World Journal of Cancer Research
Vol. 12  No. 01 ( 2022 ), Article ID: 48351 , 10 pages
10.12677/WJCR.2022.121004

靶向肿瘤相关巨噬细胞的抗肿瘤策略研究进展

杨枫1,张琨1,王蕊2*

1中国人民解放军92318部队,北京

2中日友好医院,北京

收稿日期:2021年12月28日;录用日期:2022年1月11日;发布日期:2022年1月26日

摘要

肿瘤相关巨噬细胞(tumor associated macrophages, TAMs)是大多数肿瘤中浸润最多的一类免疫细胞,在肿瘤发生、发展和转移中均发挥关键性作用。TAMs具有较强的异质性与可塑性。受肿瘤微环境(Tumor Microenvironment, TME)复杂因子的影响,TAMs呈现不同的表型与功能,主要包括抑肿瘤的M1样TAMs和促肿瘤的M2样TAMs。大多数肿瘤中,TAMs呈现M2样表型,通过促进血管生成、抑制细胞毒性T细胞浸润和功能活化、诱导调节性T细胞、产生基质金属蛋白酶等机制抑制肿瘤免疫微环境,从而促进肿瘤的发生、发展和转移。因此,靶向TAMs已成为肿瘤免疫治疗的潜在重要手段。本文主要综述了目前已有的靶向TAMs的治疗策略和研究进展。

关键词

肿瘤相关巨噬细胞,肿瘤免疫,肿瘤治疗,抗肿瘤

Advances in Antitumor Strategies Targeting Tumor-Associated Macrophages

Feng Yang1, Kun Zhang1, Rui Wang2*

1PLA Unit 92318, Beijing

2China-Japan Friendship Hospital, Beijing

Received: Dec. 28th, 2021; accepted: Jan. 11th, 2022; published: Jan. 26th, 2022

ABSTRACT

Tumor-associated macrophages (TAMs) are the most infiltrating class of immune cells in most tumors and play a key role in tumor development, progression and metastasis. TAMs have strong heterogeneity and plasticity. Influenced by the complex factors of tumor microenvironment (TME), TAMs present different phenotypes and functions, including M1-like TAMs that inhibit tumors and M2-like TAMs that promote tumors. In most tumors, TAMs present an M2-like phenotype and inhibit the tumor immune microenvironment by promoting angiogenesis, inhibiting cytotoxic T cell infiltration and functional activation, inducing regulatory T cells, and producing matrix metalloproteinases, thereby promoting tumor development, progression, and metastasis. Therefore, targeted TAMs have become a potentially important means of cancer immunotherapy. This review focuses on the existing therapeutic strategies and research progress of targeted Tams.

Keywords:Tumor Associated Macrophages, Tumor Immunity, Tumor Therapy, Anti-Tumor

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

巨噬细胞是人体内普遍存在的一种天然免疫细胞,如脑部的小胶质细胞、皮肤Langerhans细胞,肝脏Kupffer细胞等,在组织器官的发育分化、组织损伤修复、衰老细胞及入侵病原菌的清除等过程中具有至关重要的作用,从而维持机体内环境的稳态。肿瘤相关巨噬细胞(tumor associated macrophages, TAMs)是存在于肿瘤组织中的巨噬细胞,与肿瘤的生长与转移密切相关。根据表型和功能的不同,TAMs分为抑制肿瘤的M1样巨噬细胞和促进肿瘤的M2样巨噬细胞。研究表明,大多数肿瘤组织中的TAMs呈现M2样巨噬细胞的表型,促进肿瘤的生长、转移和复发 [1]。因此,研究如何靶向肿瘤相关巨噬细胞,以达到治疗肿瘤的目的,一直是肿瘤免疫研究的热点。

2. TAMs的来源

巨噬细胞主要有三种不同的发育来源:卵黄囊、胎肝和骨髓造血干细胞。根据来源不同,巨噬细胞可分为组织定居的巨噬细胞和骨髓造血干细胞来源的巨噬细胞。由于骨髓造血干细胞发育分化为单核细胞后,将从骨髓迁移到外周血,随血液循环到达全身各组织部位。当遇到病灶时,血液循环的单核细胞即被趋化到病灶组织,分化为成熟的巨噬细胞发挥功能,故骨髓造血干细胞来源的巨噬细胞又称单核细胞来源的巨噬细胞。组织定居的巨噬细胞,如脑部的小胶质细胞、肝脏Kupffer细胞,皮肤Langerhans细胞、肺泡巨噬细胞等,被认为来源于卵黄囊和胎肝时期的巨噬细胞前体细胞 [2] [3] [4]。这些前体细胞在产前或围产期迁移到各组织,定居下来并形成可局部增殖、具有自我更新能力的组织定居的巨噬细胞,并持续到成年。不同组织定居的巨噬细胞更新方式不同,如脑部的小胶质细胞,其来源只有胚胎前体细胞,后天时期主要依靠自我增殖维持更新 [2];而肠道组织定居的巨噬细胞则在出生后很快被骨髓造血干细胞来源的巨噬细胞替代 [5]。另外,还有一些组织定居的巨噬细胞是胚胎前体细胞和骨造血干细胞混合来源的,如胰腺、乳腺、肺脏等组织定居的巨噬细胞 [2]。

