Advances in Geosciences
Vol. 11  No. 06 ( 2021 ), Article ID: 43132 , 9 pages
10.12677/AG.2021.116069

冀北四岔口盆地早白垩世大型恐龙化石赋存地层的有机碳同位素记录及其古环境意义

孙志超1,2,赵艳1*,刘贺1,2,任咣营1,郭颖1,邵凤丽1,王金玲3,阎作均3,王朝民3, 张福成1

1临沂大学地质与古生物研究所,山东 临沂

2临沂大学生命科学学院,山东 临沂

3丰宁古生物化石博物馆,河北 承德

收稿日期:2021年5月2日;录用日期:2021年6月8日;发布日期:2021年6月15日

摘要

依据化石产出地层沉积物的古环境重建可为相关古生物的研究提供较详细的背景支撑,但目前有关早期热河生物群的上述研究较少。河北省丰宁县的四岔口盆地早白垩世花吉营组地层埋藏有大型恐龙化石,本文对其中一处化石赋存层位的沉积物进行了有机碳含量(TOC)和总有机碳同位素组成(δ13CTOC)分析,结果表明沉积物的TOC和δ13CTOC值显著负相关,且δ13CTOC值整体显著偏轻。这表明当时冀北地区植物的δ13CTOC特征可能是受火山活动影响,即火山喷发释放CO2导致大气CO2的δ13C值变轻且CO2浓度增加,从而使植物的δ13CTOC值整体变轻;且随着植物生产力的增大,δ13CTOC值相对偏轻的陆生植物和/或挺水植物对湖泊沉积有机质的相对贡献量增加,δ13CTOC值相对偏重的沉水植物的相对贡献量减少。

关键词

四岔口盆地,花吉营组,有机碳同位素组成,古环境,热河生物群

The δ13CTOC Record of Early Cretaceous Strata Bearing Giant Dinosaurs in the Sichakou Basin, North Hebei Province, and Its Palaeoenvironmental Implication

Zhichao Sun1,2, Yan Zhao1*, He Liu1,2, Guangying Ren1, Ying Guo1, Fengli Shao1, Jinling Wang3, Zuojun Yan3, Chaomin Wang3, Fucheng Zhang1

1Institute of Geology and Paleontology, Linyi University, Linyi Shandong

2School of Life Sciences, Linyi University, Linyi Shandong

3Fengning Museum of Paleontology, Chengde Hebei

Received: May 2nd, 2021; accepted: Jun. 8th, 2021; published: Jun. 15th, 2021

ABSTRACT

Palaeoenvironmental reconstruction based on the fossil-bearing sediments could provide the basic habitat support in acquiring the knowledge about the prehistoric remains. The similar studies, however, are few conducted in researches to the early Jehol Biota by now. In this preliminary study, the fossil-bearing sediments were collected first in northern Hebei, where lots of significant early birds and a well-preserved giant dinosaur were found, and the total organic carbon (TOC) and total organic carbon isotope composition (δ13CTOC) were analyzed later. The results show TOC and δ13CTOC values are significantly negatively correlated, and the δ13CTOC values are obviously lower. The volcanic activity during the Hauterivian period in north Hebei may account for the reducing of the sediment δ13CTOC values, for the large amount of CO2 erupted into the air would lighten the δ13C value in atmospheric CO2 which its concentration was increased at the same time, further leading to the overall reducing of δ13CTOC value in the contemporaneous plants. Besides, with the increase of plants productivity, the terrestrial and/or emergent plants, which the relative δ13CTOC values are usually lower, added more relative contribution to the limnetic organic materials, while those of submerged plants, which the relative δ13CTOC values are usually higher, added less.

