Advances in Clinical Medicine
Vol. 11  No. 01 ( 2021 ), Article ID: 39682 , 10 pages
10.12677/ACM.2021.111004

成人复发难治急性髓系白血病治疗进展

杨明婷*,何丽娟,张秋蓉,李永萍#

大理大学第一附属医院血液科,云南 大理

收稿日期:2020年12月6日;录用日期:2020年12月19日;发布日期:2021年1月8日

摘要

成人复发/难治急性髓细胞白血病治疗仍面临较大困难,目前尚无统一、有效的治疗方案。患者预后极差,传统的挽救性化疗缓解率较低,并且患者因为原发耐药、药物累积的毒性作用、脏器功能衰退、干细胞储备功能低、家庭经济等诸多因素,常常限制了治疗方案的选择。随着对白血病生物学特性认识的不断深入,一系列与AML发病机制和病理生理密切相关的基因、受体、抗原、细胞内关键物质等相继被发现,使得复发/难治急性髓系白血病的治疗有了更多的选择。目前针对复发难治急性髓系白血病的治疗有传统化疗、造血干细胞移植、靶向治疗、免疫治疗等。本人针对成人复发/难治急性髓系白血病治疗进展做一综述。

关键词

急性髓系白血病,复发/难治急性髓系白血病,化疗,造血干细胞移植,靶向治疗,免疫治疗

Advances in the Treatment of Adult Relapsed/Refractory Acute Myeloid Leukemia

Mingting Yang*, Lijuan He, Qiurong Zhang, Yongping Li#

First Affiliated Hospital of Dali University, Dali Yunnan

Received: Dec. 6th, 2020; accepted: Dec. 19th, 2020; published: Jan. 8th, 2021

ABSTRACT

The treatment of adult relapsed/refractory acute myeloid leukemia still faces great difficulties, and there are no unified and effective treatment solutions. The prognosis of patients is extremely poor, and the remission rate of traditional salvage chemotherapy is low. Additionally, the choice of a treatment plan is limited due to primary drug resistance, toxic effects of accumulated drugs, decline in organ function, low stem cell reserve, family economy, and other factors. With the expansion in the understanding of the biological characteristics of leukemia, a series of genes, receptors, antigens, and key intracellular substances that are closely related to the pathogenesis and pathophysiology of AML have been discovered. This has provided more options for the treatment of relapsed/refractory acute myeloid leukemia. Current treatments for relapsed and refractory acute myeloid leukemia include traditional chemotherapy, hematopoietic stem cell transplantation, targeted therapy, and immunotherapy. In this paper, we will review the progress in the treatment of adult relapsed/refractory acute myeloid leukemia.

Keywords:Acute Myeloid Leukemia, Relapsed/Refractory Acute Myeloid Leukemia, Chemotherapy, Hematopoietic Stem Cell Transplantation, Targeted Therapy, Immunotherapy

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

急性髓系白血病(Acute Myeloid Leukemia, AML)是起源于造血干细胞的恶性克隆性疾病,主要特征表现为造血生成分化阻滞,原始细胞克隆生长,造血干细胞恶性改变引起正常造血功能及免疫功能丧失,具有高度的异质性,是最常见的成人白血病。其发病率随着年龄的增大而升高,中位发病年龄在67~70岁 [1]。随着化疗、造血干细胞移植、小分子靶向治疗、免疫治疗等治疗方案的不断改进,50%~80%的初诊AML患者经过1~2个疗程的诱导缓解化疗后可以达到完全缓解(Complete Remission, CR),但仍有10%~40%化疗无效 [2] [3] [4] [5]。而大多数患者,尤其是存在预后不良核型者,获得缓解后仍有可能复发,最终发展成为复发/难治急性髓系白血病(Relapsed or Refractory Acute Myeloid Leukemia, R/R-AML) [6] [7] [8]。R/R-AML预后普遍较差,5年生存率仅为15%~25% [9]。

复发/难治急性髓系白血病诊断标准

R/R-AML诊断标准,主要参照中国诊疗指南(2017版) [10] 及美国国立综合癌症网络(NCCN) 2017版AML临床实践指南标准 [11]。

1) 复发性AML诊断标准:完全缓解(CR)后外周血再次出现白血病细胞或骨髓中原始细胞 > 0.05 (除外巩固化疗后骨髓再生等其他原因)或髓外出现白血病细胞浸润。

2) 难治性白血病诊断标准:经过标准方案治疗2个疗程无效的初治病例;第一次CR后6个月内复发;6个月内复发,再用原方案不能达到CR;两次或多次复发;2次或多次复发者;髓外白血病持续存在者。

复发/难治急性髓系白血病治疗策略

R/R-AML患者的治疗原则包括:1) 使用无交叉耐药的新药组合成联合化疗方案;2) 中、大剂量阿糖胞苷(Ara-C)组成的联合方案;3) 造血干细胞移植(HSCT);4) 使用耐药逆转剂;5) 靶向治疗或生物免疫治疗等 [10] [11] [12]。对于年轻的R/R-AML患者(年龄 ≤ 60岁),欧洲白血病网(ELN)推出根据患者年龄、缓解至复发的时间、细胞遗传学以及是否接受过HSCT进行预后评估,其中分数计算参照表1所述,总体预后参照表2 [10] [11]。

