Bioprocess
Vol. 12  No. 01 ( 2022 ), Article ID: 49533 , 6 pages
10.12677/BP.2022.121004

微藻光合突变体诱导的研究进展

王迪

辽宁师范大学生命科学学院,辽宁 大连

收稿日期:2022年2月27日;录用日期:2022年3月15日;发布日期:2022年3月22日

摘要

光合突变株作为研究微藻光合作用的良好材料,通常利用物理或化学方法诱变育种获得。在莱茵衣藻、小球藻等微藻中运用光合突变体对光合作用机制的研究较多。光合突变株应用广泛,在不同领域中都在发挥作用。本文章通过对光合突变株研究进展进行整合描述,旨在对光合突变株的诱变等方面进行指导。

关键词

光合突变株,微藻,光合作用,诱变育种

Advances in the Induction of Photosynthetic Mutants of Microalgae

Di Wang

School of Life Science, Liaoning Normal University, Dalian Liaoning

Received: Feb. 27th, 2022; accepted: Mar. 15th, 2022; published: Mar. 22nd, 2022

ABSTRACT

Photosynthetic mutant strains are used as good materials for studying microalgae photosynthesis and are usually obtained using physical or chemical methods for mutagenesis breeding. Photosynthetic mutants have been widely studied extensively in microalgae such as Chlamydomonas reininensis and Chlorella vulgaris. Photosynthetic mutant strains are widely used and play a role in different domains. This article aims to guide the mutagenesis of photosynthetic mutant strains by integrating the research progress of photosynthetic mutant strains.

Keywords:Photosynthetic Mutant Strains, Microalgae, Photosynthesis, Mutation Breeding

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在微藻的研究中光合作用的研究是非常重要的部分,为了更好地研究微藻的光合作用相关的基因,在实验中研究者通常会通过不同方式来获取光合突变株。微藻光合突变株的诱变通常分为物理方法和化学方法,物理方法一般利用紫外线、α射线、β射线、γ射线、X射线等对藻体进行处理,化学方法则使用甲基磺酸乙酯(EMS)、亚硝基胍(NTG)等对藻体进行处理。

现如今光合突变体的作用并不局限于光合作用方面的研究。通过诱变育种获得光合突变株,其产物可应用到医疗保健、美容美妆、商品染色等领域,对于开发无污染的新型能源有着重要作用。

本文通过对近年来微藻光合突变株研究的整合,总结了光合突变株诱变方法、光合突变株的生理生化变化以及微藻光合突变株的应用,旨在对微藻光合突变株的诱变等方面提供理论指导,以期推进对微藻的深层研究,促进微藻及其产物的工业化生产,发挥微藻更大的实用价值和商业价值。

2. 光合突变株诱变方法

突变是生物在进化过程中必不可少的生物学现象,突变株也是研究植物生理性状的良好材料。国内外对藻类突变株如莱茵衣藻、小球藻等的研究较多,也有众多诱变育种的方法。通常采用诱变的方法主要分为两类,一是物理方法,二是化学方法。

物理方法主要是利用射线对藻体进行诱变,包括紫外线、α射线、β射线、γ射线、X射线等。如在探究紫外线的辐射对雨生红球藻生理指标超微结构的影响时,蒋霞敏等人用不同剂量的紫外线照射来诱导雨生红球藻突变,发现紫外辐射对雨生红球藻有致死效应 [1]。同样,庄惠如等人选育高产藻株时,也利用紫外线辐射使雨生红球藻诱变,得到了两株营养细胞更大,藻体生长速率更快,虾青素积累更多的高产藻株 [2]。化学方法则是使用化学药品对藻体进行诱变处理,例如甲基磺酸乙酯(EMS)、亚硝基胍(NTG)等。如Tjahjono等人使用甲基磺酸乙酯(EMS)诱导雨生红球藻突变,并筛选出多株抗除草剂和抗烟碱的藻株 [3],以此培育出虾青素高产的雨生红球藻。