Keywords:Sichakou Basin, Huajiying Formation, Organic Carbon Isotopic Composition, Palaeoenvironment, Jehol Biota

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

中国辽宁省西部、内蒙古自治区南部,以及河北省北部地区发育良好的白垩纪地层,其埋藏的丰富且精美的热河生物群化石为我们了解一些早期生物形态、分类及演化等提供了重要材料 [1] - [6],也产出了一些影响深远的古生物研究成果。生物演化与其生存环境演变密不可分,恢复热河生物群赖以生存的气候环境状况不仅可以为古生物研究提供有关其生活方式、运动模式乃至灭绝原因等方面的重要参考,也可以使我们更全面客观地认识中生代生态系统、探讨古生物与古环境的协同演化关系及过程,以期为人类及其它生物与地球环境的和谐相处提供参考。

以往对海洋沉积物的研究揭示了白垩纪时期全球气候处于极端温暖的“温室状态” [7] [8] [9] [10],且频繁发生一系列如大洋缺氧、大规模海洋微生物体的更替与灭绝等重大地质事件 [11] - [17]。其中特提斯洋及南部大洋沉积物的碳酸盐碳同位素曲线显示在白垩世的Valanginian、Barremian、Aptian、Albian、晚Cenomanian以及Santonian期发生了6次显著的δ13C值正偏移,在早Valanginian、晚Barremian、早Aptian (大洋缺氧事件,OAE1a)以及晚Cenomanian期发生了4次显著的负偏移 [14] [18] [19] [20],表明全球碳储库和生态系统发生了显著改变 [14] [17] [21]。

热河生物群处于早白垩世的晚Valanginian-中Aptian期 [22],当时的陆地生态系统及碳循环对上述全球变化大背景响应的研究比较匮乏。目前少量已报道的相关研究也主要集中在产出大量鸟类及带毛恐龙化石的辽西义县组和九佛堂组地层 [23] [24] [25]。两组湖相地层沉积物的总有机碳同位素(δ13CTOC)曲线在早Aptian期发生显著正偏移,对应同时期的海洋OAE1a事件,表明该时期热河生物群所处的陆地生态系统的碳循环与海洋的同步响应、热河生物群的进化辐射与大气CO2浓度及全球温度的升高密切相关 [25]。而关于更早时期的热河生物群的相关研究则鲜有报道,这限制了我们对早期热河生物群所在生态系统的全面认识。

冀北四岔口盆地的花吉营组地层埋藏大量早期热河生物群的关键脊椎动物化石,已报道的一些脊椎动物如丰宁原羽鸟(Protopteryx fengningensis)和弥曼始今鸟(Archaeornithurameemannae)分别代表了中生代反鸟类(Enantiornithes)和今鸟类(Ornithuromorpha)两大主要类群的最早化石记录 [26] [27] [28]、郑氏始孔子鸟(Eoconfuciusornis zhengi)为基干鸟类(basalbirds)的重要分子 [29]。2018年以来,在各级政府、部门的支持下,冀北四岔口地区新出土了一些重要的热河生物群化石,其中一件大型恐龙化石赋存于Hauterivian期的花吉营组地层,其地层沉积物为我们认识早期热河生物群生活的陆地生态系统提供了良好的研究材料。

2. 研究区概况

冀北四岔口盆地位于燕山褶皱冲断带的北部、东西走向的侏罗纪–白垩纪造山系统的东部段 [30] (图1)。在中生代晚期,燕山褶皱冲断带经历多期褶皱、收缩、伸展和走滑断裂作用,形成了广泛分布的陆相沉积、岩浆作用及变形。四岔口盆地是该时期形成的火山–沉积盆地之一。四岔口盆地的晚中生代陆相地层主要由火山岩、火山碎屑岩和沉积岩组成,由下至上分别为张家口组、大北沟组和花吉营组 [27]。张家口组主要由流纹质熔结凝灰岩、流纹岩和石英粗面岩等火山岩组成;大北沟组主要由砂砾岩和砾岩组成,其上层时覆有湖相粉砂岩;花吉营组以河湖相和湖相粉砂岩为主,并与多层凝灰岩和凝灰质碎屑岩互层 [22] [31]。

Figure 1. The location and geological map of the study area

图1. 研究地点及其地质背景

本研究中的恐龙化石赋存层位位于四岔口盆地的油坊沟剖面 [22] 下部,岩性以河湖相和湖相沉积为主,并有凝灰岩夹层(图2(A))。油房沟剖面的SIMS U-Pb测年结果表明本研究中恐龙化石赋存地层的年代居132.5~130.3 Ma间 [22]。

Figure 2. The variations of sediment TOC and δ13CTOC values in the giant dinosaur fossils-occurring strata with thickness