Table 1. R/R-AML prognosis score of age ≤ 60 years old

表1. 年龄 ≤ 60岁R/R-AML预后评分

Table 2. Prognostic assessment of R / R-AML patients aged ≤ 60 years

表2. 年龄 ≤ 60岁R/R-AML预后评估

2. 强烈化疗方案(Intensive Chemotherapy)

一般情况及耐受性好的R/R-AML患者可以选择强烈的化疗方案,具体如下表3所述 [10] [12] [13] [14]。R/R-AML患者获得缓解的可能与复发前获得缓解的时间长短有关,对先前治疗反应最好的患者更有可能对复发后的治疗作出反应。Keating等人 [15] 所报告,如果AML第一次CR持续时间大于1年,第二次获得CR的可能性为60%,而第一次CR持续时间小于1年者,在第二次治疗后CR可能性小于19%。因此,对于第一次完全缓解时间超过1年者可考虑原先使用原诱导方案化疗。通常,嘌呤类似物(克拉屈滨、氟达拉滨)和大剂量的阿糖胞苷为基础的方案已被推荐用于一线治疗原发性难治性或早期复发的AML患者,也可以考虑多药联合化疗方案。然而,对于老年、一般情况差的患者,以上方案应慎重。

Table 3. R/R-AML intensive chemotherapy regimen

表3. R/R-AML强烈化疗方案

注:Cladribine:克拉屈滨;Ara-C:阿糖胞苷;G-CSF:粒细胞集落刺激因子;MIT:米托蒽醌;IDA:去甲氧柔红霉素或伊达比星;Fludarabine:氟达拉滨;DNR:柔红霉素;HHRT:高三尖杉酯碱;Acla:阿克拉霉素。

2.1. 含嘌呤类似物的化疗方案

CLAG方案

克拉屈滨(Cladribine)是一种人工合成的嘌呤类似物,通过损伤线粒体诱导细胞凋亡,可穿透血脑屏障,对增殖期和非增殖期的细胞均具有杀伤作用,能有效抑制肿瘤生长 [16]。还可通过间接抑制DNA甲基化转移酶,消耗甲基供体而发挥去甲基化作用,进而促进细胞凋亡 [17]。NCCN指南及中国诊疗指南推荐选择CLAG±MIT/IDA方案作为R/R-AML的一线挽救化疗方案 [10] [11]。陈思思等 [18] 利用CLAG为基础的挽救化疗方案治疗11例R/R-AML,完全缓解率达40%,总体有效率达60%,提示CLAG方案可能优于传统挽救性治疗方案。

FLAG方案

氟达拉滨(Fludarabine)是另一种人工合成的嘌呤类似物,其结构类似于阿糖胞苷,在Ara-C的2位上加氟,增强了对腺苷脱氨酶的脱氨作用,在糖的部位增加了磷,使其水溶性增强。在体内磷酸化成为有活性的三磷酸形式F-Ara-ATP,通过抑制核糖核酸还原酶、DNA多聚酶、DNA引物酶、DNA连接酶的作用抑制DNA合成,并能部分抑制RNA聚合酶II减少蛋白质的合成 [19]。FLAG方案也是目前常用于R/R-AML的治疗方案。赵兰滨等 [20] 研究FLAG + 中剂量阿糖胞苷的治疗12例R/R-AML患者的疗效,结果显示FLAG方案组CR率显著高于对照组(50% vs 25%),。不良反应与CLAG方案相似(P = 0.231),提示FLAG方案是亦R/R-AML患者治疗的较好选择。

CLAG、FLAG、MEA方案疗效对比

周茉等 [21] 探究MEA和CLAG方案对于治疗R/R-AML的疗效及安全性,结果显示两组的CR、PR、RR以及NR相比差异无统计学意义,但CLAG组患者的总生存(OS)、无进展生存期(PSF)均显著高于MEA组,两组不良反应差异无统计学意义。刘祥祥等 [22] 评价FLAG和MEA方案治疗R/R-AML的疗效及不良反应,结果显示FLAG方案和MEA方案治疗R/R-AML时,两者的CR率无明显差异,但FLAG方案治疗组的总体有效率(ORR)高于MEA方案治疗组。罗文丰等 [23] 研究CLAG方案FLAG方案在治疗R/R-AML患者疗效,结果显示两组患者ORR相近(P = 0.151),但在CLAG组患者总生存(0S)更长。针对上述三种方案治疗方案的比较有待更大样本前瞻性临床研究。

2.2. 大剂量Ara-C方案

大剂量Ara-C为基础的方案为一线治疗R/R-AML的方案。刘建平等 [24] 研究大剂量Ara-C用于初治缓解的AML维持治疗及R/R-AML患者的疗效,CR率为70%,无致死性并发症,提示大剂量Ara-C对于AML的强化治疗以及降低复发、复发后的挽救治疗有积极的意义。Christian等 [25] 等研究大剂量Ara-C和MEC方案治疗R/R-AML患者疗效,两组的CR率为57%和64%,二者OS、住院时间、不良反应、血小板恢复时间均无明显统计学差异无明显,提示上述方案任何一种方案都可以被接受,并且可以作为HSCT的桥梁。