长期以来,人们一直认为TAMs来源于血液循环的单核细胞。肿瘤细胞或TME中的非恶性细胞释放趋化信号招募单核样的前体细胞向原发性或转移性肿瘤灶浸润。然而,随着研究的进展,越来越多的证据表明,TAMs不仅仅来源于血液循环的单核细胞,还有组织定居的巨噬细胞参与其中 [6] - [11]。在脑肿瘤、肺癌和胰腺癌的小鼠模型中,高达50%的TAMs来源于组织定居的巨噬细胞 [12] [13] [14]。然而,胚胎来源和单核来源的TAMs可能具有不同的表型和功能 [12] [13] [14]。单核细胞来源的TAMs高表达免疫抑制和抗原递呈相关的基因,而胚胎来源的TAMs则主要表达组织重构与损伤修复相关的基因 [15]。这些数据表明,组织特异性和起源特异性以可能对肿瘤免疫产生实质性影响的方式微调巨噬细胞反应 [16]。

另外,单核细胞样的髓系来源的抑制性细胞(M-MDSCs)也是TAMs的一个重要来源。而转录因子STAT3的下调是M-MDSCs分化为成熟TAMs的关键过程 [17]。

3. TAMs促进肿瘤进展的作用与机制

当受到IFN-γ刺激时,巨噬细胞可产生强大的抗肿瘤效应。同时,巨噬细胞也可通过提呈肿瘤抗原激活适应性免疫,以及产生趋化因子和炎症因子招募并活化细胞毒性CD8+ T细胞和NK细胞。然而,巨噬细胞的这些功能受肿瘤组织中大量存在的Th2细胞的限制,Th2细胞使巨噬细胞的表型呈M2样,从而抑制抗肿瘤反应 [18] [19]。

TAMs通过表达抑制性受体,包括非经典的MHC-I类分子HLA-E和HLA-G,发挥免疫抑制性功能。HLA-E和HLA-G分别与CD94和白细胞免疫球蛋白样受体B亚家族成员1 (LIR1,又称ILT2)相互作用,负向调控NK细胞和T细胞的活化 [20]。另外,TAMs通过表达T细胞免疫检查点配体,包括PD-L1、PD-L2、CD80、CD86,直接抑制T细胞功能 [21] [22];同时还分泌多种细胞因子,如IL-10、TGF-β,通过抑制CD4+和CD8+ T细胞,并诱导调节性T细胞(regulatory T cells, Tregs)扩增,使TME呈免疫抑制性。TAMs介导的趋化因子如CCL2、CCL3、CCL4、CCL5和CCL20的释放,可进一步促进Tregs细胞向肿瘤组织募集,加剧肿瘤免疫微环境的抑制性 [18]。另外,TAMs通过表达精氨酸酶1 (催化精氨酸代谢为尿素和L-鸟氨酸),消耗L-精氨酸(这是T细胞抗原粘附后T细胞受体(TCR)重新表达所必需的)直接抑制T细胞的细胞毒性 [18]。同样,TAMs也可通过表达吲哚胺2,3-双加氧酶(IDO)消耗色氨酸抑制T细胞的细胞毒性 [23] [24]。另外,TAMs通过花生四烯酸代谢产生的前列腺素也具有免疫抑制性。

TAMs还可通过多种机制促进肿瘤的转移。例如,TAMs通过产生基质金属蛋白酶,消化细胞外基质使其变得疏松,促进肿瘤细胞从原发灶向远处迁移。此外,巨噬细胞产生的细胞因子IL-1等可促进肿瘤细胞在远处的聚集 [18] [25] [26] [27]。并且,TAMs可预先到达远端组织器官,为转移的肿瘤细胞提供利于生存和生长的环境。另外,TAMs产生的活性氧和氮中间体促进肿瘤细胞的基因不稳定性,限制了其化疗和靶向治疗的效果 [28]。另外,通过刺激纤维组织沉积,TAMs促进肿瘤内部血管和淋巴管的生成,以及组织重塑 [25] [29] [30] [31] [32]。

4. 靶向肿瘤相关巨噬细胞的治疗策略与研究现状

4.1. 剔除TAMs

由于CSF1-CSF1R信号通路对于巨噬细胞的发育成熟至关重要,缺失CSF1R后,巨噬细胞数目显著减少,故靶向CSF1R剔除巨噬细胞,成为治疗肿瘤的一个潜在靶点。因此,无论是单独治疗还是与标准治疗或免疫治疗相结合,以CSF1R为靶点的不同抗体和小分子药物已开展多项临床试验。

临床开发与研究的小分子药物主要有PLX3397,JNJ-40346527和BLZ945等。临床前研究显示,在小鼠异种移植物模型中,PLX3397可显著抑制骨肉瘤的生长和转移 [33]。I期和II期临床试验结果显示,PLX3397在晚期腱鞘巨细胞瘤患者具有抗肿瘤效应 [34] [35] [36];而在复发性胶质母细胞瘤患者,此药治疗呈现出耐受性,且病人6个月无进展生存期未得到明显改善 [37]。JNJ-40346527在治疗复发或难治性霍奇金淋巴瘤中具有明显的效果 [38]。BLZ945与胰岛素样生长因子受体(IGF1R)抑制剂和磷酸肌醇3激酶(PI3K)抑制剂联合使用时,可改变巨噬细胞极化并抑制胶质瘤进展 [39],其针对晚期实体瘤的临床试验也已开展。另外,靶向CSF1R的单克隆抗体(monoclonal antibody, mAb) RG7155也进入了临床试验阶段。RG7155 (emactuzumab)是一种人源化mAb,可与CSF1R结合并阻止其二聚化。临床前数据显示,RG7155可显著减少CSF1R + CD163 + 巨噬细胞的数目,并增加TME中T细胞的浸润 [36]。针对腱鞘巨细胞瘤的I期临床试验结果显示,RG7155治疗未显示剂量毒性,常见副作用为面部水肿、虚弱和瘙痒。在剂量扩大的试验阶段,28名患者中有24例具有客观反应,2例获得完全应答 [40]。