图2. 大型恐龙化石赋存地层沉积物的TOC和δ13CTOC值随厚度的变化

3. 材料及方法

在野外,首先对恐龙化石赋存层位及上下地层沉积物进行了采样,采样剖面厚度共计125 cm,采集样品16块;并在恐龙化石赋存层位的31.5~33.5 cm处精密采集黑灰色–灰白色互层页岩样品6块(图2)。

在室内,首先将样品在鼓风干燥机内低温40℃烘干后研磨成均匀粉末(约200目);然后取50 mg样品在室温下与过量HCl (2 mol·L−1)充分反应以完全去除无机碳,再用去离子水将样品洗至中性;最后将样品在鼓风干燥机内60℃干燥,再度研磨后待测。样品的总有机碳含量(TOC)和总有机碳同位素组成(δ13CTOC)在中国农业科学院利用Isoprime 100-EA稳定同位素质谱分析仪测试分析。其中,TOC的测试精度小于0.5%,δ13C的测试精度小于0.2‰。δ13C结果采用VPDB (Vienna Pee Dee Belemnite)标准。

4. 实验结果

早白垩世冀北四岔口盆地大型恐龙化石赋存层位所在剖面沉积物的TOC和δ13CTOC分析结果(表1图2)表明:1) 沉积物的TOC分布于0.13%~2.31%,均值为1.16% ± 0.70%;δ13CTOC值分布于−34.15‰~−28.24‰,均值为−31.74‰ ± 1.66‰;2) 随着地层年代变轻,TOC整体呈现轻微的增加趋势,δ13CTOC值整体呈现轻微的变轻的变化;3) 在厚度31.5~33.5 cm的灰黑色泥岩与灰白色粉砂岩的互层沉积中,灰黑色泥岩的TOC显著偏高,分布于2.11%~2.31%,均值为2.21% ± 0.10%;灰白色粉砂岩的TOC分布于0.15%~0.54%,均值为0.32% ± 0.20%;4) 互层沉积中,灰黑色泥岩的δ13CTOC值明显偏轻于灰白色泥岩的,灰黑色泥岩的δ13CTOC值分布于−32.40‰~−31.83‰,均值为−32.11‰ ± 0.28‰;灰白色粉砂岩的δ13CTOC值分布于−30.63‰~−28.35‰,均值为−29.85‰ ± 1.30‰;5) 互层沉积物的TOC及δ13CTOC值随着年代变轻呈现的整体变化与剖面的整体趋势相似。

Table 1. The TOC and δ13CTOC values of sediment in the giant dinosaur fossils-occurring strata

表1. 大型恐龙化石赋存地层沉积物的TOC和δ13CTOC

5. 讨论

早白垩世冀北四岔口盆地大型恐龙化石赋存层位所在剖面沉积物的TOC与δ13CTOC呈显著的负相关(图3)。沉积物的TOC主要受沉积时期的初级生产力或影响有机质保存的氧化还原状况影响 [32] [33]。假设本研究中剖面沉积物TOC的逐渐增加主要反映沉积物有机质的保存能力增强,即相对富12C的TOC在湖底的沉积增多,这会导致湖水和大气中的13C含量相对增加,以此为无机碳源进行光合作用的植物的δ13CTOC值也应变重 [21] [34]。这与实际上沉积物的δ13CTOC值逐渐偏负的结果相矛盾。因此,本研究剖面沉积物TOC的逐渐增加倾向于反映初级生产力的增大,这与深海碳酸盐碳同位素曲线指示的全球生产力在早白垩世Huaterivian期整体明显增加 [14] [17] 的背景相符(图4(f))。

Figure 3. The inverse of the TOC versus the δ13CTOC values of sediments in the giant dinosaur fossils-occurring strata

图3. 大型恐龙化石赋存地层沉积物的TOC倒数和δ13CTOC值相关关系

Figure 4. The sediment TOC and δ13CTOC records in the section hosting the giant dinosaur fossils, while compared with the global paleoenvironmental records (data of (a) and (b) cited from [25], (c) and (d) in this study, (e), (f) and (g) cited from [17]; the black dotted line in (b) and (d) indicates the mean δ13CTOC value in this study, the light blue dotted line indicates the mean δ13CTOC value in [25], while the green dotted line indicates the average δ13CTOC value of modern plants)

