管鳞癌、喉癌、肾癌、急性髓性白血病、多发性骨髓瘤等,此外,研究还显示SLC1A5的高表达与肿瘤恶性生物学特征和不良预后有关 [48] 。

5.1. SLC1A5调控肿瘤细胞代谢重编程推动肿瘤细胞增殖

在大量有关SLC1A5调控肿瘤细胞代谢重编程的文献中发现,SLC1A5是谷氨酰胺进入癌细胞最主要的转运体 [49] ,过表达的SLC1A5帮助肿瘤细胞摄取更多的谷氨酰胺以满足自身需求,而谷氨酰胺在肿瘤高速增殖的需求中发挥至关重要的作用,一方面,随着癌细胞对谷氨酸盐的过度消耗,促使细胞摄取更多的谷氨酰胺,谷氨酰胺可脱氨基分解成α-酮戊二酸,从而促进癌细胞内的三羧酸循环,进而促进肿瘤细胞的能量代谢 [50] ;另一方面,谷氨酰胺在mTOR信号传导以及一些癌基因的表达中发挥重要作用 [51] ,mTOR信号通路通常在肿瘤中被激活,通过调节基因转录和蛋白质合成,进而调节细胞增殖和免疫细胞分化,且在肿瘤代谢中也发挥重要作用 [52] 。

5.2. SLC1A5与肿瘤细胞的多种表达相关

SLC1A5除影响谷氨酰胺摄取和mTOR信号传导外,在很多研究中也被发现与肿瘤细胞的自噬和凋亡、氧化应激反应、细胞有丝分裂以及癌基因的表达等相关 [7] ,例如在NSCLC (非小细胞肺癌)中发现,靶向NSCLC细胞中的SLC1A5通过削弱其从细胞外环境中摄取足够的谷氨酰胺和潜在的其他中性氨基酸(半胱氨酸、丝氨酸和丙氨酸)的能力而导致细胞凋亡。谷氨酰胺缺乏的细胞进行自噬以维持其生存所需的能量供应。长时间的谷氨酰胺(Gln)去活化最终导致细胞内ATP水平下降,细胞内ATP水平的降低反过来引起线粒体电位的丧失,导致细胞凋亡 [53] 。在C2细胞(人结肠癌细胞) SLC1A5的表达调控影响中,表皮细胞生长因子(EGF)通过氧化应激的MAPK、PI3K和Rho三大信号通路增加系统B0/ASCT2、系统B0,+活性和ASCT2表面表达,从而增加癌细胞内谷氨酰胺的总转运,而敲低肿瘤细胞中的ASCT2可减少谷氨酰胺的摄取和GSH的合成而导致细胞凋亡,从而导致肿瘤细胞内ROS的积累影响氧化应激水平 [54] ,靶向ASCT2的抗肿瘤药物已成为目前肿瘤药物研究的热点。

6. 结语

氨基酸转运体SLC1家族作为肿瘤治疗的靶点将成为肿瘤药物开发的重点,同时氨基酸转运载体SLC1家族的生理特点和转运特性已得到了深入的研究,但由于许多氨基酸转运体在肿瘤细胞中的作用机制尚不明确。因此,在今后的研究中,可从细胞生物学,分子生物学,生物信息学,基因组学等技术从细胞,分子,基因水平等方面研究SLC1家族在肿瘤代谢中的重要作用及其抗肿瘤治疗的作用机制研究进展。

基金项目

湖南省大学生创新创业训练计划项目(S2022122140027)。

文章引用

吴红霖,罗鹏飞,晏玲英,安 静,彭小珍. 氨基酸转运体SLC1家族作为肿瘤治疗靶点的研究进展
Research Progress of Amino Acid Transporter SLC1 Family as Tumor Therapeutic Targets[J]. 生物医学, 2024, 14(02): 157-165. https://doi.org/10.12677/hjbm.2024.142017

参考文献

  1. 1. Kroemer, G. and Pouyssegur, J. (2008) Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell, 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005

  2. 2. Li., Z. and Zhang, H. (2016) Reprogramming of Glucose, Fatty Acid and Amino Acid Metabolism for Cancer Progression. Cellular and Molecular Life Sciences, 73, 377-392. https://doi.org/10.1007/s00018-015-2070-4

  3. 3. 段泽琳. 靶向SLC1A5介导的谷氨酰胺摄取作为肿瘤抗增殖新途径[D]: [硕士学位论文]. 苏州: 苏州大学, 2021.

