﻿ 基于网络分区的大电网故障限流器的优化布点方法 Optimal Distribution of Fault Current Limiter in Power Grids Based on Network Partition

Smart Grid
Vol.05 No.01(2015), Article ID:14742,7 pages
10.12677/SG.2015.51004

Optimal Distribution of Fault Current Limiter in Power Grids Based on Network Partition

Jianbo Sun1, Dahu Li1, Beibei Zhou2, Qianshan Cheng2, Hualiang Fang2

1Hubei Electric Power Corporation, Wuhan Hubei

2School of Electrical Engineering, Wuhan University, Wuhan Hubei

Email: qianshan_ch@163.com

Received: Jan. 6th, 2015; accepted: Jan. 19th, 2015; published: Jan. 22nd, 2015

ABSTRACT

The short-circuit current can be quickly limited by the fault current limiter (FCL) to ensure the system safe and stable. A new method for fault current limiter distribution optimization is presented. Large-scale power grids are first equivalently treated to each partition and through short-circuit calculation, the distribution coefficients of short-circuit current of each branch are got. According to the value of distribution coefficients of short-circuit current, the location of the FCL can be selected. Then the optimum positions are determined combined with the economy of FCL. Finally, the validity of the method is proved through the simulation of a real regional power grid, optimal distribution of FCL is achieved and the excessive short-circuit current is limited.

Keywords:Network Partition, Fault Current Limiter, Optimal Distribution

1国网湖北省电力公司，湖北 武汉

2武汉大学电气工程学院，湖北 武汉

Email: qianshan_ch@163.com

1. 引言

2. 大电网中短路电流分布系数

(1)

(2)

(3)

3. 短路电流限流器优化布点原则

3.1. 电网分层分区特点

3.2. 限流器的布置原则

Figure 1. Partition of reliability calculation of power grids

4. 限流器的接入特性及成本分析

(4)

(5)

5. 算例分析

5.1. 短路电流的计算

Figure 2. Equivalent power system graph

Table 1. The substation with excessive short-circuit current in 500 kV

Table 2. The substation with excessive short-circuit current in 220 kV

Table 3. The distribution coefficients of short-circuit current of each branch of substation C in 500 kv

Table 4. The distribution coefficients of short-circuit current of each branch of substation E in 500 kv

Table 5. The distribution coefficients of short-circuit current of each branch of substation G in 500 kv

Table 6. The distribution coefficients of short-circuit current of each branch of substation H in 500 kv

5.2. 仅考虑短路电流的限流器安装位置

5.3. 考虑限流器的经济性的布置

6. 结论

1) 本文提出的基于网络分区的故障限流器优化布点算法，只需要计算出支路等效的短路电流分布系数，即可求取较好的限制短路电流的配置限流器措施，较好的简化计算。

2) 通过该算法求得的故障限流器优化布点方案，既能将超标站点短路电流降至安全水平，可保证限流器配置的最优经济性，节约成本。

Table 7. The installation location of fault current limiter with optimal economy

Optimal Distribution of Fault Current Limiter in Power Grids Based on Network Partition. 智能电网,01,27-34. doi: 10.12677/SG.2015.51004

1. 1. 叶幼君, 鲍爱霞, 程云志 (2006) 浙江500 kV电网短路电流的控制. 华东电力, 3, 10-15.

2. 2. 王华昕, 习贺勋, 汤广福, 等 (2007) 谐振型故障限流器阻抗特性仿真和参数优化. 电力系统自动化, 5, 61-64.

3. 3. 费万民, 张艳莉, 吕征宇 (2006) 基于IGBT的新型固态桥式短路故障限流器. 电力系统自动化, 7, 60-64.

4. 4. 徐竹娴, 江道灼, 林日磊, 等 (2008) 三相不接地系统桥式固态限流器的故障诊断方法. 电力系统自动化, 12, 68-72.

5. 5. Cronin, J.C. (1972) Fault current limiter using superconductive element: United States Patent, 3703664[p]v.21.

6. 6. 应林志, 王健全, 陈迅, 等 (2000) 基于模糊控制遗传算法的输电系统最优化规划. 电力系统自动化, 2, 51-55.

7. 7. Hongesombut, K., Mitaniy, Y. and Tsuji, K. (2003) Optimal location assignment and design of superconducting fault current limiters applied to loop power systems. IEEE Transactions on Applied Superconductivity, 13, 1828-1931.

8. 8. Teng, J.H. and Lu, C.N. (2010) Optimum fault current limiter placement with search space reduction technique. IET Generation Transmission & Distribution, 4, 485-494.

9. 9. 胡文旺, 卫志龙, 孙国强, 等 (2012) 基于灵敏度法的超导故障限流器的优化配置. 电力系统自动化, 22, 62-67.

10. 10. Nagata, M., Tanaka, K. and Taniguchi, H. (2001) FCL location selection in large scale power system. IEEE Transactions on Applied Super-conductivity, 11, 2489-2494.

11. 11. 钱家骊, 刘卫兵, 关勇刚 (2004) 非超导型故障电流限制器的技术经济分析. 电网技术, 9, 42-43, 61.