2.3. CAG预激方案和HAA或HAD方案

CAG预激方案

CAG与方案最初是由日本学者报道应用治疗R/R-AML、继发性AML (t-AML),其原理是AML细胞表达G-CSF和GM-CSF受体,G-CSF可预激处于G0期的白血病细胞进入增殖周期与化疗药物接触,从而增加抗白血病效应,本方案中阿克拉霉素剂量明显低于常规剂量,毒副作用较小,不仅适用于R/R-AML,也适用于低增生和老年性AML患者。陈妍等 [26] 研究CAG方案治疗36例低增生性AML及R/R-AML的临床疗效,结果显示ORR为75% (CR 50%, PR 25%),且骨髓抑制期,持续时间较短。近年来,随着人们对去甲基化药物及小分子靶向治疗的不断认识,预激方案联合其他药物组成的联合化疗方案治疗R/R-AML的报道越来越多,并且取得了满意的效果。卓丽霞 [27] 报道地西他滨联合CAG方案治疗R/R-AML的疗效,结果显示地西他滨联合CAG组ORR明显高于CAG组(95.00% vs 70.00%),不良反应发生率明显低于CAG组(10.00% vs 40%)。另有报道 [28] [29] CAG方案联合沙利度胺、干扰素、重组人IL-2、西达本胺治疗R/R-AML,疗效均较有所提高,但有待更多研究进一步证实。

HAA或HAD方案

HAA和HAD方案目前也是一个常用于R/R-AML的化疗方案。范翠华等 [30] 报道HAA方案治疗64例R/R-AML患者,结果显示CR率为70.1%,3年OS率和无复发生存(RFS)分别为46.8%和42.8%。徐玉秀 [31] 等报道HAD方案治疗42例R/R-AML,对照组采用FLAG方案,结果显示HAD方案组CR率明显升高、不良反应发生率显著降低,提示HAD方案在R/R-AML治疗中值得推广。

3. 非强烈化疗(Nonintensive Chemotherapy)

对于耐受性及一般情况差的R/R-AML患者,可以选择非强烈治疗方案,包括:① 低剂量Ara-C 10 mg/m2,皮下注射,每天两次,连用14天;② 去甲基化药物(地西他滨、阿扎胞苷),地西他滨20 mg/m2,第1~5天,28天为1个周期,直至病情进展恶化或严重不良反应。阿扎胞苷75 mg/m2,第1~7天,28天为1个周期,直至患者疾病进展恶化或严重不良反应。低剂量阿糖胞苷方案治疗R/R-AML患者疗效往往令人沮丧,目前仅用于情况极差患者的姑息性治疗。近年来,随着去甲基化药物在急性髓系白血病患者治疗中不断应用,使一般情况差及老年复发/难治AML患者的生存、预后得到了一定的提高。Khan等 [32] 报道地西他滨单药(20 mg/m2∙d,连用5天) 34例R/R-AML患者(平均年龄62岁),ORR为30%,CR率为21%,PR率为9%。Sarah等 [33] 报道阿扎胞苷治疗47例R/R-AML患者,ORR为38%,其中CR 21%,PR 11%,OS为9个月,药物相关的3/4级不良反应为骨髓抑制(38%)和感染(32%)。由此可见,对于耐受性、一般情况差、老年R/R-AML患者,可考虑使用去甲基化药物单药或减低剂量化疗的方案。

4. 异基因造血干细胞移植(allo-HSCT)

异基因造血干细胞移植(Hematopoietic stem cell transplantation, allo-HSCT),对于成人AML患者,目前仍然是唯一可以治愈及减少复发的方法 [34]。对于R/R-AML患者,allo-HSCT仍然是最具潜力的治疗方法 [35] [36]。研究证实,对于成人R/R-AML患者,在CR期进行allo-HSCT疗效优于在未缓解(NR)状态下移植。Vasu等人 [37] 评估2551名成人AML在第一次获得CR后未进行allo-HSCT患者的预后,结果显示,这群患者中年轻患者的10年无病生存(DFS)只有15%,而老年患者则不到2%,提示单纯的化疗缓解之后大部分患者仍有可能复发。Tian等 [38] 研究了101例R/R-AML患者行allo-HSCT疗效,其中移植前53例患者处于CR期,48例处于NR期,结果显示移植前达CR的患者移植后5年OS率(46% vs 18%),DFS率(39% vs 13%)均明显高于NR组患者。Todisco等 [39] 分析了227例R/R-AML患者的移植疗效,发现年龄 > 60岁患者移植后OS较差,但老年患者移植疗效较差可能与基础疾病、骨髓造血微环境及体能评分的诸多因素相关,目前没有证据表明,高龄是allo-HSCT绝对禁忌症。研究表明,对于高危血液病,单倍体移植比同胞相合移植更具有抗白血病效应。董征 [40] 等报道了30例接受单倍体移植的R/R-AML患者,移植后3年复发率更低(16.7%),提示单倍体移植更易获得长期生存。由此可见,allo-HSCT仍然是R/R-AML的主要治疗手段,也是AML患者获得二次CR后的首选治疗方法。

5. 分子靶向治疗(Molecular Targeted Therapy)

5.1. 靶向信号通路

5.1.1. FLT3激酶抑制剂

FMS样酪氨酸激酶3 (FMF-Like tyrosine kinase3, FLT3)是一种III型受体酪氨酸激酶,主要是FLT3内部串联(ITD)和较少发生的FLT3酪氨酸激酶结构域(TKD) [41]。FLT3-ITD突变可见于20%~30%的AML患者,此突变可导致FLT3组成性激活 [42]。FLT3抑制剂可改善FLT-ITD阳性R/R-AML患者的预后。目前FLT3抑制剂有:索拉菲尼(sorafenib)、米哚妥林(midostaurin)、来妥替尼(lestaurtinib)、quizartinib、crenolanib、gilteritinib [43] [44] [45]。