以上结果表明,靶向CSF1-CSF1R轴可能是一种有前景的肿瘤治疗策略。事实上,这种方法可能被作为一种有效的治疗策略用于治疗过表达CSF1的肿瘤,如滑膜巨细胞瘤。然而,由于长时间缺失巨噬细胞会引起机体内稳态失衡,故限制了此类药物使用剂量的增加。

另一种治疗策略是应用双磷酸盐选择性剔除TAMs,其中,应用较广泛的是氯磷酸盐 [41]。将氯磷酸盐包裹在脂质体中,巨噬细胞吞噬脂质体后,细胞内溶酶体中的磷酸酶将脂质体溶解,包裹在脂质体中的氯磷酸盐逐渐释放出来,当在巨噬细胞内积累到一定程度后,可诱导巨噬细胞的凋亡,从而使巨噬细胞得以清除。研究显示,在肺癌骨转移 [42]、乳腺癌肺转移(79)以及小鼠黑色素瘤 [43] 模型,此疗法可显著减少巨噬细胞浸润,并限制转移瘤的生长。并且,氯磷酸盐联合化疗药物顺铂和索拉非尼等,在不同肿瘤类型的治疗中也显示了协同抗肿瘤作用 [44] [45]。然而,在临床水平,氯磷酸盐治疗不同癌症的结果并不一致,表明可能需要优化联合治疗方案或延长临床试验的时间 [46]。

4.2. 抑制TAMs的募集

肿瘤组织中TAMs的增多通常是通过CCL2-CCR2信号轴介导的单核细胞募集实现的。CCL2是单核细胞、T细胞和NK细胞的强效趋化剂 [47],一些小鼠实验已经证明CCL2与其它趋化因子在TAMs募集中的作用 [48] [49] [50]。肿瘤细胞释放CCL2,招募表达其受体CCR2的细胞到达肿瘤位点。在肝癌、肺癌、黑色素瘤、结直肠癌、乳腺癌和前列腺癌等不同实验模型中,阻断CCL2信号可抑制肿瘤生长与转移 [50] - [55]。然而,停用抗CCL2治疗则加速小鼠乳腺癌模型的肺转移,并且,由于单核细胞招募的反弹导致小鼠死亡,这使得人们对该方法的长期疗效产生重要关注 [56] [57]。然而,血液和肿瘤组织中CCL2升高与多种肿瘤(如乳腺癌)的不良预后密切相关 [58]。基于以上结果,CCL2的几种中和性抗体进入了临床试验阶段。其中,主要的两种药物是靶向CCL2的单克隆抗体carlumab (CNTO888)和靶向CCR2的小分子抑制剂PF-04136309。Carlumab是一种人免疫球蛋白G1κ (IgG1κ),可与CCL2结合。在前列腺癌和卵巢癌小鼠模型中,Carlumab可抑制肿瘤组织中TAMs的募集以及血管生成,抑制肿瘤生长,并提高化疗药物的疗效 [55] [59] [60]。CCR2小分子抑制剂PF-04136309针对晚期胰腺癌的一项Ib期临床试验结果显示,与FOLFIRINOX (奥沙利铂和伊立替康联合亚叶酸钙和氟尿嘧啶)单独治疗相比,PF-04136309联合治疗可提高治疗效果,33例患者中16例接受了反复影像学评估,显示有客观的肿瘤反应,32例患者实现了局部肿瘤控制 [61]。

4.3. TAMs重编程

巨噬细胞具有较强的可塑性,在TME复杂因子的作用下,可呈现多种不同的表型,发挥不同的功能。大多数情况下,TAMs呈现促肿瘤的功能。然而,在一定TME条件下,TAMs也可呈现杀伤肿瘤的功能,并激活全身免疫系统抑制肿瘤生长。这表明,巨噬细胞的可塑性可被开发利用,以恢复其抗肿瘤特性,用于肿瘤治疗。因此,巨噬细胞重编程可作为一种靶向治疗的策略,重新平衡肿瘤免疫微环境,将一个促进肿瘤的环境变成抑制肿瘤的环境。目前,不同的方法正在进行临床前和临床阶段的测试。

4.4. 阻断CD47-SIRPα轴

CD47是机体正常细胞普遍表达的一种蛋白分子,可调节细胞因子产生、轴突扩展、T细胞活化等 [46]。CD47可与SIRPα结合并相互作用。SIRPα主要表达在髓系细胞,包括巨噬细胞和树突状细胞(DCs) [46]。在巨噬细胞,CD47与SIRPα结合,激活SIRPα下游信号通路,抑制肌球蛋白IIA在吞噬突触的积累而抑制巨噬细胞的吞噬作用 [62]。然而,肿瘤细胞也高表达CD47,并通过上述机制抑制巨噬细胞对其吞噬,从而实现免疫逃逸,促进肿瘤的侵袭和转移 [62]。小鼠移植瘤模型的实验表明,抑制CD47可促进巨噬细胞吞噬肿瘤细胞,是一种有效的肿瘤治疗策略 [63] [64],这一结果在人的小细胞肺癌、结直肠癌以及卵巢癌细胞系也得到了证实 [65] [66] [67] [68]。

