World Journal of Cancer Research
Vol. 14  No. 02 ( 2024 ), Article ID: 84931 , 9 pages
10.12677/wjcr.2024.142013

2型糖尿病与结直肠腺瘤关系研究进展

孟祥政1,张健2

1济宁医学院临床医学院,山东 济宁

2济宁市第一人民医院消化内科,山东 济宁

收稿日期:2024年3月22日;录用日期:2024年4月12日;发布日期:2024年4月22日

摘要

多数结直肠癌(Colorectal Cancer, CRC)是从结直肠腺瘤(Colorectal Adenomas, CRA)演变而来的。目前主要通过早期发现和切除结直肠腺瘤来预防结直肠癌的发生。2型糖尿病(Type 2 Diabetes Mellitus, T2DM)作为一种代谢性疾病,与多种癌症密切相关,包括结直肠癌。近年来,有研究显示2型糖尿病也是结直肠腺瘤的独立危险因素,其中潜在机制尚不明确。本文主要从2型糖尿病与结直肠腺瘤相关性、糖尿病人群中影响结直肠腺瘤发生的影响因素、两者可能的潜在机制进行综述,以提高对临床早期筛查高风险人群的重视。

关键词

2型糖尿病,结直肠腺瘤,危险因素,机制

Research Progress on the Relationship between Type 2 Diabetes Mellitus and Colorectal Adenomas

Xiangzheng Meng1, Jian Zhang2

1College of Clinical, Jining Medical University, Jining Shandong

2Department of Digestive Diseases, Jining No.1 People’s Hospital, Jining Shandong

Received: Mar. 22nd, 2024; accepted: Apr. 12th, 2024; published: Apr. 22nd, 2024

ABSTRACT

The majority of colorectal cancer cases are attributed to the presence of colorectal adenomas. Currently, the primary approach for preventing colorectal adenomas is through early detection and removal. Type 2 diabetes mellitus, as a metabolic disorder, exhibits a robust association with various cancers, including colorectal cancer. Recent studies consistently demonstrate that type 2 diabetes mellitus independently increases the risk of developing colorectal adenomas; however, the precise underlying mechanisms remain incompletely elucidated. This paper aims to explore the correlation between type 2 diabetes mellitus and colorectal adenomas, identify factors influencing their development in individuals with diabetes, and shed light on potential underlying mechanisms. The findings underscore the significance of early clinical screening among high-risk groups.

Keywords:Type 2 Diabetes Mellitus, Colorectal Adenomas, Risk Factors, Mechanism

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

T2DM是一种临床常见的慢性疾病,目前病因及机制尚不明确,以胰岛素抵抗、进行性胰岛素分泌不足所致高血糖为主要特点 [1] 。随着人口老龄化程度日益加深及饮食习惯的改变,T2DM的发病率逐年升高。据国际糖尿病联盟(IDF)统计,截止到2021年全世界约有糖尿病患者5.366亿,预计2045年将达到7.832亿,而且在中国20~49岁人群中糖尿病患者约占1.409亿,2045年将达到1.744亿 [2] 。T2DM与恶性肿瘤关系及机制的研究一直是近些年的研究热点。大量研究表明,T2DM是多种恶性肿瘤的独立危险因素,其中包括CRC [3] [4] 。CRC是世界上第三大常见的癌症,也是癌症致死的第二大常见原因 [5] 。在我国,结直肠癌患者人数大约占全球三分之一,疾病负担十分沉重 [6] 。CRC最主要的前体病变是CRA,因此,推测T2DM也是CRA的危险因素之一。T2DM和CRA的发病率逐年上升,且年轻化趋势日益明显,多项研究证实两者具有密切的相关性,但目前国内缺少对两者关系研究进展的系统讨论,本文对此进行综述,以阐明两者之间的关系及可能潜在机制,为T2DM与CRA人群临床获益提供参考价值。