索拉非尼是一种多靶点FLT3激酶抑制剂,该药可诱导抑制携带FLT3-ITD突变的AML细胞细胞的生长阻滞和凋亡 [46]。Yu Zhang [47] 等报道索拉非尼作为16例allo-HSCT后FLT3阳性R/R-AML的挽救治疗,CR率为81%,2年OS和DFS分别为(75.0 ± 10.8)%和(50.5 ± 13.7)%。国外一项2期临床试验显示,索拉非尼联合阿扎胞苷治疗FLT3-ITD阳性R/R-AML患者获得46%的有效率,其中CR、PR率分别为43%和3%。索拉菲尼对于FLT3-ITD阳性R/R-AML患者来说具有一定价值 [48]。

米哚妥林是2017年美国食品药品监督局(Food and Drug Administration, FAD)推荐用于FLT3阳性的AML的药物。一项I/II期临床试验显示米哚妥林联合阿扎胞苷治疗FLT3-ITD阳性R/R-AML和高危MDS患者,ORR为33% [49]。米哚妥林可能是R/R-AML患者治疗窘境中的一种选择。

目前亦有较多针对其他FLT3激酶抑制剂治疗FLT3突变阳性的R/R-AML的临床研究正在进行,其疗效及安全性有待更多临床研究进一步证实 [50] [51] [52] [53]。

5.1.2. JAK激酶抑制剂

JAK激酶家族为骨髓增殖性疾病(myeloproliferative disorders, MPD)发病的一个重要驱动因素,JAK-STAT通路异常可见于包括AML在内的血液肿瘤 [54]。研究显示抑制JAK-STAT通路可抑制AML细胞增殖 [55]。美国M. D. Anderson肿瘤中心一项1/2期研究(NCT01251965)评估卢可替尼(Ruxolitinib)挽救性化疗R/R-AML患者的疗效,26例患者中有1例获得CR,且总体耐受性较好 [56]。因此,JAK激酶抑制剂有望使MPD转化的R/R-AML患者获益。

5.2. 表观遗传学治疗

5.2.1. 去甲基化药物

近年研究发现,脱氧核糖核酸(DNA)甲基化在人类髓系来源恶性血液病中普遍存在,与AML等疾病发生密切相关。DNA去甲基化药物治疗成为AML、MDS等疾病的最新治疗方向,目前去甲基化药物有地西他滨及阿扎胞苷 [57]。Zhu等 [58] 用低剂量地西他滨(20 mg/m2∙d1~5)联合改良CAG方案治疗10例R/R-AML患者,CR率70%,ORR80%。另有多项临床研究 [27] [28] [29] 均显示出去甲基化药物可提高AML疗效,且安全性较高,是R/R-AML患者可选的挽救性治疗方案。

5.2.2. 异柠檬酸脱氢酶抑制剂

异柠檬酸脱氢酶1和2 (Isocitrate dehydrogenase1/2, IDH1/IDH2)为异柠檬酸向α酮戊二酸转化的关键代谢酶 [59]。IDH1和IDH2突变导致正常造血分化受损。IDH突变见于15%~20%的AML患者,IDH1/2激酶抑制剂具有抗AML效应 [60]。针对IDH2 (enasidenib, AG-221)和IDH1 (ivosiden, AG-120)口服抑制剂,已被FDA批准治疗R/R-AML。一项关于enasidenib的1/2期临床研究治疗IDH2突变R/R-AML患者,ORR为38.5%,CR率为20.2% [61]。另一项关于ivosidenib治疗IDH1突变R/R-AML患者,ORR为41.6%,CR率为21.6% [62]。异柠檬酸脱氢酶抑制剂有望成为治疗IDH突变的R/R-AML的满意化疗方案。

5.2.3. BCL-2抑制剂

BCL-2为线粒体凋亡的抑制蛋白,研究发现AML干细胞的存活依赖于BCL-2,抑制BCL-2可导致AML细胞的死亡 [63]。维奈托克(Venetoclax)是一种高度选择性的BCL-2抑制剂,已被FDA批准用于新诊断的AML及不适合强烈化疗的老年(>75岁) AML患者 [64]。一项最新研究Venetoclax (600 mg)联合MDM2抑制剂治疗老年不耐受化疗AML及R/R-AML患者的2个队列研究显示,CR率为62%,43%,ORR:38%,33% [65]。对于R/R-AML目前已有较多临床研究取得了满意疗效。

6. 嵌合性抗原受体T细胞免疫治疗(Chimeric Antigen Receptor T Cells, CAR-T)