也有学者同时利用这两种方法进行诱变育种,例如Sun等人利用EMS和紫外线先后进行对雨生红球藻的诱变育种,并获得了稳定遗传的藻株 [4]。Sandesh等人分别利用紫外线,EMS和亚硝基胍(NTG)诱导雨生红球藻突变,结果发现虾青素积累显著增加,同时紫外线诱变株的番茄红素环化酶活性居于首位,其次是NTG诱变株的番茄红素环化酶的活性 [5]。

3. 光合突变株的生理生化变化

光合作用的机制原理及其物质基础已经有了众多的进展和突破,其主要研究材料集中在莱茵衣藻、小球藻等几类生物上。其中,利用光合突变株对植物光合作用进行研究,也取得了众多的成果。

微藻这类低等植物与高等植物的光合系统存在些许差异,如微藻中的LHCI天线蛋白较大 [6] [7],由6~14个亚基组成 [8] [9],这种差异可能是高等植物为了适应其生长环境有关 [10]。在莱茵衣藻的光反应中,光系统I的9个Lhca天线蛋白被转化,并在细菌中成功转化表达 [11],并且9个Lhca光捕获蛋白在中心的一侧围绕 [12]。在突变体的类囊体中,PSI和LHC的非正确组装,可能会导致PSI中的能量解偶联 [13]。

在状态转换中,STN7激酶催化着LHCII的磷酸化,激发的能量被转移到PSII和PSI中 [14]。叶绿体NAD(P)H脱氢酶(NDH)相似复合体独立于PSII,在减少系统间的电子传递链(ETC)中起着重要作用 [15],同时在C4植物束鞘细胞的电子转移中也扮演重要角色 [16]。有研究表明PGR5蛋白调节线性电子转移(LET)和循环电子转移(CET)之间的电子分配 [17]。类囊体膜调节蛋白缺陷的拟南芥突变体在不同光照条件下的生长结果显示:缺乏Ser/Thr蛋白激酶STN7的拟南芥stn7突变体延迟生长,而缺乏PGR5蛋白的拟南芥pgr5突变体则表现为完全致死 [18]。

莱茵衣藻中的CHLH基因编码镁离子螯合酶的大亚基,缺失CHLH (brs1和ch11)基因的突变株,其藻细胞在光照下死亡 [19]。同时莱茵衣藻中叶绿素LTS3基因能够对镁离子螯合酶的活性进行调控,导致缺失该基因的突变株在无光异养条件下,膜结构被严重破坏,以至于无法合成叶绿素;但是在光下,随着叶绿素前体的消耗,膜结构又得以恢复 [20]。缺失叶绿体atpE基因的突变株仅能够在无光但有外加碳源的条件下生长 [21]。

4. 微藻光合突变株的应用

现今,光合突变株应用广泛,在多个领域中发挥着重要作用。雨生红球藻是一种淡水微藻,当它的生存环境恶化,生长受到胁迫时,雨生红球藻就会自发产生并积累虾青素。虾青素全称为3,3′-二羟基-4,4’-二酮基-β胡萝卜素,也被称作虾红素。它是萜类物质,是类胡萝卜素的一种,具有较强氧化性。作为天然的抗氧化剂,虾青素广泛地应用于人们的日常生活以及研发生产如医药保健、商品染色等领域 [22]。目前,在自然界中,雨生红球藻是已知的能够合成虾青素的物种中虾青素合成最多的物种之一 [23],其合成虾青素的含量最高可达藻细胞干重的4%。雨生红球藻中虾青素的合成和积累与外界环境的胁迫有关,是藻体应对恶劣环境的一种应激保护。诱导雨生红球藻合成虾青素的条件包括营养缺失,高光胁迫,高盐胁迫等。光照强度是影响虾青素合成的比较重要因素之一,能够直接影响藻类的生长代谢及其有机物积累,进而影响到藻细胞中虾青素的合成和积累 [24]。因此对雨生红球藻进行诱变育种,筛选出虾青素含量提高的光合突变株,将虾青素应用到医疗保健、美容美妆、生物染色等领域,可发挥其更大的商业价值。