2. 结直肠腺瘤

2.1. 组织分型

CRA包括传统腺瘤和锯齿状腺瘤 [7] 。传统腺瘤又分为管状腺瘤、绒毛状腺瘤、混合性腺瘤,以管状腺瘤最常见。根据WHO第5版消化系统肿瘤分类,锯齿状病变包括增生性息肉(HP)、无蒂锯齿状病变(SSL)、无蒂锯齿状病变伴异型增生(SSL-D)、传统锯齿状腺瘤(TSA)及未分类的锯齿状腺瘤 [8] 。其中,HP在锯齿状病变中约占80%,但通常被认为不会发生恶变 [7] 。

2.2. 分子与组织学机制

CRC主要通过CRA演变而来,其中,70%~90%的CRC由CRA遵循传统的“腺瘤–癌”途径恶变转化,10%~20%则通过“锯齿状瘤变”途径演变而来 [4] 。通常大肠上皮细胞的增殖仅位于肠隐窝的底部,新生的上皮细胞向隐窝开口移动并失去增殖能力 [9] 。但当某些诱因导致调节DNA修复和细胞增殖的基因发生突变时,细胞的增殖能力得以维持,尤其是那些向上迁移的细胞,从而形成异常隐窝病灶(ACF)进一步导致腺瘤的发生。目前研究表明CRC是一组通过不同通路发展的分子异质性疾病。腺瘤样息肉病基因(APC)或BRAF突变分别是导致传统腺瘤或锯齿状病变发生的起始事件。腺瘤继续进展直至恶性取决于不同的分子通路。目前已知的通路包括CIN通路、MSI通路、锯齿状瘤变通路 [9] 。

3. T2DM和CRA的直接相关性

3.1. T2DM与传统腺瘤

一些文献报道已经证实糖尿病是传统腺瘤的危险因素。一项meta分析结果显示,与非糖尿病人群相比,糖尿病患者罹患结直肠癌的风险明显增加(RR 1.37; 95% CI 1.30~1.45),并且腺瘤发生的风险也增加(RR 1.26; 95% CI 1.11~1.44) [10] 。我国一项大样本前瞻性研究也表明T2DM与腺瘤检出率(ADR)增加显著相关(OR 2.221; 95% CI 1.084~4.549) [11] 。多项回顾性研究表明在不同年龄阶段人群中,T2DM发生腺瘤的风险显著升高 [12] [13] [14] [15] 。

3.2. T2DM与锯齿状病变

目前关于糖尿病与锯齿状病变的相关性研究较少。尽管少数研究认为锯齿状病变不存在相关性 [16] ,但多数研究还是支持两者之间存在一定的联系。Lui R N等 [17] 研究的多变量逻辑回归分析发现糖尿病是发生SSL的独立危险因素,另一项研究表明SSL与传统腺瘤之间糖尿病患者比例没有显著的差异 [18] 。Anderson J C等 [19] 回顾性研究则提示T2DM和肥胖与无柄锯齿状腺瘤(SSAs)正相关。Zorron Cheng Tao Pu L等 [20] 研究发现T2DM与锯齿状腺瘤的发生显著相关,多变量逻辑回归分析表明,T2DM患者发生锯齿状腺瘤的几率增加3.52%。针对T2DM与锯齿状病变关系,下一步需要更大样本数据的研究。