  4. 4. Luengo, A., Cui, D.Y. and Vander Heidfn, M.G. (2017) Targeling Me-Metabolism for Cancer Therapy. Cell Chemical Biology, 24, 1161-1180. https://doi.org/10.1016/j.chembiol.2017.08.028

  5. 5. Brandon, F., Ashley, S. and Deberardinis, R.J. (2020) Metabolic Reprogramming and Cancer Progression. Science, 368, eaaw54. https://doi.org/10.1126/science.aaw5473

  6. 6. 张峥, 秦立强. 氨基酸及其转运体对肿瘤细胞和T细胞作用的研究进展[J]. 肿瘤代谢与营养电子杂志, 2022, 9(3): 271-275.

  7. 7. 王林琳, 孙振亮. 氨基酸转运体在肿瘤代谢中的研究进展[J]. 生物技术进展, 2022, 12(1): 50-56.

  8. 8. Yahyaoui, R. and Pérez-Frías, J. (2019) Amino Acid Transport Defects in Human Inherited Metabolic Disorders. International Journal of Molecular Sciences, 21, Article 119. https://doi.org/10.3390/ijms21010119

  9. 9. Bai, X., Moraes, T.F. and Reithmeier, R.A.F. (2017) Structural Biology of Solute Carrier (SLC) Membrane Transport Proteins. Molecular Membrane Biology, 34, 1-32. https://doi.org/10.1080/09687688.2018.1448123

  10. 10. 陆心月, 郑旭, 王志钢, 吴晓彤. 哺乳动物细胞氨基酸转运体及胞内感受机制研究进展[J]. 生命科学, 2022, 34(9): 1155-1167.

  11. 11. Xiong, J. and Zhao, W.L. (2023) A Novel SLC1A1-RIC1 Fusion Sensitive to Asparaginase-Based Therapy in Natural Killer/T-Cell Lymphoma. British Journal of Haematology, 203, 485-489. https://doi.org/10.1111/bjh.19066

  12. 12. Wang, X., Chen, Z., Xu, J., et al. (2022) SLC1A1-Mediated Cellular and Mitochondrial Influx of R-2-Hydroxyglutarate in Vascular Endothelial Cells Promotes Tumor Angiogenesis in IDH1-Mutant Solid Tumors. Cell Research, 32, 638-658. https://doi.org/10.1038/s41422-022-00650-w

  13. 13. Yang, Z., Su, W., Wei, X., Qu, S., Zhao, D., Zhou, J., Wang, Y., Guan, Q., Qin, C., Xiang, J., Zen, K. and Yao, B. (2023) HIF-1α Drives Resistance to Ferroptosis in Solid Tumors by Promoting Lactate Production and Activating SLC1A1. Cell Reports, 42, Article ID: 112945. https://doi.org/10.1016/j.celrep.2023.112945

  14. 14. Guo, W., Li, K., Sun, B., Xu, D., Tong, L., Yin, H., Liao, Y., Song, H., Wang, T., Jing, B., et al. (2021) Dysregulated Glutamate Transporter SLC1A1 Propels Cystine Uptake Via Xc for Glutathione Synthesis in Lung Cancer. Cancer Research, 81, 552-566. https://doi.org/10.1158/0008-5472.CAN-20-0617

  15. 15. Lewerenz, J., Hewett, S.J., Huang, Y., Lambros, M., Gout, P.W., Kalivas, P.W., et al. (2013) The Cystine/Glutamate Antiporter System XC in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants & Redox Signaling, 18, 522-555. https://doi.org/10.1089/ars.2011.4391