图4. 大型恐龙化石赋存地层沉积物的有机碳记录与全球记录的对比(曲线a、b引自 [25],c、d为本研究结果,e、f和g引自 [17];b、d中黑色虚线指示本研究中沉积物的δ13CTOC均值,浅蓝色虚线指示中国辽西地区早Aptian期C3阶段沉积物的δ13CTOC均值 [25],绿色虚线指示现生植物的δ13CTOC均值)

湖相沉积物的δ13CTOC值主要反映其不同来源有机质δ13CTOC值的加权平均 [35]。有机质主要包括由入湖水流带入的周边的陆生植物和以浮水植物和沉水植物为主要贡献者的内源水生植物 [36]。在光合作用过程中,陆生C3植物和挺水植物都以大气CO2 (现代大气CO2的δ13C值约−7‰)为无机碳源,因此它们的δ13CTOC值类似,分布于−35‰~−22‰ [37];沉水植物以湖水中的溶解性碳酸氢盐为无机碳源(δ13C约0‰),δ13CTOC值较前两种植物的偏重,分布于−20‰~−12‰ [38]。本研究中,随着沉积物TOC的增加,其δ13CTOC值逐渐偏轻可能指示当时陆生等植物的生产力增大,且δ13CTOC值偏轻的陆生和/或挺水植物所占湖泊沉积有机质的比重增加,而δ13CTOC值偏重的沉水植物所占的比重减少。

此外,本研究中剖面沉积物的δ13CTOC值分布于−34.15‰~−28.24‰ (均值约−31.74‰),显著轻于现生陆生C3植物的δ13CTOC值(−35‰~−22‰,均值约−27‰ [37] ),表明该时期沉积物的δ13CTOC值除受有机质组成变化产生轻微偏负的趋势外,也受其它因素的影响整体变轻。本研究剖面沉积物的δ13CTOC值与辽西地区早Aptian期C3地层的显著负偏的δ13CTOC值(−32.2‰~−27.0‰,均值约−30‰ [25] )相近(图4),而C3地层δ13CTOC的负偏主要是由于火山喷发 [25],且利用不同材料估算的大气CO2浓度曲线显示早白垩世Hauterivian-Albian期间大气CO2浓度只存在轻微波动(图4(g)) [17] [39],表明冀北地区有可能在Huaterivian时期因火山喷发带来的大气CO2的相关变化与辽西地区早Aptian期的类似。由于火山喷发释放大量CO213C值约−5‰~−7‰ [25] ),致使植物光合作用所需要的无机碳源的δ13C值轻于现代大气CO2的,由此导致早白垩世Huaterivian期植物的δ13CTOC值整体轻于现生植物。此外,因火山喷发而增加的大气CO2浓度也会对植物δ13CTOC有负偏的影响(约−0.02‰/100 ppm [40] )。变轻的大气CO2 δ13C值和增加的大气CO2浓度共同导致Huaterivian期冀北四岔口盆地沉积物δ13CTOC值的相对负值。此外,火山喷发会携带大量温室气体进入大气层中,这将导致相应的温度上升;深海氧同位素曲线指示全球温度在早白垩世Hauterivian-Barremain期开始快速回升(图4(e)),地球逐步进入温室状态,海洋生产率达到最高点 [17],本研究的结果也与这一全球背景相符。

6. 结论

本研究对早白垩世冀北四岔口盆地花吉营组的大型恐龙化石赋存层位所在剖面的沉积物进行了TOC和δ13CTOC的测定分析。结果表明冀北地区Hauterivian期沉积物的TOC分布于0.13%~2.31%,δ13CTOC值分布于−34.15‰~−28.24‰,且随着年代的变轻,整体剖面及局部互层沉积物的TOC均呈现轻微增大的趋势,δ13CTOC值均呈现轻微变轻的趋势。统计分析表明沉积物的TOC和δ13CTOC值呈显著的负相关。本研究剖面沉积物整体偏负的δ13CTOC值可能是由于火山喷发释放大量CO2,致使大气CO2的δ13C值变轻且CO2浓度增加,从而导致当时植物的δ13CTOC值整体变轻。此外,沉积物TOC的逐步增加表明当时植物的生产力的增大,在此背景下,沉积物的δ13CTOC值逐渐变轻可能是由于不同来源的湖底沉积有机质的相对含量发生变化,即δ13CTOC值相对偏轻的陆生和/或挺水植物的相对含量增加,而δ13CTOC值相对偏重的沉水植物的相对含量减少。本文主要从沉积物的TOC和δ13CTOC方面对化石埋藏初期的环境状况给予推断,但对其机理的解释有待多指标研究的进一步验证,以提供更全面的古环境信息。