由于应用CD47单抗抑制CD47-SIRPα信号治疗肿瘤的同时,CD47单抗也可结合红细胞,引起红细胞聚集,导致严重的贫血症状。因此,随后的研究主要针对解决贫血这一副作用开展。通过CRISPR-cas9技术进行全基因组筛选,研究人员发现了特异性靶向肿瘤细胞CD47的调控分子QPCTL (又名isoQC) [67] [68]。QPCTL是一种焦谷酰胺酶,使CD47蛋白分子与SIRPα的结合位点发生焦谷酰胺化,从而使CD47与SIRPα发生结合,抑制巨噬细胞吞噬肿瘤细胞。缺失QPCTL的肿瘤细胞CD47焦谷酰胺化水平降低,CD47与SIRPα结合受到抑制,从而增强巨噬细胞吞噬肿瘤细胞的功能。然而,QPCTL抑制巨噬细胞吞噬作用的体内实验尚未见报道,故体内效果尚不得知。另外,Irving Weissman团队通过改良CD47单克隆抗体magrolimab的临床给药方案,也减轻了贫血副作用。这一副作用的解决使靶向CD47-SIRPα轴的药物开发和临床应用再一次获得重视。

靶向CD47或SIRPα的多个抗体和小分子抑制剂均已进入临床实验阶段,包括抗CD47单克隆抗体(Hu5F9和CC-90002)和可溶性重组SIRPα结晶片段(Fc)融合蛋白(TTI-621) [46] [69]。Hu5F9-G4在人AML和儿童脑肿瘤的临床前研究中显示了良好的治疗效果。针对不同实体瘤和血液系统恶性肿瘤的临床试验也研究了Hu5F9-G4临床治疗的安全性。TTI-621是一种完全的人重组蛋白,可以阻断CD47-SIRPα轴,提高杀伤肿瘤的能力。研究表明,在侵袭性AML和B细胞淋巴瘤,TTI-621成功增强了巨噬细胞对肿瘤细胞的吞噬作用。体内数据也表明,TTI-621能够抑制小鼠异种移植瘤模型中血液瘤与实体瘤的生长 [70];并且TTI-621治疗血液肿瘤和实体瘤的研究已进入临床试验阶段 [69]。

4.5. Toll样受体激动剂

Toll样受体(Toll-like receptors, TLRs)是天然免疫细胞的模式识别受体,在天然免疫反应激活过程中发挥关键作用。通过细菌颗粒(如脂多糖LPS)和病毒核酸(RNA或DNA)激活TLRs可使巨噬细胞极化成M1样的表型。据报道,M1样的巨噬细胞具有杀伤肿瘤的功能。基于此,研究人员在肿瘤模型中筛查了不同TLRs的合成配体,以评估它们在逆转TME中促肿瘤的TAMs向抑肿瘤表型转变的作用 [71]。

在小鼠乳腺癌模型中,瘤内注入TLR7和TLR9激动剂可增加肿瘤组织中单核细胞的浸润和巨噬细胞的复极化(由促肿瘤的M2样表型转变成抑肿瘤的M1样表型) [72];在黑色素瘤中,TLR7和TLR8激动剂也可诱导巨噬细胞复极化,提高其抑瘤效应 [73]。基于以上数据,两个TLR7配体(咪喹莫特和852A)和一个TLR9配体(IMO-2055)治疗肿瘤的研究已进入临床试验阶段 [74] [75]。TLR7配体咪喹莫特是唯一被批准用于临床治疗的TLRs激动剂,其在基底细胞癌、黑色素瘤和乳腺癌皮肤转移中均显示出抗肿瘤活性;而852A在黑色素瘤、白血病和妇科肿瘤的临床试验显示了抗肿瘤活性。IMO-2055在结直肠癌、头颈癌、肺癌和肾癌的临床试验也获得了显著的抗肿瘤效果。

4.6. CAR-Macrophage

在巨噬细胞上插入靶向特定肿瘤抗原的嵌合抗原受体(chimeric antigen receptors, CAR),以改造巨噬细胞,使其特异性靶向表达CAR分子配体的肿瘤细胞,杀伤肿瘤细胞,这种巨噬细胞被称为CAR-macrophage (简称CAR-M)。

Michael Klichinsky等人 [76] 在巨噬细胞嵌入了靶向HER2的CAR分子,并在小鼠肿瘤模型中评估了CAR-M杀伤肿瘤的效果。结果表明,在人卵巢癌异种移植的小鼠模型中,尾静脉注射CAR-M可显著抑制肿瘤生长,延长荷瘤小鼠的总生存期,并且CAR-M还能降低卵巢癌细胞的肺转移。研究还发现,CAR-M除自身呈现抗肿瘤的M1样表型,还能使TME中的M2样TAMs转化成M1样的表型,并促进肿瘤组织中T细胞的浸润。从CAR-M研发公司的官网可见,靶向HER2的CAR-M已进入临床试验,但具体结果尚不清楚。

此外,中国科学家 [77] 也开发了诱导型多能干细胞iPSC分化生成的表达CAR分子的巨噬细胞(CAR-expressing iPSC-derived macrophage, CAR-iMac)用于肿瘤的治疗。CAR-iMac不仅产率高、纯度高,而且还具备巨噬细胞的基因表达谱与吞噬、极化等功能。当与CD19阳性的淋巴瘤细胞和表达mesothelin抗原的卵巢癌细胞共培养时,CAR-iMac表现出抗原依赖性的吞噬与杀伤功能,且呈现M1样巨噬细胞的表型。在小鼠血液肿瘤与实体瘤模型,CAR-iMac也显示了抑制肿瘤生长的作用。