T细胞是介导肿瘤免疫的主要细胞,肿瘤患者因为肿瘤细胞产生了对T细胞的抗性和逃逸机制,导致患者自身的T细胞无法有效的识别和杀灭肿瘤细胞 [66]。嵌合性抗原受体T细胞免疫疗法,通过对来源于患者自身的T细胞进行基因修饰后得到CAR-T细胞,然后在体外进行培养、增殖,再回输到患者体内,从而特异性地识别、杀灭肿瘤细胞的一种新型的免疫细胞靶向治疗,是抗肿瘤免疫领域的新疗法。与传统的治疗相比,CAR-T具有靶向性强,无MHC限制性及GVHD风险 [67]。近年来,CAR-T细胞在血液肿瘤中已经取得了令人鼓舞的疗效 [68] [69]。CAT-T对于AML治疗起步相对较晚,多处于临床前研究阶段。CD33和CD123常被作为AML治疗的新靶点 [70] [71]。2015年一项用CD33 CAR-T治疗R/R-AML的临床研究 [72] (NCT01864902)报道一例41岁男性R/R-AML患者在CAR-T细胞回输2周后骨髓原始细胞比例明显减低。Budde等 [73] 进行了CD123 CAR-T细胞治疗6例R/R-AML的Ⅰ期临床试验2例获得CR,其主要不良反应是CRS (细胞因子释放风暴),不同的患者严重程度轻重不一。CAR-T治疗在前期小样本前瞻性研究中取得了令人满意的效果,有望成为治疗R/R-AML的一种新手段。

7. 小结与展望

成人R/R-AML患者治疗仍存在较大挑战,但随着非化疗策略的加入,治疗方法不断更新、发展、演变,治疗的选择越来越多,然而,我们对新药和新途径的理解仍然有限,有待更多大规模的前瞻性临床研究,使更多R/R-AML患者获益。

基金项目

PIVKA-II在鼠药所致凝血功能障碍中的应用研究(项目编号:2020LCZXKF-XY20);地西他滨联合微移植治疗急性髓系白血病的研究(项目编号:2019LCZXKF-XY07)。

文章引用

杨明婷,何丽娟,张秋蓉,李永萍. 成人复发难治急性髓系白血病治疗进展
Advances in the Treatment of Adult Relapsed/Refractory Acute Myeloid Leukemia[J]. 临床医学进展, 2021, 11(01): 24-33. https://doi.org/10.12677/ACM.2021.111004

参考文献

  1. 1. Kiyoi, H. (2019) Acute Myeloid Leukemia: AML. [Rinsho Ketsueki] The Japanese Journal of Clinical Hematology, 60, 224-225.

  2. 2. Rallig, C. (2019) Diagnosis and Treatment of Acute Myeloid Leukemia: The Updated 2018 Onkopedia Guideline. Der Internist, 60, 257-272. https://doi.org/10.1007/s00108-019-0562-2

  3. 3. Leukemia & Lymphoma Group, Chinese Society of Hematology, Chinese Medical Association (2017) Chinese Guidelines for Diagnosis and Treatment of Adult Acute Myeloid Leukemia (Not APL) (2017). Chinese Journal of Hematology, 38, 177-182.

  4. 4. Tallman, M.S., Wang, E.S., Altman, J.K., et al. (2019) Acute Myeloid Leukemia, Version 3. 2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 17, 721-749.

  5. 5. Othus, M., Appelbaum, F.R., Petersdorf, S.H., et al. (2015) The Fate of Patients with Newly Diagnosed Acute Myeloid Leukemia Who Fail Primary Induction Therapy. Biology of Blood and Marrow Transplantation, 21, 559-564. https://doi.org/10.1016/j.bbmt.2014.10.025

  6. 6. Fernadez, H.F., Sun, Z., Yao, X., et al. (2009) Anthracycline Dose Intensification in Acute Myeloid Leukemia. New England Journal of Medicine, 361, 1249-1259. https://doi.org/10.1056/NEJMoa0904544

  7. 7. Lowenberg, B., Ossenkoppele, G.H., van Putten, W., et al. (2009) High-Dose Daunorubicin in Older Patients with Acute Myeloid Leukemia. New England Journal of Medicine, 361, 1235-1248. https://doi.org/10.1056/NEJMoa0901409

  8. 8. Estey, E. (2016) Why Are There So Few Randomized Trials for Patients with Primary Refractory Acute Myeloid Leukemia. Best Practice & Research Clinical Haematology, 29, 324-328. https://doi.org/10.1016/j.beha.2016.10.003

  9. 9. Kell, J. (2016) Considerations and Challenges for Patients with Refractory and Relapsed Acute Myeloid Leukaemia (Review). Leukemia Research, 47, 149-160. https://doi.org/10.1016/j.leukres.2016.05.025

  10. 10. 马立元. 成人复发难治性急性髓系白血病治疗进展[J]. 医学与哲学(B), 2018, 39(8): 20-24.

  11. 11. O’Donnell, M.R., Tallman, M.S., Abboud, C.N., et al. (2017) Acute Myeloid Leukemia, Version 3. 2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 15, 926-957.

  12. 12. Sternberg, D.W., Aird, W., Neuberg, D., et al. (2000) Treatment of Patients with Recurrent and Primary Refractory Acute Myelogenous Leukemia Using Mitoxantrone and Intermediate-Dose Cytarabine: A Pharmacologically Based Regimen. Cancer, 88, 2037-2041. https://doi.org/10.1002/(SICI)1097-0142(20000501)88:9<2037::AID-CNCR8>3.0.CO;2-K

  13. 13. Breems, D.A., Van Putten, W.L., Huijgens, P.C., et al. (2005) Prognostic Index for Adult Patients with Acute Myeloid Leukemia in First Relapse. Journal of Clinical Oncology, 23, 1969-1978. https://doi.org/10.1200/JCO.2005.06.027