  16. 16. Lo, M., Wang, Y.Z. and Gout, P.W. (2008) The XC Cystine/Glutamate Antiporter: A Potential Target for Therapy of Cancer and Other Diseases. Journal of Cellular Physiology, 215, 593-602. https://doi.org/10.1002/jcp.21366

  17. 17. Bailey, C.G., Ryan, R.M., Thoeng, A.D., Ng, C., King, K. and Vanslambrouck, J.M. (2011) Loss-of-Function Mutations in the Glutamate Transporter SLC1A1 Cause Human Dicarboxylic Aminoaciduria. Journal of Clinical Investigation, 121, 446-453. https://doi.org/10.1172/JCI44474

  18. 18. Pavlova, N.N., Hui, S., Ghergurovich, J.M., et al. (2018) As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metabolism, 27, 428-438. https://doi.org/10.1016/j.cmet.2017.12.006

  19. 19. Xiong, J., Wang, N., Zhong, H., et al. (2021) SLC1A1 Mediated Glutamine Addiction and Contributed to Natural Killer T-Cell Lymphoma Progression with Immunotherapeutic Potential. eBioMedicine, 72, Article ID: 103614. https://doi.org/10.1016/j.ebiom.2021.103614

  20. 20. Dang, L., et al. (2009) Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature, 462, 739-744. https://doi.org/10.1038/nature08617

  21. 21. Castaldo, P., et al. (2009) Role of The Mitochondrial Sodium/Calcium Exchanger in Neuronal Physiology and in the Pathogenesis of Neurological Diseases. Progress in Neurobiology, 87, 58-79. https://doi.org/10.1016/j.pneurobio.2008.09.017

  22. 22. Yuan, S., Wei, C., Liu, G., Zhang, L., Li, J., Li, L., Cai, S. and Fang, L. (2022) Sorafenib Attenuates Liver Fibrosis by Triggering Hepatic Stellate Cell Ferroptosis via HIF-1α/SLC7A11 Pathway. Cell Proliferation, 55, e13158. https://doi.org/10.1111/cpr.13158

  23. 23. Zhao, Y., Li, M., Yao, X., Fei, Y., Lin, Z., Li, Z., Cai, K., Zhao, Y. and Luo, Z. (2020) HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Reports, 33, Article ID: 108487. https://doi.org/10.1016/j.celrep.2020.108487

  24. 24. Hagiwara, T., Tanaka, K., Takai, S., Maeno-Hikichi, Y., Mukainaka, Y. and Wada, K., (1996) Genomic Organization, Promoter Analysis, and Chromosomal Localization of the Gene for the Mouse Glial High-Affinity Glutamate Transporter Slc1a3. Genomics, 33, 508-515. https://doi.org/10.1006/geno.1996.0226

  25. 25. Mamoor, S. (2020) SLC1A3 (EAAT1) Is Over-Expressed in Brain Metastatic Breast Cancer. https://doi.org/10.31219/osf.io/6qnfe

  26. 26. Ganapathy, V., Thangaraju, M. and Prasad, P.D. (2009) Nutrient Transporters in Cancer: Relevance to Warburg Hypothesis and beyond. Pharmacology & Therapeutics, 121, 29-40. https://doi.org/10.1016/j.pharmthera.2008.09.005

  27. 27. Rathmell, J.C., Fox, C.J., Plas, D.R., et al. (2003) Akt-Directed Glucose Metab-Olism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival. Molecular and Cellular Biology, 23, 7315-7328. https://doi.org/10.1128/MCB.23.20.7315-7328.2003

  28. 28. Zhou, Q.L., Jiang, Z.Y., Holik, J., et al. (2008) Akt Substrate TBC1D1 Regulates GLUT1 Expression through the MTOR Pathway in 3T3-L1 Adipo-Cytes. Biochemical Journal, 411, 647-655. https://doi.org/10.1042/BJ20071084