致谢

高健和刘贵平参与了野外样品采集工作,张军强和李亚蒙在实验过程中给予了设备方面的支持,一并感谢。

基金项目

该研究由国家级大学生创新创业训练项目(S202010452012)、山东省自然科学基金项目(ZR2018BD013)、国家自然科学基金基础科学中心项目(41688103)和临沂大学科研启动基金项目(LYDX2018BS034)支持。

文章引用

孙志超,赵 艳,刘 贺,任咣营,郭 颖,邵凤丽,王金玲,阎作均,王朝民,张福成. 冀北四岔口盆地早白垩世大型恐龙化石赋存地层的有机碳同位素记录及其古环境意义
The δ13CTOC Record of Early Cretaceous Strata Bearing Giant Dinosaurs in the Sichakou Basin, North Hebei Province, and Its Palaeoenvironmental Implication[J]. 地球科学前沿, 2021, 11(06): 747-755. https://doi.org/10.12677/AG.2021.116069

参考文献

  1. 1. Chang, M., Chen, P.J., Wang, Y., Wang, Y.Q. and Miao, D. (2003) The Jehol Biota: The Emergence of Feathered Dinosaurs, Beaked Birds, and Flowering Plants. Shanghai Scientific & Technical Publishers, Shanghai, 1-208.

  2. 2. Wang, X.L. and Zhou, Z.H. (2008) Mesozoic Pompeii. In: Chang, M.M., Ed., The Jehol Fossils, Shanghai Scientific & Technical Publishers, Shanghai, 19-35. https://doi.org/10.1016/B978-012374173-8.50003-X

  3. 3. Zhou, Z.H., Barrett, P.M. and Hilton, J. (2003) An Exceptionally Preserved Lower Cretaceous Ecosystem. Nature, 421, 807-814. https://doi.org/10.1038/nature01420

  4. 4. Jiang, B.Y., Fürsichm, F.T., Sha, J.G., Wang, B. and Niu, Y.Z. (2011) Early Cretaceous Volcanism and Its Impact on Fossil Preservation in Western Liaoning, NE China. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 255-269. https://doi.org/10.1016/j.palaeo.2011.01.016

  5. 5. Pan, Y.H., Sha, G.J. and Yao, X.G. (2012) Taphonomy of Early Cretaceous Freshwater Bivalve Concentrations from the Sihetun Area, Western Liaoning, NE China. Cretaceous Research, 34, 94-106. https://doi.org/10.1016/j.cretres.2011.10.007

  6. 6. Carvalho, I.S., Novas, F.E., Agnolín, F.L., Isasi, M.P., Freitas, F.I. and Andrade, J.A. (2015) A Mesozoic Bird from Gondwana Preserving Feathers. Nature Communications, 6, Article No. 7141. https://doi.org/10.1038/ncomms8141

  7. 7. Haq, B.U., Hardenbol, J. and Vail, P.R. (1987) Chronology of Fluctuating Sea Levels since the Triassic. Science, 235, 1156-1167. https://doi.org/10.1126/science.235.4793.1156

  8. 8. Clarke, L.J. and Jenkyns, H.C. (1999) New Oxygen Isotope Evidence for Long-Term Cretaceous Climatic Change in the Southern Hemisphere. Geology, 27, 699-702. https://doi.org/10.1130/0091-7613(1999)027<0699:NOIEFL>2.3.CO;2

  9. 9. Huber, B.T., Norris, R.D. and Macleod, K.G. (2002) Deep-Sea Paleotemperature Record of Extreme Warmth during the Cretaceous. Geology, 30, 123-126. https://doi.org/10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2

  10. 10. Wang, G., Cheng, R., Wang, P., Gao, Y., Wang, C., Ren, Y. and Huang, Q. (2015) High Resolution Continuous Sedimentary Records of Upper Cretaceous Obtained from the Continental Drilling (Sk-1) Borehole in Songliao Basin: Sifangtai and Mingshui Formations. Geoscience Frontiers, 6, 895-912. https://doi.org/10.1016/j.gsf.2015.02.003

  11. 11. Schlanger, S.O. and Jenkyns, H.C. (1976) Cretaceous Oceanic Anoxic Vents: Causes and Consequences. GeologieEnMijnbouw, 55, 179-184.