4.7. PI3K抑制剂

PI3Ks参与了细胞中几乎所有类型的信号传递。PI3K分为几个亚类,其中1B类主要在造血细胞表达。缺乏PI3Kγ的小鼠,巨噬细胞和中性粒细胞的招募受损 [78]。Kaneda等 [79] 研究表明,PI3Kγ是TAMs发挥肿瘤免疫抑制作用的关键调控因子;基因敲除或应用药物抑制PI3K可诱导MHC-II类分子的表达,并促进IL-12和抑制IL-10的分泌。因此,抑制TAMs中的PI3K,可促进抗肿瘤的适应性免疫细胞和肿瘤抑制相关的细胞浸润。在临床水平,PI3Kγ活性较低的头颈部和肺癌患者预后更好,且总生存期延长,提示PI3Kγ可能是未来潜在的治疗靶点。

5. 结语

综上所述,受肿瘤微环境影响,大多数情况下TAMs是促肿瘤的。目前靶向使其复极化成杀伤肿瘤的表型(如PI3K抑制剂),靶向功能性分子(如Fc受体)等,并且针对这些治疗策略的研究均已进入临床前或临床阶段。尽管如此,靶向巨噬细胞的每一项治疗策略均需要进一步研究和优化,因为这些策略在肿瘤治疗过程中均具有各自的限制性。此外,巨噬细胞具有较强的异质性与可塑性,巨噬细胞的表型受发育与环境因素的双重调控,所以不同部位的肿瘤组织中TAMs的表型也可能不同,这就需要应用更精细的手段进行鉴定,如单细胞测序技术,也有助于针对不同部位的肿瘤实现精准治疗。

文章引用

杨 枫,张 琨,王 蕊. 靶向肿瘤相关巨噬细胞的抗肿瘤策略研究进展
Advances in Antitumor Strategies Targeting Tumor-Associated Macrophages[J]. 世界肿瘤研究, 2022, 12(01): 23-32. https://doi.org/10.12677/WJCR.2022.121004

参考文献

  1. 1. Ceci, C., et al. (2020) Targeting Tumor-Associated Macrophages to Increase the Efficacy of Immune Checkpoint Inhibitors: A Glimpse into Novel Therapeutic Approaches for Metastatic Melanoma. Cancers (Basel), 12, Article 3401.
    https://doi.org/10.3390/cancers12113401

  2. 2. Liu, Z., et al. (2019) Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell, 178, 1509- 1525e19.
    https://doi.org/10.1016/j.cell.2019.08.009

  3. 3. Ginhoux, F., et al. (2010) Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, 330, 841-845.
    https://doi.org/10.1126/science.1194637

  4. 4. Guilliams, M., et al. (2013) Alveolar Macrophages Develop from Fetal Monocytes That Differentiate into Long-Lived Cells in the First Week of Life via GM-CSF. Journal of Experimental Medicine, 210, 1977-1992.
    https://doi.org/10.1084/jem.20131199

  5. 5. Bain, C.C., et al. (2014) Constant Replenishment from Circulating Monocytes Maintains the Macrophage Pool in the Intestine of Adult Mice. Nature Immunology, 15, 929-937.
    https://doi.org/10.1038/ni.2967

  6. 6. Liu, Y. and Cao, X. (2015) The Origin and Function of Tumor-Associated Macrophages. Cellular & Molecular Immunology, 12, 1-4.
    https://doi.org/10.1038/cmi.2014.83

  7. 7. Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896.
    https://doi.org/10.1038/ni.1937

  8. 8. Bottazzi, B., et al. (1983) Regulation of the Macrophage Content of Neoplasms by Chemoattractants. Science, 220, 210-212.
    https://doi.org/10.1126/science.6828888

  9. 9. Qian, B.Z. and Pollard, J.W. (2010) Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell, 141, 39-51.
    https://doi.org/10.1016/j.cell.2010.03.014

  10. 10. Hambardzumyan, D., Gutmann, D.H. and Kettenmann, H. (2016) The Role of Microglia and Macrophages in Glioma Maintenance and Progression. Nature Neuroscience, 19, 20-27.
    https://doi.org/10.1038/nn.4185

  11. 11. Qian, B.Z., et al. (2011) CCL2 Recruits Inflammatory Monocytes to Facilitate Breast-Tumour Metastasis. Nature, 475, 222-225.
    https://doi.org/10.1038/nature10138

  12. 12. Loyher, P.L., et al. (2018) Macrophages of Distinct Origins Contribute to Tumor Development in the Lung. Journal of Experimental Medicine, 215, 2536-2553.
    https://doi.org/10.1084/jem.20180534

  13. 13. Zhu, Y., et al. (2017) Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 47, 323-338.e6.
    https://doi.org/10.1016/j.immuni.2017.08.018

  14. 14. Bowman, R.L., et al. (2016) Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 17, 2445-2459.
    https://doi.org/10.1016/j.celrep.2016.10.052

  15. 15. Chen, Z., et al. (2017) Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research, 77, 2266-2278.
    https://doi.org/10.1158/0008-5472.CAN-16-2310

  16. 16. DeNardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382.
    https://doi.org/10.1038/s41577-019-0127-6