近年来,传统能源储备不足及其燃烧后所产生的环境污染问题,寻找并开发可代替传统能源产能的新型能源,以此缓解全球范围内温室效应的情况亟待解决 [25] [26]。藻类通过光合作用释放氧气的同时,在厌氧条件下会释放出氢气,而氢气是清洁的新型能源之一,这使得微藻光合产氢成为全球研究的焦点之一 [27] [28]。微藻产氢的主要来源是光能,以光能和水作为电子供体,通过微藻的生理活动便可生成氢气,整个过程无需高温高压燃烧等,基本无碳无污染。在微藻的光合作用中,水的光解是制氢的首要步骤,通过光反应参与水的裂解从而获得电子。微藻通过光合产氢的电子传递途径如图1所示 [29]。然而,

Figure 1. Electron transport chain of hydrogen production by microalgae

图1. 微藻产氢的电子传递链

微藻光合产氢面临着有氧环境下微藻体内的氢化酶会失活的问题。通过物理或化学方法对微藻进行诱变育种,筛选出具有高光合活性的突变株,以此减少活性氧的产生,增加氢气的产能。Lanzhen Wei等人研究后发现外源 HSO 3 可消耗微藻在高光诱导下PSI形成的超氧离子( O 2 ),促进微藻光合产氢, HSO 3 消耗氧气诱导微藻进行光合产氢的机理见图2 [30]。除了微藻产氢外,具有绿色环保优点的微藻生物柴油也是新兴的可再生资源 [31],同样备受关注。三角褐指藻是一种海洋模式硅藻,它生长繁殖快,培养方法和条件简单,并且富含油脂 [32]。可通过诱导三角褐指藻突变,提高其油脂产量。

Figure 2. Mechanism of oxygen consumption by HSO 3 to synthetic hydrogen production in microalgae

图2. HSO 3 消耗氧气诱导微藻光合产氢的机理

5. 总结与展望

关于微藻光合作用机制的研究,主要集中在莱茵衣藻、小球藻等少量微藻种类上。我国水资源丰富,水域内生物种类繁多,对于其它微藻光合机制仍需进一步探究。利用微藻生长繁殖较快、生长条件简单等特点,进一步扩大微藻的生物产量,将其应用到更多领域中,提高生活质量的同时降低生活成本。大力开发微藻产氢、微藻生物柴油等新型能源,代替日渐消耗的煤炭、石油等传统能源,有利于改善环境,促进可持续发展。

文章引用

王 迪. 微藻光合突变体诱导的研究进展
Advances in the Induction of Photosynthetic Mutants of Microalgae[J]. 生物过程, 2022, 12(01): 26-31. https://doi.org/10.12677/BP.2022.121004

参考文献

  1. 1. 蒋霞敏, 翟兴文, 王丽, 陆开形. 雨生红球藻对紫外辐射的生理适应及超微结构变化[J]. 水产学报, 2003, 27(2): 105-112.

  2. 2. 庄惠如, 王明兹, 陈必链, 郑梅清, 赖萍, 吴松刚. 雨生红球藻对紫外光处理的响应及高产藻株的选育[J]. 福建师范大学学报(自然科学版), 2001, 17(3): 76-80.

  3. 3. Tjahjono, A.E., Kakizono, T., Hayama, Y., Nishio, N. and Nagai, S. (1994) Isolation of Resistant Mutants against Carotenoid Biosynthesis Inhibitors for a Green Alga Haematococcus pluvialis, and Their Hybrid Formation by Protoplast Fusion for Breeding of Higher Astaxanthin Producers. Journal of Fermentation and Bioengineering, 74, 352-357. https://doi.org/10.1016/0922-338X(94)90003-5

  4. 4. Sun, Y., Liu, J. and Zhang, X. (2008) Strain H2-419-4 of Haematococcus pluvialis Induced by Ethyl Methanesulphonate and Ultraviolet Radiation. Chinese Journal of Oceanology & Limnology, 26, 152-156. https://doi.org/10.1007/s00343-008-0152-y