3.3. T2DM促进CRA发展

于景霞等 [21] 针对T2DM患者腺瘤的病理特征进行了一项回顾性研究,结果发现与非糖尿病腺瘤组相比,2型糖尿病腺瘤组的多发腺瘤和进展期腺瘤比例更高(16.7% vs. 10.1%, 21.6% vs. 14.1%)。国外一项纳入17篇文献meta分析结果显示T2DM不仅是CRA的危险因素(RR 1.52; 95%CI 1.29~1.80),T2DM也是进展期腺瘤的危险因素(RR 1.41; 95% CI 1.06~1.87) [22] 。另一项meta分析表明50岁以下T2DM人群的进展期腺瘤和癌症的发病率显著增加(OR 1.60; 95% CI 1.32~1.95) [23] 。上述研究说明T2DM是导致CRA病理进展和异型程度加重的一个促进因素。不符合糖尿病诊断标准的高血糖通常被称为前驱糖尿病(preDM) [24] 。值得注意的是,研究发现在前驱糖尿病患者中结直肠腺瘤的患病率高于非糖尿病患者,且患者罹患多发、高危腺瘤的几率也较高,是高危腺瘤的独立危险因素 [25] 。这对空腹血糖或糖耐量受损人群结直肠镜筛查及强调早期干预具有积极意义,需要更大样本、多中心研究进一步探究。

4. T2DM人群CRA发病的相关影响因素

4.1. 血糖控制情况

X Huang等 [26] 人将T2DM患者分为HbA1c < 7.5%和HbA1c ≥ 7.5%两组,发现HbA1c ≥ 7.5%的Y2DM患者发生CRA和CRC的风险增加。同样,Siddiqui A A等 [27] 进行的一项研究显示,在T2DM人群中,与糖尿病控制不良(HbA1c ≥ 7.5%)患者相比,糖尿病控制良好(HbA1c < 7.5%)患者总的腺瘤数量增加,更易出现进展期腺瘤,且发生腺瘤的年龄更加提前。因此,尽管糖尿病是CRA的危险因素,长期保持血糖稳定仍可降低其出现的几率。但上述研究没有分析糖尿病控制良好患者与正常人之间腺瘤的差异程度,值得进一步研究以明确。

4.2. T2DM病程

Yu F等 [22] 进行了一项meta分析,该研究纳入17个相关的研究,荟萃结果表明,已确诊的T2DM患者比新诊断的患者发生CRA的风险约高5%,表明T2DM长病程是CRA的一个危险因素。推测长病程的T2DM患者处于高胰岛素血症/胰岛素抵抗和高血糖环境的时间更长,这种长时间激素或代谢异常会增加肠上皮异型的几率。

4.3. 降糖药物

Ottaviano L F等 [13] 回顾性研究表明对于T2DM患者,未服用糖尿病药物的患者比服用药物的患者更容易发生腺瘤(OR 2.38; 95% CI 1.09~5.2),但该研究未再分析每个降糖药物的单独作用。目前研究表明降糖药物对腺瘤的发生发展发挥重要作用,本文就胰岛素、二甲双胍两个热点降糖药物的研究进展做介绍。

4.3.1. 胰岛素

来自韩国的一项回顾性研究显示,选择没有糖尿病或结肠直肠癌病史的人群作为研究对象,排除干扰因素后提示血液胰岛素水平升高是腺瘤性息肉发生的一个独立危险因素,而在非腺瘤性息肉中无统计学意义 [28] 。Kim E H等人 [29] 也发现空腹血清胰岛素水平升高和胰岛素抵抗与结直肠腺瘤的存在显著相关。Nagel J M等 [30] 进行了一项动物试验,把糖尿病小鼠分为三组,分别给予甘精胰岛素、NPH胰岛素、生理盐水持续治疗18周后,发现给予甘精胰岛素及NPH胰岛素的小鼠较对照组相比结肠粘膜细胞增殖指数显著增高及ACF数量明显增多。Eddi R等 [31] 研究发现糖尿病患者暴露于胰岛素增加了结直肠腺瘤的风险(OR 1.73, 95% CI 1.13~2.65),而二甲双胍或磺酰脲类药物的使用与腺瘤无显著相关性,胰岛素的使用与进展期腺瘤无关。上述研究证明胰岛素水平是CRA的一个危险因素,在糖尿病中作用更明显。