  12. 12. Cronin, M., Tauxe, L., Constable, C., Selkin, P. and Pick, T. (2001) Noise in the Quiet Zone. Earth and Planetary Science Letters, 190, 13-30. https://doi.org/10.1016/S0012-821X(01)00354-5

  13. 13. Leckie, R.M., Bralower, T.J. and Cashman, R. (2002) Oceanic Anoxic Events and Plankton Evolution: Biotic Response to Tectonic Forcing during the Mid-Cretaceous. Paleoceanography, 17, 13-1-13-29. https://doi.org/10.1029/2001PA000623

  14. 14. Weissert, H. and Erba, E. (2004) Volcanism, CO2 and Paleoclimate: A Late Jurassic-Early Cretaceous Carbon and Oxygen Isotope Record. Journal of the Geological Society, London, 161, 03087. https://doi.org/10.1144/0016-764903-087

  15. 15. Hu, X.M., Jansa, L., Wang, C.S., Sarti, M., Bak, K., Wagreich, M., Michalik, J. and Sotákg, K. (2005) Upper Cretaceous Oceanic Red Beds (CORBs) in the Tethys: Occurrence, Lithofacies, Age, and Environments. Cretaceous Research, 26, 3-20. https://doi.org/10.1016/j.cretres.2004.11.011

  16. 16. Wang, C.S., Hu, X.M., Sarti, M., Robert, W.S. and Li, X.H. (2005) Upper Cretaceous Oceanic Red Beds in Southern Tibet: A Major Change from Anoxic to Oxic, Deep-Sea Environments. Cretaceous Research, 26, 21-32. https://doi.org/10.1016/j.cretres.2004.11.010

  17. 17. Keller, G. (2008) Cretaceous Climate, Volcanism, Impacts, and Biotic Effects. Cretaceous Research, 29, 754-771. https://doi.org/10.1016/j.cretres.2008.05.030

  18. 18. Huber, B.T., Hodell, D.A. and Hamilton, C.P. (1995) Mid-dle-Late Cretaceous Climate of the Southern High Latitudes: Stable Isotopic Evidence for Minimal Equator-to-Pole Thermal Gradients. Geological Society of America Bulletin, 107, 1164-1191. https://doi.org/10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2

  19. 19. Li, L. and Keller, G. (1998) Abrupt Deep-Sea Warming at the End of the Cretaceous. Geology, 26, 995-998. https://doi.org/10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2

  20. 20. Li, L. and Keller, G. (1998) Maastrichtian Climate, Productivity and Faunal Turnovers in Planktic Foraminifera in South Atlantic DSDP Sites 525A and 21. Marine Micropaleontology, 33, 55-86. https://doi.org/10.1016/S0377-8398(97)00027-3

  21. 21. 范庆超, 徐兆凯. 白垩纪大洋缺氧事件研究进展[J]. 海洋科学, 2020, 44(2): 138-145.

  22. 22. Yang, S.H., He, H.Y., Jin, F., Zhang, F.C., Wu, Y.B., Yu, Z.Q., Li, Q.L., Wang, M., O’Connor, J.K., Deng, C.L., Zhu, R.X. and Zhou, Z.H. (2020) The Appearance and Duration of the Jehol Biota: Constraint from SIMS U-Pb Zircon Dating for the Huajiying Formation in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 117, 14299-14305. https://doi.org/10.1073/pnas.1918272117

  23. 23. 丁秋红, 金成洙, 张立东, 郭胜哲, 张长捷, 彭艳东, 贾斌, 陈树旺, 刑德, 郑月娟. 四合屯含鸟化石层地球化学异常及沉积环境[J]. 地质与资源, 2003, 12(3): 139-145.