  5. 5. Kamath, B.S., Vidhyavathi, R., Sarada, R. and Ravishankar, G.A. (2008) Enhancement of Carotenoids by Mutation and Stress Induced Carotenogenic Genes in Haematococcus pluvialis Mutants. Bioresource Technology, 99, 8667-8673. https://doi.org/10.1016/j.biortech.2008.04.013

  6. 6. Germano, M., Yakushevska, A.E. and Keegstra, W. (2002) Supramolecular Organization of Photosystem I and Light-Harvesting Complex I in Chlamydomonas reinhardtii. FEBS Letters, 525, 121-125. https://doi.org/10.1016/S0014-5793(02)03100-9

  7. 7. Kargul, J., Nield, J. and Barber, J. (2003) Three-Dimensional Reconstruction of a Light-Harvesting Complex I-Photosystem I (LHCI-PSI) Supercomplex from the Green Alga Chla-mydomonas reinhardtii: Insights into Light Harvesting for PSI. Journal of Biological Chemistry, 278, 16135-16141. https://doi.org/10.1074/jbc.M300262200

  8. 8. Stauber, E.J., Fink, A. and Markert, C. (2003) Proteomics of Chla-mydomonas reinhardtii Light-Harvesting Proteins. Eukaryotic Cell, 2, 978. https://doi.org/10.1128/EC.2.5.978-994.2003

  9. 9. Takahashi, Y., Yasui, T., Stauber, E.J., et al. (2004) Comparison of the Subunit Compositions of the PSI-LHCI Supercomplex and the LHCI in the Green Alga Chlamydomonas rein-hardtii. Biochemistry, 43, 7816-7823. https://doi.org/10.1021/bi035988z

  10. 10. Alboresi, A., Caffarri, S. and Nogue, F. (2008) In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits Which Evolved upon Land Adap-tation. PLoS ONE, 3, e2033. https://doi.org/10.1371/journal.pone.0002033

  11. 11. Mozzo, M., Mantelli, M. and Passarini, F. (2010) Functional Analysis of Photosystem I Light-Harvesting Complexes (Lhca) Gene Products of Chlamydomonas reinhardtii. Bio-chimica et Biophysica Acta, 1797, 212-221. https://doi.org/10.1016/j.bbabio.2009.10.005

  12. 12. Drop, B., Webberbirungi, M. and Fusetti, F. (2011) Photosystem I of Chlamydomonas reinhardtii Contains Nine Light-Harvesting Complexes (Lhca) Located on One Side of the Core. Journal of Biological Chemistry, 286, 44878-44887. https://doi.org/10.1074/jbc.M111.301101

  13. 13. Melkozernov, A.N., Su, H. and Webber, A.N. (2004) Excitation Energy Transfer in Thylakoid Membranes from Chlamydomonas reinhardtii Lacking Chlorophyll b and with Mutant Photosystem I. Photosynthesis Research, 56, 197-207. https://doi.org/10.1023/A:1006016631150

  14. 14. Allen, J.F. and Forsberg, J. (2001) Molecular Recognition in Thylakoid Structure and Function. Trends in Plant Science, 6, 317-326. https://doi.org/10.1016/S1360-1385(01)02010-6

  15. 15. Peng, L., Shimizu, H. and Shikanai, T. (2008) The Chloro-plast NAD(P)H Dehydrogenase Complex Interacts with Photosystem I in Arabidopsis. Journal of Biological Chemistry, 283, 34873-34879. https://doi.org/10.1074/jbc.M803207200

  16. 16. Majeran, W., Zybailov, B. and Ytterberg, A.J. (2008) Consequences of C4 Differentiation for Chloroplast Membrane Proteomes in Maize Mesophyll and Bundle Sheath Cells. Molecular & Cellular Proteomics, 7, 1609-1638. https://doi.org/10.1074/mcp.M800016-MCP200

  17. 17. Nandha, B., Finazzi, G. and Joliot, P. (2007) The Role of PGR5 in the Redox Poising of Photosynthetic Electron Transport. Biochimica Et Biophysica Acta, 1767, 1252-1259. https://doi.org/10.1016/j.bbabio.2007.07.007