4.3.2. 二甲双胍

二甲双胍具有降血糖作用,通过上调AMPK通路抑制肝脏糖异生并改善骨骼肌葡萄糖摄取。目前已知AMPK通路通过抑制mTOR通路引起G1-S期细胞周期阻滞,还能降低血液中胰岛素和IGF-1的水平,由此推测二甲双胍可能具有抗肿瘤作用。一项回顾性研究表明在糖尿病患者组中,服用二甲双胍的人群患结直肠腺瘤的风险显著降低(OD 0.55, 95% Cl 0.34~0.87) [32] 。来自日本的Hosono K等人 [33] 为验证二甲双胍是否对ACF有化学预防作用,将非糖尿病ACF患者进行随机分组,分为给予二甲双胍组和对照组进行为期1月的随访,结果显示二甲双胍组患者平均ACF数量显著下降(治疗前8.78 ± 6.45 vs. 治疗后5.11 ± 4.99),而对照组患者平均ACF数量无显著变化(治疗前7.23 ± 6.65 vs. 治疗后7.56 ± 6.75)。该研究首次表明二甲双胍有望在化学预防结肠直肠癌方面发挥作用。后续多个研究证实二甲双胍在减少腺瘤发生及延缓腺瘤进展 [34] ,减少异时性腺瘤的复发率 [35] 、结直肠癌的发生率 [36] [37] 均发挥作用。一项纳入5篇观察性研究的meta分析表明应用二甲双胍治疗的T2DM患者罹患结直肠腺瘤的风险降低20% (OR 0.80; 95% CI 0.71~0.90) [38] ,并且有研究表明在亚洲人群中,长期使用高剂量二甲双胍(RR 0.52; 95% Cl 0.36~0.83)治疗腺瘤(RR 0.66; 95% Cl 0.56~0.70)和CRC (RR 0.45; 95% Cl 0.29~0.70)比短期使用二甲双胍更有效 [39] 。然而还需要更大规模、更长期的随访研究来进一步论证是否适用于不同人群。

4.4. 其他

Hu K C等 [40] 研究表明,高血糖合并幽门螺杆菌(Hp)是CRA形成的危险因素,另一项大规模横断面相关研究报道 [41] 显示,糖化血红蛋白每升高1%,Hp阳性受试者腺瘤患病率增加42.4%,提示高血糖和Hp感染对CRA风险具有协同作用。后续meta分析显示 [42] 在糖尿病高患病率的人群中,Hp感染阳性者CRA发生风险显著增加。糖尿病与代谢综合征(MetS)密切相关,糖尿病与MetS共存状态更易罹患CRA和CRC [43] [44] 。

5. T2DM促进CRA、CRC发生的机制

糖尿病与CRA及CRC之间的病理生理机制十分复杂,尚不完全明确。目前机制涉及胰岛素抵抗和高胰岛素血症、炎症反应、脂肪细胞因子、胃肠功能障碍及肠道菌群等多个方面,下面就主要热点机制进行阐述。

5.1. 胰岛素抵抗和高胰岛素血症

胰岛素抵抗(IR)是指多种因素导致胰岛素受体对于胰岛素的反应性降低,促使机体过度产生胰岛素,最终导致血液中胰岛素水平异常升高。T2DM与IR密切相关 [45] [46] ,目前认为血浆高水平胰岛素通过抑制细胞凋亡刺激结肠上皮细胞增殖而增加腺瘤风险 [32] 。胰岛素样生长因子(IGF)是一组促进细胞增殖的多肽类物质,其化学结构类似于胰岛素。IGF系统主要由两个IGF (IGF-1、IGF-2)、两个IGF受体(IGF-R1、IGF-R2)和七个IGF结合蛋白(IGFBPs)组成。IGF-1轴参与肿瘤发生、肿瘤生长和侵袭已经在体外和体内得到证实 [47] 。胰岛素通过上调肝脏中的生长激素受体来增加IGF-1的水平。另外,IGFBP1对IGF-1具有很高的亲和力,受胰岛素负调控。持续的高水平胰岛素抑制IGFBP1,使IGF-1水平升高,与IGF-R1亲和力增加,从而间接发挥作用。IGF-1和胰岛素也可能通过激活Ras通路发挥作用,导致肠道上皮细胞对生长因子的敏感度提高,进而加速腺瘤向癌的进展 [48] 。研究还发现T2DM患者可通过Wnt信号通路上调以及胰岛素与Wnt通路的相互作用使β-catenin的Ser33/37位点磷酸化减少和Ser675位点磷酸化增加,导致β-catenin在结直肠上皮发生积聚,从而促进结直肠上皮增殖 [49] 。β-catenin可作用于原癌基因c-Myc。c-Myc高表达可下调多种生长停滞基因的表达,如p21。目前表明胰岛素可能通过促进pak1在Thr423的激活和磷酸化参与了与Wnt信号的交互作用。