  14. 14. Wierzbowska, A., Robak, T., Pluta, A., et al. (2008) Cladribine Combined with High Doses of Arabinoside Cytosine, Mitoxantrone, and G-CSF (CLAG-M) Is a Highly Effective Salvage Regimen in Patients with Refractory and Relapsed Acute Myeloid Leukemia of the Poor Risk: A Final Report of the Polish Adult Leukemia Group. European Journal of Haematology, 80, 115-126. https://doi.org/10.1111/j.1600-0609.2007.00988.x

  15. 15. Keating, M.J., Kantarjian, H., Smith, T.L., et al. (1989) Response to Salvage Therapy and Survival after Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 7, 1071-1080. https://doi.org/10.1200/JCO.1989.7.8.1071

  16. 16. Gupta, N., Wang, E.S., Freyer, C.W., et al. (2015) Revisiting the Role of Cladribine in Acute Myeloid Leukemia: An Improvement on Past Accomplishments or More Old News? American Journal of Hematology, 90, 62-72. https://doi.org/10.1002/ajh.23862

  17. 17. Robak, T. and Wierzbowska, A. (2014) Cladribine in the Treatment of Acute Myeloid Leukemia. Leukemia Research, 38, 425-427. https://doi.org/10.1016/j.leukres.2014.01.005

  18. 18. 陈思思, 赵慧慧, 黄佳瑜, 等. CLAG为基础的挽救化疗方案治疗复发难治急性髓系白血病临床观察[J]. 白血病(淋巴瘤), 2019, 28(9): 556-559.

  19. 19. (2020) Fludarabine. Lethal Bone Marrow Suppression: Case Report. Reactions Weekly, 1787, 237. https://doi.org/10.1007/s40278-020-73875-6

  20. 20. 赵兰滨, 申莲玉. 中剂量阿糖胞苷的FLAG方案治疗难治复发性急性髓系白血病12例临床观察[J]. 中外健康文摘, 2013(4): 135-136.

  21. 21. 周茉, 单学赟. CLAG方案和MEA方案治疗复发/难治急性髓系白血病的疗效比较[J]. 系统医学, 2018, 3(14): 24-25, 28.

  22. 22. 刘祥祥, 张涛, 王健红, 等. FLAG和MEA方案治疗难治复发性急性髓系白血病的Meta分析[J]. 现代肿瘤医学, 2019, 27(4): 636-640.

  23. 23. 罗文丰, 余惠兰, 邹兴立, 等. CLAG方案和FLAG方案治疗难治或复发性急性髓系白血病对比观察[J]. 山东医药, 2018, 58(40): 73-76.

  24. 24. 刘建平, 郄丽萍, 王向文. 大剂量阿糖胞苷治疗急性白血病的临床观察[J]. 内蒙古医学杂志, 2007, 39(8): 942-943.

  25. 25. Christian, S., Patel, P., Esen, A., et al. (2017) A Single Institution Comparison of Mitoxantrone, Etoposide and Cytarabine (MEC) vs High-Dose Cytarabine and Mitoxantrone (ARA-C Couplets) for Treatment of Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood, 130, 2591. https://doi.org/10.1182/blood-2018-99-111389

  26. 26. 陈妍, 陈加华. 预激方案治疗低增生性及复发与难治的急性髓系白血病36例临床观察[J]. 中国实用内科杂志, 2012, 32(A2): 24-25.

  27. 27. 卓丽霞. 地西他滨联合CAG方案治疗难治、复发性急性髓系白血病的疗效观察[J]. 中国实用医药, 2020, 15(5): 149-151.

  28. 28. 祖璎玲, 张莉, 周健, 等. CAG预激方案联合沙利度胺、干扰素、重组人IL-2治疗难治复发性急性髓系白血病疗效分析[J]. 中华血液学杂志, 2016, 37(4): 334-336.

  29. 29. 陈琳, 米瑞华, 朱松涛, 等. 西达本胺、地西他滨联合CHAG方案治疗复发难治性急性髓系白血病八例疗效分析[J]. 中华血液学杂志, 2018, 39(7): 602-604.

  30. 30. 范翠华, 俞文娟, 麦文渊, 等. HAA方案治疗复发难治性急性髓系白血病64例疗效观察[J]. 中华血液学杂志, 2016, 37(2): 100-104.

  31. 31. 徐玉秀. HAD方案治疗难治复发性急性髓系白血病的疗效观察[J]. 中国实用医药, 2013, 8(15): 78-79.

  32. 32. Khan, N., Hantel, A., Knoebel, et al. (2017) Efficacy of Single-Agent Decitabine in Relapsed and Refractory Acute Myeloid Leukemia. Leukemia and Lymphoma, 58, 2127-2133. https://doi.org/10.1080/10428194.2017.1289524

  33. 33. Ivanoff, S., Gruson, B., Chantepie, S.P., et al. (2013) 5-Azacytidine Treatment for Relapsed or Refractory Acute Myeloid Leukemia after Intensive Chemotherapy. American Journal of Hematology, 88, 601-605. https://doi.org/10.1002/ajh.23464

  34. 34. Schmidt, E., Mikesch, J.-H., Groth, C., et al. (2017) Allogeneic Transplantation in the Treatment of Acute Leukemia (Review). Onkologe, 23, 543-549. https://doi.org/10.1007/s00761-017-0234-6

  35. 35. Bose, P., Vachhani, P. and Cortes, J.E. (2017) Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Current Treatment Options in Oncology, 18, 17. https://doi.org/10.1007/s11864-017-0456-2

  36. 36. Su, X.H., Yao, J.F., Zhang, G.X., et al. (2017) Allogeneic Hematopoietic Stem Cell Transplantation for Treatment of Refractory and Relapsed Acute Myeloid Leukemia: Outcomes and Prognostic Factors. Chinese Journal of Hematology, 38, 1024-1030.