  29. 29. Lien, E.C., Lyssiotis, C.A. and Cantley, L.C. (2016) Metabolic Reprogramming by the PI3K-Akt-MTOR Pathway in Cancer. In: Cramer, T.A. and Schmitt, C., Eds., Metabolism in Cancer, Springer, Cham, 39-72. https://doi.org/10.1007/978-3-319-42118-6_3

  30. 30. Tajan, M., Hock, A.K., Blagih, J., et al. (2018) A Role for P53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metabolism, 28, 721-736.E6. https://doi.org/10.1016/j.cmet.2018.07.005

  31. 31. Cong, W., Wang, Z.L., Liu, W. and Ai, Z.L. (2019) CD133 Promotes the Self-Renewal Capacity of Thyroid Cancer Stem Cells through Activation of Glutamate Aspartate Transporter SLC1A3 Expression. Biochemical and Biophysical Research Communications, 511, 87-91. https://doi.org/10.1016/j.bbrc.2019.02.023

  32. 32. Tong, H., Yu, X., Lu, X. and Wang, P. (2015) Downregulation of Solute Carriers of Glutamate in Gliosomes and Synaptosomes May Explain Local Brain Metastasis in Anaplastic Glioblastoma. IUBMB Life, 67, 306-311. https://doi.org/10.1002/iub.1372

  33. 33. Walczak, K., Deneka-Hannemann, S., Jarosz, B., Zgrajka, W., Stoma, F., et al. (2014) Kynurenic Acid Inhibits Proliferation and Migration of Human Glioblas-Toma T98G Cells. Pharmacological Reports, 66, 130-136. https://doi.org/10.1016/j.pharep.2013.06.007

  34. 34. Ye, Z.C., Rothstein, J.D. and Sontheimer, H. (1999) Compromised Glutamatetransport in Human Glioma Cells: Reduction-Mislocalization of Sodium-Dependent Glutamate Transporter S and Enhanced Activity of Cystine-Glutamate Exchange. Journal of Neuroscience, 19, 10767-10777. https://doi.org/10.1523/JNEUROSCI.19-24-10767.1999

  35. 35. Lyons, S.A., Chung, W.J., Weaver, A.K., Ogunrinu, T., and Sontheimer, H. (2007) Autocrine Glutamate Signaling Promotes Glioma Cell Invasion. Cancer Research, 67, 9463-9471. https://doi.org/10.1158/0008-5472.CAN-07-2034

  36. 36. VanLith, S.A., Navis, A.C., Verrijp, K., Niclou, S.P., Bjerkvig, R., et al. (2014) Glutamate as Chemotactic Fuel for Diffuse Glioma Cells: Are They Glutamate Suckers? Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1846, 66-74. https://doi.org/10.1016/j.bbcan.2014.04.004

  37. 37. Hofmann, K., Maria, D., Fink, T., et al. (1994) Human Neutral Amino Acid Transporter ASCT1: Structure of the Gene (SLC1A4) and Localization to Chromosome 2p13-P15. Genomics, 24, 20-26. https://doi.org/10.1006/geno.1994.1577

  38. 38. Sedláková, L., Lauthová, P., Těrbová, K., et al. (2021) Severe Neurodevelopmental Disorder with Intractable Seizures Due to a Novel SLC1A4 Homozygous Variant. European Journal of Medical Genetics, 64, Article ID: 104263. https://doi.org/10.1016/j.ejmg.2021.104263

  39. 39. Liu, Y., Xiong, H., Yan, C., Wang, Y., Cao, W. and Qie, S. (2023) Bioinformatic Analysis of the Prognostic Value of a Panel of Six Amino Acid Transporters in Human Cancers. Cell Journal, 25, 613-624.