  17. 17. Kumar, V., et al. (2016) CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity, 44, 303-315.
    https://doi.org/10.1016/j.immuni.2016.01.014

  18. 18. Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61.
    https://doi.org/10.1016/j.immuni.2014.06.010

  19. 19. Pollard, J.W. (2009) Trophic Macrophages in Development and Disease. Nature Reviews Immunology, 9, 259-270.
    https://doi.org/10.1038/nri2528

  20. 20. Morandi, F. and Pistoia, V. (2014) Interactions between HLA-G and HLA-E in Physiological and Pathological Conditions. Frontiers in Immunology, 5, Article 394.
    https://doi.org/10.3389/fimmu.2014.00394

  21. 21. Santarpia, M. and Karachaliou, N. (2015) Tumor Immune Microenvironment Characterization and Response to Anti-PD-1 Therapy. Cancer Biology & Medicine, 12, 74-78.

  22. 22. Buchbinder, E.I. and Desai, A. (2016) CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology, 39, 98-106.
    https://doi.org/10.1097/COC.0000000000000239

  23. 23. Mellor, A.L., et al. (2002) Cells Expressing Indoleamine 2,3-Dioxygenase Inhibit T Cell Responses. The Journal of Immunology, 168, 3771-3776.
    https://doi.org/10.4049/jimmunol.168.8.3771

  24. 24. Mbongue, J.C., et al. (2015) The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel), 3, 703-729.
    https://doi.org/10.3390/vaccines3030703

  25. 25. Mantovani, A., et al. (2008) Cancer-Related Inflammation. Nature, 454, 436-444.
    https://doi.org/10.1038/nature07205

  26. 26. Cersosimo, F., et al. (2020) Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. International Journal of Molecular Sciences, 21, Article 5207.
    https://doi.org/10.3390/ijms21155207

  27. 27. Mantovani, A. and Allavena, P. (2015) The Interaction of Anticancer Therapies with Tumor-Associated Macrophages. Journal of Experimental Medicine, 212, 435-445.
    https://doi.org/10.1084/jem.20150295

  28. 28. Bonavita, E., et al. (2015) Phagocytes as Corrupted Policemen in Cancer-Related Inflammation. Advances in Cancer Research, 128, 141-171.
    https://doi.org/10.1016/bs.acr.2015.04.013

  29. 29. Leek, R.D., et al. (1996) Association of Macrophage Infiltration with Angiogenesis and Prognosis in Invasive Breast Carcinoma. Cancer Research, 56, 4625-4629.

  30. 30. Tian, Y., Ke, Y. and Ma, Y. (2020) High Expression of Stromal Signatures Correlated with Macrophage Infiltration, Angiogenesis and Poor Prognosis in Glioma Microenvironment. PeerJ, 8, e9038.
    https://doi.org/10.7717/peerj.9038

  31. 31. Murdoch, C., et al. (2008) The Role of Myeloid Cells in the Promotion of Tumour Angiogenesis. Nature Reviews Cancer, 8, 618-631.
    https://doi.org/10.1038/nrc2444

  32. 32. Su, B., et al. (2021) Let-7d Inhibits Intratumoral Macrophage M2 Polarization and Subsequent Tumor Angiogenesis by Targeting IL-13 and IL-10. Cancer Immunology, Immunotherapy, 70, 1619-1634.
    https://doi.org/10.21203/rs.3.rs-27516/v1

  33. 33. Smeester, B.A., et al. (2020) PLX3397 Treatment Inhibits Constitutive CSF1R-Induced Oncogenic ERK Signaling, Reduces Tumor Growth, and Metastatic Burden in Osteosarcoma. Bone, 136, Article ID: 115353.
    https://doi.org/10.1016/j.bone.2020.115353

  34. 34. Tap, W.D., et al. (2015) Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor. The New England Journal of Medicine, 373, 428-437.
    https://doi.org/10.1056/NEJMoa1411366

  35. 35. Molena, B., et al. (2011) Synovial Colony-Stimulating Factor-1 mRNA Expression in Diffuse Pigmented Villonodular Synovitis. Clinical and Experimental Rheumatology, 29, 547-550.

  36. 36. Ries, C.H., et al. (2014) Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy. Cancer Cell, 25, 846-859.
    https://doi.org/10.1016/j.ccr.2014.05.016

  37. 37. Butowski, N., et al. (2016) Orally Administered Colony Stimulating Factor 1 Receptor Inhibitor PLX3397 in Recurrent Glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium Phase II Study. Neuro-Oncology, 18, 557-564.
    https://doi.org/10.1093/neuonc/nov245

  38. 38. von Tresckow, B., et al. (2015) An Open-Label, Multicenter, Phase I/II Study of JNJ-40346527, a CSF-1R Inhibitor, in Patients with Relapsed or Refractory Hodgkin Lymphoma. Clinical Cancer Research, 21, 1843-1850.
    https://doi.org/10.1158/1078-0432.CCR-14-1845

  39. 39. Pyonteck, S.M., et al. (2013) CSF-1R Inhibition Alters Macrophage Polarization and Blocks Glioma Progression. Nature Medicine, 19, 1264-1272.
    https://doi.org/10.1038/nm.3337

  40. 40. Cassier, P.A., et al. (2015) CSF1R Inhibition with Emactuzumab in Locally Advanced Diffuse-Type Tenosynovial Giant Cell Tumours of the Soft Tissue: A Dose-Escalation And Dose-Expansion Phase 1 Study. The Lancet Oncology, 16, 949-956.
    https://doi.org/10.1016/S1470-2045(15)00132-1