  37. 37. Vasu, S., Kohlschmidt, J., Mrozek, K., et al. (2018) Ten-Year Outcome of Patients with Acute Myeloid Leukemia Not Treatment with Allogeneic Transplantation in First Complete Remission. Blood Advances, 2, 1645-1650. https://doi.org/10.1182/bloodadvances.2017015222

  38. 38. Tian, H., Chen, G.H., Xu, Y., et al. (2015) Impact of Pre-Transplant Disease Burden on the Outcome of Allogeneic Hematopoietic Stem Cell Transplant in Refractory and Relapsed Acute Myeloid Leukemia: A Single-Center Study. Leukemia & Lymphoma, 56, 1353-1361. https://doi.org/10.3109/10428194.2014.961016

  39. 39. Todisco, E., Cieefi, F., Boschini, et al. (2017) Factors Predicting Outcome after Allogeneic Transplant in Refractory Acute Myeloid Leukemia: A Retrospective Analysis of Grnppo Italiano Trapianto di Midollo Osseo (GITMO). Bone Marrow Transplant, 52, 955-961. https://doi.org/10.1038/bmt.2016.325

  40. 40. 董征, 胡锴勋, 余长林, 等. 单倍体非清髓造血干细胞移植治疗难治复发性白血病的长期随访结果[J]. 中华血液学杂志, 2013, 34(3): 217-220.

  41. 41. Smith, C.C. (2019) The Growing Landscape of FLT3 Inhibition in AML. Hematology. American Society of Hematology. Education Program, 2019, 539-547. https://doi.org/10.1182/hematology.2019000058

  42. 42. Leick, M.B. and Levis, M.J. (2017) The Future of Targeting FLT3 Activation in AML. Current Hematologic Malignancy Reports, 12, 153-167. https://doi.org/10.1007/s11899-017-0381-2

  43. 43. Antar, A.I., Otrock, Z.K., Jabbour, E., et al. (2020) FLT3 Inhibitors in Acute Myeloid Leukemia: Ten Frequently Asked Questions. Leukemia, 34, 682-696. https://doi.org/10.1038/s41375-019-0694-3

  44. 44. Robert, R. (2020) The Role of Small Molecule Flt3 Receptor Protein-Tyrosine Kinase Inhibitors in the Treatment of Flt3-Positive Acute Myelogenous Leukemias. Pharmacological Research, 155, Article ID: 104725. https://doi.org/10.1016/j.phrs.2020.104725

  45. 45. Perl, A. (2018) FLT3 Inhibitors in AML. Clinical Lymphoma, Myeloma & Leukemia, 18, S1-S2. https://doi.org/10.1016/j.clml.2018.06.033

  46. 46. Zhang, W., Konopleva, M., Shi, Y., et al. (2008) Mutant FLT3: Sorafenib in Acute Myelogenous Leukemia. Journal of the National Cancer Institute, 100, 184-198. https://doi.org/10.1093/jnci/djm328

  47. 47. Zhang, Y., Xuan, L., Fan, Z.P., et al. (2016) Sorafenib as Salvage Therapy in Refractory Relapsed Acute Myeloid Leukemia with Positive FLT3 Mutation. Chinese Journal of Hematology, 37, 292-296.

  48. 48. Ravandi, F., Alattar, M.L., Grunwald, M.R., et al. (2013) Phase 2 Study of Azacytidine plus Sorafenib in Patients with Acute Myeloid Leukemia and FLT-3 Internal Tandem Duplication Mutation. Blood, 121, 4655-4662. https://doi.org/10.1182/blood-2013-01-480228

  49. 49. Nazha, A., Kantarjian, H.M., Borthakur, G., et al. (2012) A Phase I/II Trial of Combination of Midostaurin (PKC412) and 5-Azacytidine (5-AZA) for the Treatment of Patients with Refractory or Relapsed (R/R) Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS). Blood, 120, 3587. https://doi.org/10.1182/blood.V120.21.3587.3587

  50. 50. Levis, M., Ravandi, F., Wang, E.S., et al. (2011) Results from a Randomized Trial of Salvage Chemotherapy Followed by Lestaurtinib for Patients with FLT3 Mutant AML in First Relapse. Blood, 117, 3294-3301. https://doi.org/10.1182/blood-2010-08-301796

  51. 51. Usuki, K., Handa, H., Choi, I., et al. (2019) Safety and Pharmacokinetics of Quizartinib in Japanese Patients with Relapsed or Refractory Acute Myeloid Leukemia in a Phase 1 Study. International Journal of Hematology, 110, 654-664. https://doi.org/10.1007/s12185-019-02709-8

  52. 52. Inaba, H., Panetta, J.C., Buelow, D.R., et al. (2016) Pilot Study of Combined Type I FLT3 Tyrosine Kinase Inhibitor, Crenolanib with Sorafenib in Pediatric Patients with Relapsed/Refractory FLT3+Ve AML. Blood, 128, 3937. https://doi.org/10.1182/blood.V128.22.3937.3937