  40. 40. Palumbo, P., Petracca, A., Maggi, R., et al. (2019) A Novel Dominant-Negative FGFR1 Variant Causes Hartsfield Syndrome by Deregulating RAS/ERK1/2 Pathway. European Journal of Human Genetics, 27, 1113-1120. https://doi.org/10.1038/s41431-019-0350-4

  41. 41. Wolosker, H. and Radzishevsky, I. (2013) The Serine Shuttle between Glia and Neurons: Implications for Neurotransmission and Neurodegeneration. Biochemical Society Transactions, 41, 1546-1550. https://doi.org/10.1042/BST20130220

  42. 42. Eitan, K., Salman, Z., Inna, R., et al. (2018) ASCT1 (Slc1a4) Transporter Is a Physiologic Regulator of Brain D-Serine and Neurodevelopment. Proceedings of the National Academy of Sciences of the United States of America, 115, 9628-9633. https://doi.org/10.1073/pnas.1722677115

  43. 43. Wang, X.C., He, Q.F., Shen, H.Y., Xia, A.L., Tian, W.F., Yu, W.W. and Sun, B.C. (2019) TOX Promotes the Exhaustion of Antitumor CD8 T Cells by Preventing PD1 Degradation in Hepatocellular Carcinoma. Journal of Hepatology, 71, 731-741. https://doi.org/10.1016/j.jhep.2019.05.015

  44. 44. Peng, X., Chen, R., Cai, S., et al. (2021) SLC1A4: A Powerful Prognostic Marker and Promising Therapeutic Target for HCC. Frontiers in Oncology, 11, Article 650355. https://doi.org/10.3389/fonc.2021.650355

  45. 45. Parker, S.J., Amendola, C.R., Hollinshead, K.E.R., et al. (2020) Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 10, 1018-1037. https://doi.org/10.1158/2159-8290.CD-19-0959

  46. 46. Wong, C.H., Li, C.H., He, Q., et al. (2019) Ectopic HOTTIP Expression Induces Non-Canonical Transactivation Pathways to Promote Growth and Invasiveness in Pancreatic Ductal Aden Ocarcinoma. Cold Spring Harbor Laboratory. https://doi.org/10.1101/812800

  47. 47. Bi, X. and Henry, C.J. (2017) Plasma-Free Amino Acid Profiles Are Predictors of Cancer and Diabetes Development. Nutrition & Diabetes, 7, e249. https://doi.org/10.1038/nutd.2016.55

  48. 48. 陆健, 龚镭, 王小云, 等. 氨基酸转运载体SLC1A5在胃癌组织中的表达及其临床病理学意义[J]. 现代生物医学进展, 2019, 19(20): 3880-3885. https://doi.org/10.13241/j.cnki.pmb.2019.20.018

  49. 49. Jiang, H., Zhang, N., Tang, T., et al. (2020) Target the Human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacological Research, 158, Article ID: 104844. https://doi.org/10.1016/j.phrs.2020.104844

  50. 50. Bott, A.J., Shen, J., Tonelli, C., et al. (2019) Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Reports, 29, 1287-1298.E6. https://doi.org/10.1016/j.celrep.2019.09.056

  51. 51. Li, L., Meng, Y., Li, Z., et al. (2019) Discovery and Development of Small Molecule Modulators Targeting Glutamine Metabolism. European Journal of Medicinal Chemistry, 163, 215-242. https://doi.org/10.1016/j.ejmech.2018.11.066

  52. 52. Zou, Z., Tao, T., Li, H., et al. (2020) MTOR Signaling Pathway and MTOR Inhibitors in Cancer: Progress and Challenges. Cell and Bioscience, 10, Article No. 31. https://doi.org/10.1186/s13578-020-00396-1

  53. 53. Sanein, J.Q., Hoeksema, M.D., et al. (2015) Targeting SLC1a5-Mediated Glutamine Dependence in Non-Small Cell Lung Cancer. International Journal of Cancer, 137, 1587-1597.

  54. 54. Avissar, N.E., Sax, H.C. and Toia, L. (2008) In Human Entrocytes, GLN Transport and ASCT2 Surface Expression Induced by Short-Term EGF Are MAPK, PI3K, and Rho-Dependent. Digestive Diseases and Sciences, 53, 2113-2125. https://doi.org/10.1007/s10620-007-0120-y

  55. NOTES

    *通讯作者。

期刊菜单