5.2. 长期高血糖

Flood A等 [50] 为研究血糖升高与腺瘤复发的相关性,进行了为期4年的随访,结果显示空腹血糖越高腺瘤发生的风险也越高,尤其是晚期腺瘤的检出率更高。Itoh H等 [51] 研究也发现空腹血糖越高,CRC发生风险也随之增加。上述研究说明高血糖可能对CRA及CRC发生具有潜在的促进作用。一般来说,高血糖负荷诱导胰岛素和IGF-1水平上调,从而导致肿瘤细胞生长和增殖 [52] ;另外,长期的高血糖也会造成代谢紊乱以及氧化应激的发生。在动物模型中观察到,缺乏胰岛素的高血糖仍可诱导肠上皮细胞增殖,可通过Wnt/β-catenin通路正向调控,被认为是β-catenin细胞核定位所必需的 [53] 。正常增殖细胞和癌细胞倾向于有氧糖酵解,这是一种生成ATP效率较低的过程,但这一过程除ATP外还产生核苷酸、氨基酸和脂类,从而为细胞分裂做好准备 [54] 。研究发现T2DM患者结直肠上皮的增殖加强和有氧糖酵解增加 [49] 。

5.3. 炎症反应和氧化应激

T2DM患者体内存在异常的炎症反应。目前炎症反应已经被公认为是CRC的起始和进展的重要因素。一些炎症标志物循环水平被证实结直肠腺瘤发生或复发密切相关,如C反应蛋白(CRP)、肿瘤坏死因子α (TNF-α)、白介素6 (IL-6)。晚期糖基化终末产物受体(RAGE)是免疫球蛋白超家族的一员,是一种多配体跨膜受体。其配体包括晚期糖基化终末产物(AGEs)、高迁移率族蛋白B1 (HMGB1)和S100。目前研究表明,RAGE和其配体可能是糖尿病和CRC之间的桥梁。在正常生理条件下,RAGE呈现低表达水平,但在慢性炎症下由于各种RAGE配体的积累而高度上调。其与其配体结合后触发细胞内活性氧的快速生成,并且激活一系列信号通路参与CRC的发生发展,如Wnt/β-catenin、NF-κB、AP-1、MAPKs、Smad4、mTOR、STAT3等等 [55] 。目前有研究发现RAGE-NF-κB介导的炎症机制直接参与结直肠腺瘤的发生发展 [56] 。另外,在肠道内,AGEs可通过下调抗氧化途径或肠道菌群紊乱而促进炎症 [57] 。