  41. 41. Piaggio, F., et al. (2016) A Novel Liposomal Clodronate Depletes Tumor-Associated Macrophages in Primary and Metastatic Melanoma: Anti-Angiogenic and Anti-Tumor Effects. The Journal of Controlled Release, 223, 165-177.
    https://doi.org/10.1016/j.jconrel.2015.12.037

  42. 42. Hiraoka, K., et al. (2008) Inhibition of Bone and Muscle Metastases of Lung Cancer Cells by a Decrease in the Number of Monocytes/Macrophages. Cancer Science, 99, 1595-1602.
    https://doi.org/10.1111/j.1349-7006.2008.00880.x

  43. 43. Gazzaniga, S., et al. (2007) Targeting Tumor-Associated Macrophages and Inhibition of MCP-1 Reduce Angiogenesis and Tumor Growth in a Human Melanoma Xenograft. Journal of Investigative Dermatology, 127, 2031-2041.
    https://doi.org/10.1038/sj.jid.5700827

  44. 44. Zhou, Y., et al. (2020) Liposomal Clodronate Combined with Cisplatin or Sorafenib Inhibits Hepatocellular Carcinoma Cell Proliferation, Migration and Invasion by Suppressing FOXQ1 Expression. Cellular and Molecular Biology (Noisy-le-Grand), 66, 49-54.
    https://doi.org/10.14715/cmb/2019.66.1.8

  45. 45. Zhang, W., et al. (2010) Depletion of Tumor-Associated Macrophages Enhances the Effect of Sorafenib in Metastatic Liver Cancer Models by Antimetastatic and Antiangiogenic Effects. Clinical Cancer Research, 16, 3420-3430.
    https://doi.org/10.1158/1078-0432.CCR-09-2904

  46. 46. Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904.
    https://doi.org/10.1038/nrd.2018.169

  47. 47. Deshmane, S.L., et al. (2009) Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. Journal of Interferon & Cytokine Research, 29, 313-326.
    https://doi.org/10.1089/jir.2008.0027

  48. 48. Yoshimura, T. (2017) The Production of Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 in Tumor Microenvironments. Cytokine, 98, 71-78.
    https://doi.org/10.1016/j.cyto.2017.02.001

  49. 49. Li, L., et al. (2018) High Levels of CCL2 or CCL4 in the Tumor Microenvironment Predict Unfavorable Survival in Lung Adenocarcinoma. Thoracic Cancer, 9, 775-784.
    https://doi.org/10.1111/1759-7714.12643

  50. 50. De la Fuente Lopez, M., et al. (2018) The Relationship between Chemokines CCL2, CCL3, and CCL4 with the Tumor Microenvironment and Tumor-Associated Macrophage Markers in Colorectal Cancer. Tumor Biology, 40.
    https://doi.org/10.1177/1010428318810059

  51. 51. Avila, M.A. and Berasain, C. (2019) Targeting CCL2/CCR2 in Tumor-Infiltrating Macrophages: A Tool Emerging Out of the Box against Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 7, 293-294.
    https://doi.org/10.1016/j.jcmgh.2018.11.002

  52. 52. Zheng, Y., et al. (2021) Epigenetic Silencing of Chemokine CCL2 Represses Macrophage Infiltration to Potentiate Tumor Development in Small Cell Lung Cancer. Cancer Letters, 499, 148-163.
    https://doi.org/10.1016/j.canlet.2020.11.034

  53. 53. Steinberger, K.J., et al. (2020) Stress-Induced Norepinephrine Downregulates CCL2 in Macrophages to Suppress Tumor Growth in a Model of Malignant Melanoma. Cancer Prevention Research (Phila), 13, 747-760.
    https://doi.org/10.1158/1940-6207.CAPR-19-0370

  54. 54. Yao, M., et al. (2017) Continuous Delivery of Neutralizing Antibodies Elevate CCL2 Levels in Mice Bearing MCF10CA1d Breast Tumor Xenografts. Translational Oncology, 10, 734-743.
    https://doi.org/10.1016/j.tranon.2017.06.009

  55. 55. Loberg, R.D., et al. (2007) CCL2 as an Important Mediator of Prostate Cancer Growth in Vivo through the Regulation of Macrophage Infiltration. Neoplasia, 9, 556-562.
    https://doi.org/10.1593/neo.07307

  56. 56. Bonapace, L., et al. (2014) Cessation of CCL2 Inhibition Accelerates Breast Cancer Metastasis by Promoting Angiogenesis. Nature, 515, 130-133.
    https://doi.org/10.1038/nature13862

  57. 57. Hitchcock, J.R. and Watson, C.J. (2015) Anti-CCL2: Building a Reservoir or Opening the Floodgates to Metastasis? Breast Cancer Research, 17, Article No. 68.
    https://doi.org/10.1186/s13058-015-0573-4

  58. 58. Lebrecht, A., et al. (2004) Monocyte Chemoattractant Protein-1 Serum Levels in Patients with Breast Cancer. Tumor Biology, 25, 14-17.
    https://doi.org/10.1159/000077718

  59. 59. Loberg, R.D., et al. (2007) Targeting CCL2 with Systemic Delivery of Neutralizing Antibodies Induces Prostate Cancer Tumor Regression in Vivo. Cancer Research, 67, 9417-9424.
    https://doi.org/10.1158/0008-5472.CAN-07-1286