  24. 24. Wang, Y.Q., Olsen, P.E., Sha, J.G., Yao, X.G., Liao, H.Y., Pan, Y.H., Kinney, S., Zhang, X.L. and Rao, X. (2016) Stratigraphy, Correlation, Depositional Environments, and Cyclicity of the Early Cretaceous Yixian and Jurassic-Cretaceous Tuchengzi formations in the Sihetun Area (NE China) Based on Three Continuous Cores. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 110-133. https://doi.org/10.1016/j.palaeo.2016.06.043

  25. 25. Zhang, X.L., Zhang, G.J. and Sha, J.G (2016) Lacustrine Sedimentary Record of Early Aptian Carbon Cycle Perturbation in Western Liaoning, China. Cretaceous Research, 62, 122-129. https://doi.org/10.1016/j.cretres.2015.10.001

  26. 26. Zhang, F.C. and Zhou, Z.H. (2000) A Primitive Enantiornithine Bird and the Origin of Feathers. Science, 290, 1955-1959. https://doi.org/10.1126/science.290.5498.1955

  27. 27. Jin, F., Zhang, F.C., Li, Z.H., Zhang, J.Y. and Zhou, Z.H. (2008) On the Horizon of Protopteryx and the Early Vertebrate Fossil Assemblages of the Jehol Biota. Chinese Science Bulletin, 53, 2820-2827. https://doi.org/10.1007/s11434-008-0209-5

  28. 28. Wang, M., Zheng, X.T., O’Connor, J.K., Lloyd, G.T., Wang, X.L., Wang, Y., Zhang, X.M. and Zhou, Z.H. (2015) The Oldest Record of Ornithuromorpha from the Early Creta-ceous of China. Nature Communications, 6, Article No. 6987. https://doi.org/10.1038/ncomms7987

  29. 29. Zhang, F.C., Zhou, Z.H. and Benton, M.J. (2008) A Primitive Confuciusornithid Bird from China and Its Implications for Early Avian Flight. Science in China (Series D: Earth Science), 51, 625-639. https://doi.org/10.1007/s11430-008-0050-3

  30. 30. Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W. and Liu, M. (2006) Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246, 336-352. https://doi.org/10.1016/j.epsl.2006.04.029

  31. 31. 柳永清, 李佩贤, 田树刚. 冀北滦平晚中生代火山碎屑(熔)岩中锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石矿物学杂志, 2003, 22(3): 237-244.

  32. 32. Meyers, P.A. (2009) Organic Geochemical Proxies. In: Gornitz, V., Ed., Encyclopedia of Paleoclimatology and Ancient Environments, Springer, Dordrecht, 659-663. https://doi.org/10.1007/978-1-4020-4411-3_160

  33. 33. Suan, G., van de Schootbrugge, B., Adatte, T., Fiebig, J. and Oschmann, W. (2015) Calibrating the Magnitude of the Toarcian Carbon Cycle Perturbation. Paleoceanography, 30, 495-509. https://doi.org/10.1002/2014PA002758

  34. 34. 胡修棉, 王成善, 李祥辉. 大洋缺氧时间的碳稳定同位素响应[J]. 成都理工大学学报(自然科学版), 2001, 28(1): 1-6.

  35. 35. Meyers, P.A. (1994) Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114, 289-302. https://doi.org/10.1016/0009-2541(94)90059-0

  36. 36. 吴福莉, 赵艳, 方小敏, 孟庆泉, 杨一博. 兰州盆地44-15 Ma地层的有机碳同位素记录[J]. 第四纪研究, 2015, 35(4): 847-855.

  37. 37. Meyers, P.A. (1997) Organic Geochemical Proxies of Paleoceanographic, Apleolimnologic, and Paleoclimatic Process. Organic Geochemistry, 27, 213-250. https://doi.org/10.1016/S0146-6380(97)00049-1

  38. 38. Dana, S. and Deevey, E.S. (1960) Carbon-13 in Lake Waters, and Its Possible Bearing on Paleolimnology. American Journal of Science, 258, 253-272.

  39. 39. Retallack, G.J.A. (2001) A 300-Million-Year Record of Atmospheric Carbon Dioxide from Fossil Plant Cuticles. Nature, 411, 287-290. https://doi.org/10.1038/35077041

  40. 40. Feng, X. and Epstein, S. (1995) Carbon Isotopes of Trees from Arid Environments and Implications for Reconstructing Atmospheric CO2 Concentration. Geochimica et Cosmochimica Acta, 59, 2599-2608. https://doi.org/10.1016/0016-7037(95)00152-2

  41. NOTES

    *通讯作者。

期刊菜单