5.4. 脂肪细胞因子

T2DM和CRA有一些相同的危险因素,如高糖高脂的饮食行为、缺乏锻炼及腹型肥胖,与之关联的机制可能共同作用于两者。脂肪细胞与IR、高血糖、MetS密切相关。脂肪细胞可分泌瘦素、脂联素、抵抗素、网膜蛋白、内脂素、纤溶酶原激活物抑制因子-1、单核细胞趋化蛋白等数十种脂肪细胞因子。这些因子被认为参与肿瘤细胞的生存、增殖和转移 [58] 。相关研究报道脂肪细胞因子可能在CRA及CRC的发病机制中发挥重要作用 [59] 。比如,Jaffe T等 [60] 研究证实瘦素可通过激活多个信号通路促进肿瘤细胞的运动和侵袭。Deng L等 [61] 研究表明,血浆脂联素低水平是糖尿病前期患者发生结肠息肉、多发结肠息肉和高危结肠息肉的危险因素,表明脂联素可能参与CRA的发生发展。目前关于脂肪细胞因子与CRA、CRC的相互作用尚不明确,未来需要针对更多种类脂肪细胞因子做更细致、更深入的机制研究。

5.5. 胃肠功能障碍

糖尿病患者会出现恶心、呕吐、腹泻、便秘、腹痛等消化道症状,这些症状被认为是由胃肠运动障碍和分泌、吸收障碍引起的。长期罹患糖尿病可能会损伤周围神经,进而影响胃肠道运动,减缓其活动速度,使肠道黏膜暴露在致癌物的时间延长,肠道屏障受到破坏,最终会增加CRA发生的风险 [62] 。此外,持续的高血糖环境会损害胃肠道的结构与功能,导致肠黏膜的通透性发生变化。其次,高脂高热量的饮食习惯同样能增强黏膜的通透性,尤其在T2DM患者中,这一效应更为明显。

6. 总结与展望

T2DM是我国目前面临的严重公共卫生问题。CRA作为CRC主要的癌前病变,在导致CRC发生起重要作用。因此,T2DM与CRA的关系日益受到关注,并成为癌症防治领域的研究热点。本文通过综述分析显示,T2DM与CRA之间存在多方面的相关性,其发生机制涉及胰岛素抵抗和高胰岛素血症、高血糖、代谢紊乱及胃肠功能障碍等多个途径。未来仍需要从分子机制上重点研究T2DM在结直肠肿瘤发生发展中扮演的角色。由于CRA与T2DM目前广泛流行,建议医务人员在平时临床诊疗中,提高对T2DM患者的CRA筛查率。尤其具有高危因素的T2DM患者,如血糖控制不佳、长病程、合并Hp等,可及时行肠镜筛查并切除腺瘤以预防CRC的发生。同时,早发现、早干预也对减轻CRC相关医疗负担具有积极意义。

文章引用

孟祥政,张 健. 2型糖尿病与结直肠腺瘤关系研究进展
Research Progress on the Relationship between Type 2 Diabetes Mellitus and Colorectal Adenomas[J]. 世界肿瘤研究, 2024, 14(02): 88-96. https://doi.org/10.12677/wjcr.2024.142013

参考文献

  1. 1. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 国际内分泌代谢杂志, 2021, 41(5): 482-548.

  2. 2. Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119

  3. 3. Brown, J.C., Zhang, S., Ou, F.S., et al. (2020) Diabetes and Clinical Outcome in Patients with Metastatic Colorectal Cancer: CALGB 80405 (Alliance). JNCI Cancer Spectrum, 4, pkz078. https://doi.org/10.1093/jncics/pkz078

  4. 4. Dekker, E., Tanis, P.J., Vleugels, J.L.A., et al. (2019) Colorectal Cancer. Lancet, 394, 1467-1480. https://doi.org/10.1016/S0140-6736(19)32319-0

  5. 5. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  6. 6. 练佳韦, 刘颖春, 余红平. 结直肠癌的全球流行情况、危险因素及归因疾病负担研究进展[J]. 中国癌症防治杂志, 2024, 16(1): 1-9.