  60. 60. Moisan, F., et al. (2014) Enhancement of Paclitaxel and Carboplatin Therapies by CCL2 Blockade in Ovarian Cancers. Molecular Oncology, 8, 1231-1239.
    https://doi.org/10.1016/j.molonc.2014.03.016

  61. 61. Nywening, T.M., et al. (2016) Targeting Tumour-Associated Macrophages with CCR2 Inhibition in Combination with FOLFIRINOX in Patients with Borderline Resectable and Locally Advanced Pancreatic Cancer: A Single-Centre, Open-Label, Dose-Finding, Non-Randomised, Phase 1b Trial. The Lancet Oncology, 17, 651-662.
    https://doi.org/10.1016/S1470-2045(16)00078-4

  62. 62. Chen, J., et al. (2017) SLAMF7 Is Critical for Phagocytosis of Haematopoietic Tumour Cells via Mac-1 Integrin. Nature, 544, 493-497.
    https://doi.org/10.1038/nature22076

  63. 63. Xiao, Z., et al. (2015) Antibody Mediated Therapy Targeting CD47 Inhibits Tumor Progression of Hepatocellular Carcinoma. Cancer Letters, 360, 302-309.
    https://doi.org/10.1016/j.canlet.2015.02.036

  64. 64. Edris, B., et al. (2012) Antibody Therapy Targeting the CD47 Protein Is Effective in a Model of Aggressive Metastatic Leiomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 109, 6656-6661.
    https://doi.org/10.1073/pnas.1121629109

  65. 65. Weiskopf, K., et al. (2016) CD47-Blocking Immunotherapies Stimulate Macrophage-Mediated Destruction of Small- Cell Lung Cancer. Journal of Clinical Investigation, 126, 2610-2620.
    https://doi.org/10.1172/JCI81603

  66. 66. Liu, R., et al. (2017) CD47 Promotes Ovarian Cancer Progression by Inhibiting Macrophage Phagocytosis. Oncotarget, 8, 39021-39032.
    https://doi.org/10.18632/oncotarget.16547

  67. 67. Wu, Z., et al. (2019) Identification of Glutaminyl Cyclase Isoenzyme isoQC as a Regulator of SIRPalpha-CD47 Axis. Cell Research, 29, 502-505.
    https://doi.org/10.1038/s41422-019-0177-0

  68. 68. Logtenberg, M.E.W., et al. (2019) Glutaminyl Cyclase Is an Enzymatic Modifier of the CD47-SIRPalpha Axis and a Target for Cancer Immunotherapy. Nature Medicine, 25, 612-619.
    https://doi.org/10.1038/s41591-019-0356-z

  69. 69. Ansell, S.M., et al. (2021) Phase I Study of the CD47 Blocker TTI-621 in Patients with Relapsed or Refractory Hematologic Malignancies. Clinical Cancer Research, 27, 2190-2199.

  70. 70. Petrova, P.S., et al. (2017) TTI-621 (SIRPalphaFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding. Clinical Cancer Research, 23, 1068-1079.
    https://doi.org/10.1158/1078-0432.CCR-16-1700

  71. 71. Kaczanowska, S., Joseph, A.M. and Davila, E. (2013) TLR Agonists: Our Best Frenemy in Cancer Immunotherapy. Journal of Leukocyte Biology, 93, 847-863.
    https://doi.org/10.1189/jlb.1012501

  72. 72. Le Mercier, I., et al. (2013) Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment. Cancer Research, 73, 4629-4640.
    https://doi.org/10.1158/0008-5472.CAN-12-3058

  73. 73. Singh, M., et al. (2014) Effective Innate and Adaptive Antimelanoma Immunity through Localized TLR7/8 Activation. The Journal of Immunology, 193, 4722-4731.
    https://doi.org/10.4049/jimmunol.1401160

  74. 74. Vacchelli, E., et al. (2016) Trial Watch: Immunotherapy plus Radiation Therapy for Oncological Indications. Oncoimmunology, 5, e1214790.
    https://doi.org/10.1080/2162402X.2016.1214790

  75. 75. Menzies, S., Mc Menamin, M. and Barry, R. (2017) Lentigo Maligna Successfully Treated with Combination Therapy of Topical Tazarotene and Imiquimod. Clinical and Experimental Dermatology, 42, 468-470.
    https://doi.org/10.1111/ced.13053

  76. 76. Klichinsky, M., et al. (2020) Human Chimeric Antigen Receptor Macrophages for Cancer Immunotherapy. Nature Biotechnology, 38, 947-953.
    https://doi.org/10.1038/s41587-020-0462-y

  77. 77. Zhang, L., et al. (2020) Pluripotent Stem Cell-Derived CAR-Macrophage Cells with Antigen-Dependent Anti-Cancer Cell Functions. Journal of Hematology & Oncology, 13, Article No. 153.
    https://doi.org/10.1186/s13045-020-00983-2

  78. 78. Hirsch, E., et al. (2000) Central Role for G Protein-Coupled Phosphoinositide 3-Kinase Gamma in Inflammation. Science, 287, 1049-1053.
    https://doi.org/10.1126/science.287.5455.1049

  79. 79. Kaneda, M.M., et al. (2016) PI3Kgamma Is a Molecular Switch That Controls Immune Suppression. Nature, 539, 437-442.
    https://doi.org/10.1038/nature19834

  80. NOTES

    *通讯作者。

期刊菜单