  53. 53. Reed, D.R., Sen, J.M., Pierce, E.J., et al. (2020) Gilteritinib: An FMS-Like Tyrosine Kinase 3/AXL Tyrosine Kinase Inhibitor for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia Patients. Journal of Oncology Pharmacy Practice, 26, 1200-1212. https://doi.org/10.1177/1078155220918006

  54. 54. Mata, R., Subirá, D., García-Raso, A., et al. (2007) Jak2 as a Molecular Marker in Myeloproliferative Diseases. Cardiovascular and Hematological Agents in Medicinal Chemistry, 5, 198-203. https://doi.org/10.2174/187152507781058654

  55. 55. Lee, H.J., Daver, N., Kantarjian, H.M., et al. (2013) The Role of JAK Pathway Dysregulation in the Pathogenesis and Treatment of Acute Myeloid Leukemia. Clinical Cancer Research, 19, 327-335. https://doi.org/10.1158/1078-0432.CCR-12-2087

  56. 56. Pemmaraju, N., Kantarjian, H., Kadia, T, et al. (2015) A Phase I/II Study of the Janus Kinase (JAK)1 and 2 Inhibitor Ruxolitinib in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 15, 171-176. https://doi.org/10.1016/j.clml.2014.08.003

  57. 57. Kelly, A.D., Madzo, J., Madireddi, P., et al. (2018) Demethylator Phenotypes in Acute Myeloid Leukemia. Leukemia, 32, 2178-2188. https://doi.org/10.1038/s41375-018-0084-2

  58. 58. Zhu, C.-Y., et al. (2015) Clinical Research of Decitabine Combined with Modified CAG Regimen for Treatment of Relapsed or Refractory Acute Myeloid Leukemia. Chinese Journal of Experimental Science, 23, 88-93.

  59. 59. Dang, L., Yen, K. and Attar, E.C. (2016) IDH Mutations in Cancer and Progress toward Development of Targeted Therapeutics. Annals of Oncology, 27, 599-608. https://doi.org/10.1093/annonc/mdw013

  60. 60. Mondesir, J., Willekens, C., Touat, M., et al. (2016) IDH1 and IDH2 Mutations as Novel Therapeutic Targets: Current Perspectives. Journal of Blood Medicine, 7, 171-180. https://doi.org/10.2147/JBM.S70716

  61. 61. Stein, E.M., DiNardo, C.D., Pollyea, D.A., et al. (2017) Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood, 130, 722-731. https://doi.org/10.1182/blood-2017-04-779405

  62. 62. Medeiros, B.C., Fathi, A.T., DiNardo, C.D., et al. (2017) Isocitrate Dehydrogenase Mutations in Myeloid Malignancies. Leukemia, 31, 272-281. https://doi.org/10.1038/leu.2016.275

  63. 63. Lagadinou, E.D., Sach, A., Callahan, K., et al. (2013) BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell, 12, 329-341. https://doi.org/10.1016/j.stem.2012.12.013

  64. 64. DiNardo, C.D., Pratz, K., Pullarkat, V., et al. (2018) Venetoclax Combined with Decitabine or Azacitidine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia. Blood, 133, 7-17.

  65. 65. Lehmann, C., Friess, T., Birzele, F., et al. (2016) Superior Anti-Tumor Activity of the MDM2 Antagonist Idasanutlin and the Bcl-2 Inhibitor Venetoclax in p53 Wild-Type Acute Myeloid Leukemia Models. Journal of Hematology & Oncology, 9, 50. https://doi.org/10.1186/s13045-016-0280-3

  66. 66. Atrash, S., Bano, K., Harrison, B., et al. (2020) CAR-T Treatment for Hematological Malignancies. Journal of Investigative Medicine. https://doi.org/10.1136/jim-2020-001290

  67. 67. Porter, D.L., Levine, B.L., Kalos, M., et al. (2011) Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. New England Journal of Medicine, 365, 725-733. https://doi.org/10.1056/NEJMoa1103849

  68. 68. Davila, M.L., Riviere, I., Wang, X., et al. (2014) Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 6, 224ra25.

  69. 69. Rahal, I., Cabannes-Hamy, A. and Boissel, N. (2018) CAR-T Treatment of Acute Leukemia in Adults. Bulletin du Cancer, 105, S158-S167. https://doi.org/10.1016/S0007-4551(19)30046-3

  70. 70. Kim, M.Y., Yu, K.-R., Kenderian, S.S., et al. (2018) Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell, 173, 1439-1453.e19.

  71. 71. Galetto, R., Lebuhotel, C., Francon, P., et al. (2015) Allogenic CAR T-Cells Targeting CD123 for Adoptive Immunotherapy of Acute Myeloid Leukemia (AML). Molecular Therapy, 23, S166. https://doi.org/10.1016/S1525-0016(16)34028-X

  72. 72. Wang, Q.S., Wang, Y., Lv, H.-Y., et al. (2015) Treatment of CD33-Directed Chimeric Antigen Receptor-Modified T Cells in One Patient with Relapsed and Refractory Acute Myeloid Leukemia. Molecular Therapy, 23, 184-191. https://doi.org/10.1038/mt.2014.164

  73. 73. Budde, L., Song, J.Y. and Kim, Y. (2017) Remissions of Acute Myeloid Leukemia and Blastic Plasmacytoid Dendritic Cell Neoplasm Following Treatment with CD123-Specific CAR T Cells: A First-in-Human Clinical Trial. Blood, 130, 811.

期刊菜单