  7. 7. Haumaier, F., Sterlacci, W. and Vieth, M. (2017) Histological and Molecular Classification of Gastrointestinal Polyps. Best Practice & Research Clinical Gastroenterology, 31, 369-379. https://doi.org/10.1016/j.bpg.2017.06.005

  8. 8. Nagtegaal, I.D., Odze, R.D., Klimstra, D., et al. (2020) The 2019 WHO Classification of Tumours of the Digestive System. Histopathology, 76, 182-188. https://doi.org/10.1111/his.13975

  9. 9. Nguyen, L.H., Goel, A. and Chung, D.C. (2020) Pathways of Colorectal Carcinogenesis. Gastroenterology, 158, 291-302. https://doi.org/10.1053/j.gastro.2019.08.059

  10. 10. Luo, S., Li, J.Y., Zhao, L.N., et al. (2016) Diabetes Mellitus Increases the Risk of Colorectal Neoplasia: An Updated Meta-Analysis. Clinics and Research in Hepatology and Gastroenterology, 40, 110-123. https://doi.org/10.1016/j.clinre.2015.05.021

  11. 11. Wang, H., Wang, P., Liu, X., et al. (2019) Factors Predicting the Colorectal Adenoma Detection Rate in Colonoscopic Screening of a Chinese Population: A Prospective Study. Medicine, 98, e15103. https://doi.org/10.1097/MD.0000000000015103

  12. 12. Joseph, D.F., Li, E., Stanley, Iii, S.L., et al. (2021) Impact of Type 2 Diabetes on Adenoma Detection in Screening Colonoscopies Performed in Disparate Populations. World Journal of Clinical Cases, 9, 2433-2445. https://doi.org/10.12998/wjcc.v9.i11.2433

  13. 13. Ottaviano, L.F., Li, X., Murray, M., et al. (2020) Type 2 Diabetes Impacts Colorectal Adenoma Detection in Screening Colonoscopy. Scientific Reports, 10, Article No. 7793. https://doi.org/10.1038/s41598-020-64344-2

  14. 14. Soltani, G., Poursheikhani, A., Yassi, M., et al. (2019) Obesity, Diabetes and the Risk of Colorectal Adenoma and Cancer. BMC Endocrine Disorders, 19, Article No. 113. https://doi.org/10.1186/s12902-019-0444-6

  15. 15. Vu, H.T., Ufere, N., Yan, Y., et al. (2014) Diabetes Mellitus Increases Risk for Colorectal Adenomas in Younger Patients. World Journal of Gastroenterology, 20, 6946-6952. https://doi.org/10.3748/wjg.v20.i22.6946

  16. 16. Bouwens, M.W., Winkens, B., Rondagh, E.J., et al. (2013) Simple Clinical Risk Score Identifies Patients with Serrated Polyps in Routine Practice. Cancer Prevention Research, 6, 855-863. https://doi.org/10.1158/1940-6207.CAPR-13-0022

  17. 17. Lui, R.N., Kyaw, M.H., Lam, T.Y.T., et al. (2021) Prevalence and Risk Factors for Sessile Serrated Lesions in an Average Risk Colorectal Cancer Screening Population. Journal of Gastroenterology and Hepatology, 36, 1656-1662. https://doi.org/10.1111/jgh.15368

  18. 18. Zhang, R., Ni, Y., Guo, C.L., et al. (2023) Risk Factors for Sessile Serrated Lesions among Chinese Patients Undergoing Colonoscopy. Journal of Gastroenterology and Hepatology, 38, 1468-1473. https://doi.org/10.1111/jgh.16200

  19. 19. Anderson, J.C., Rangasamy, P., Rustagi, T., et al. (2011) Risk Factors for Sessile Serrated Adenomas. Journal of Clinical Gastroenterology, 45, 694-699. https://doi.org/10.1097/MCG.0b013e318207f3cf

  20. 20. Cheng, L.Z., Pu, T., Rana, K., Singh, G., et al. (2020) Different Factors Are Associated with Conventional Adenoma and Serrated Colorectal Neoplasia. Nagoya Journal of Medical Science, 82, 335-343.