  18. 18. Tikkanen, M., Grieco, M. and Kangasjarvi, S. (2010) Thylakoid Protein Phosphorylation in Higher Plant Chloroplasts Optimizes Electron Transfer under Fluctuating Light1[C][OA]. Plant Physiology, 152, 723-735. https://doi.org/10.1104/pp.109.150250

  19. 19. Chekounova, E., Voronetskaya, V. and Papenbrock, J. (2001) Charac-terization of Chlamydomonas Mutants Defective in the H Subunit of Mg-Chelatase. Molecular Genetics & Genomics, 266, 363-373. https://doi.org/10.1007/s004380100574

  20. 20. Semenova, G.A., Chekunova, E.M. and Ladygi, V.G. (2015) Light-Dependent Synthesis of Cell Membranes in the Chlamydomonas reinhardtii Mutant Brc-1. Cell & Tissue Biology, 9, 415-421. https://doi.org/10.1134/S1990519X15050107

  21. 21. Johnson, E. and Anastasios, M. (2004) Functional Characteri-zation of Chlamydomonas reinhardtii with Alterations in the atpE Gene. Photosynthesis Research, 82, 131-140. https://doi.org/10.1007/s11120-004-6567-1

  22. 22. Clinton, S.K. (2010) Lycopene: Chemistry, Biology, and Implica-tions for Human Health and Disease. Nutrition Reviews, 56, 35-51. https://doi.org/10.1111/j.1753-4887.1998.tb01691.x

  23. 23. Orosa, M., Franqueira, D. and Cid, A. (2001) Carotenoid Accumulation in Haematococcus pluvialis in Mixotrophic Growth. Biotechnology Letters, 23, 373-378. https://doi.org/10.1023/A:1005624005229

  24. 24. 才金玲, 欧阳泽瑞, 陈国兴, 潘光华, 王广策. 光照强度对雨生红球藻细胞生长和虾青素积累的影响[J]. 食品科技, 2013, 38(1): 17-20+25.

  25. 25. Kotay, S.M. and Das, D. (2008) Biohydrogen as a Renewable Energy Resource—Prospects and Potentials. International Journal of Hydrogen Energy, 33, 258-263. https://doi.org/10.1016/j.ijhydene.2007.07.031

  26. 26. Bicakova, O. and Straka, P. (2012) Production of Hydrogen from Renewable Resources. International Journal of Hydrogen Energy, 37, 11563-11578. https://doi.org/10.1016/j.ijhydene.2012.05.047

  27. 27. Aziz, M., Oda, T., Mitani, T., Uetsuji, A. and Kashiwagi, T. (2016) Integrated Hydrogen Production and Power Generation from Microalgae. International Journal of Hydrogen En-ergy, 41, 104-112. https://doi.org/10.1016/j.ijhydene.2015.10.115

  28. 28. Wahid, M.A. and Hosseini, S.E. (2016) Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renewable & Sustainable Energy Reviews, 57, 850-866. https://doi.org/10.1016/j.rser.2015.12.112

  29. 29. Srirangan, K., Pyne, M.E. and Chou, C.P. (2011) Biochemical and Genetic Engineering Strategies to Enhance Hydrogen Production in Photosynthetic Algae and Cyanobacteria. Biore-source Technology, 102, 8589-8604. https://doi.org/10.1016/j.biortech.2011.03.087

  30. 30. Wei, L., Yi, J., Wang, L., Huang, T., Gao, F. and Wang, Q. (2017) Light Intensity Is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii. Plant & Cell Physiology, 58, 451-457. https://doi.org/10.1093/pcp/pcw216

  31. 31. Leung, D., Wu, R. and Leung, R.K.H. (2010) A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy, 87, 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006

  32. 32. 侯兴国, 方琰, 白欢, 胡莎莎, 卿人韦, 兰利琼. 过表达甘油激酶三角褐指藻藻株富集油脂的研究[J]. 四川大学学报(自然科学版), 2020, 57(6): 1209-1216.

期刊菜单