  21. 21. 于景霞, 钟继红, 郑华君, 等. 2型糖尿病患者结直肠腺瘤临床病理特征和进展期腺瘤危险因素分析[J]. 胃肠病学, 2021, 26(4): 193-197.

  22. 22. Yu, F., Guo, Y., Wang, H., et al. (2016) Type 2 Diabetes Mellitus and Risk of Colorectal Adenoma: A Meta-Analysis of Observational Studies. BMC Cancer, 16, Article No. 642. https://doi.org/10.1186/s12885-016-2685-3

  23. 23. Breau, G. and Ellis, U. (2020) Risk Factors Associated with Young-Onset Colorectal Adenomas and Cancer: A Systematic Review and Meta-Analysis of Observational Research. Cancer Control, 27, 1-11. https://doi.org/10.1177/1073274820976670

  24. 24. Rhee, S.Y. and Woo, J.T. (2011) The Prediabetic Period: Review of Clinical Aspects. Diabetes & Metabolism Journal, 35, 107-116. https://doi.org/10.4093/dmj.2011.35.2.107

  25. 25. Cha, J.M., Lee, J.I., Joo, K.R., et al. (2013) Prediabetes Is Associated with a High-Risk Colorectal Adenoma. Digestive Diseases and Sciences, 58, 2061-2067. https://doi.org/10.1007/s10620-013-2591-3

  26. 26. Huang, X., Fan, Y., Zhang, H., et al. (2015) Association between Serum HbA1c Levels and Adenomatous Polyps in Patients with the Type 2 Diabetes Mellitus. Minerva Endocrinology, 40, 163-167.

  27. 27. Siddiqui, A.A., Maddur, H., Naik, S., et al. (2008) The Association of Elevated HbA1c on the Behavior of Adenomatous Polyps in Patients with Type-II Diabetes Mellitus. Digestive Diseases and Sciences, 53, 1042-1047. https://doi.org/10.1007/s10620-007-9970-6

  28. 28. Shin, H.S. and Cho, Y.J. (2022) Insulin Levels Are Associated with Risk of Colon Adenoma and Not Nonadenomatous Polyps: A Retrospective, Hospital-Based Study. Medicine, 101, e30200. https://doi.org/10.1097/MD.0000000000030200

  29. 29. Kim, E.H., Kim, H.K., Bae, S.J., et al. (2014) Fasting Serum Insulin Levels and Insulin Resistance Are Associated with Colorectal Adenoma in Koreans. Journal of Diabetes Investigation, 5, 297-304. https://doi.org/10.1111/jdi.12178

  30. 30. Nagel, J.M., Staffa, J., Renner-Müller, I., et al. (2010) Insulin Glargine and NPH Insulin Increase to a Similar Degree Epithelial Cell Proliferation and Aberrant Crypt Foci Formation in Colons of Diabetic Mice. Hormones and Cancer, 1, 320-330. https://doi.org/10.1007/s12672-010-0020-z

  31. 31. Eddi, R., Karki, A., Shah, A., et al. (2012) Association of Type 2 Diabetes and Colon Adenomas. Journal of Gastrointestinal Cancer, 43, 87-92. https://doi.org/10.1007/s12029-011-9316-7

  32. 32. Kanadiya, M.K., Gohel, T.D., Sanaka, M.R., et al. (2013) Relationship between Type-2 Diabetes and Use of Metformin with Risk of Colorectal Adenoma in an American Population Receiving Colonoscopy. Journal of Diabetes and its Complications, 27, 463-466. https://doi.org/10.1016/j.jdiacomp.2013.04.010

  33. 33. Hosono, K., Endo, H., Takahashi, H., et al. (2010) Metformin Suppresses Colorectal Aberrant Crypt Foci in a Short-Term Clinical Trial. Cancer Prevention Research, 3, 1077-1083. https://doi.org/10.1158/1940-6207.CAPR-10-0186

  34. 34. Ng, C.W., Jiang, A.A., Toh, E.M, S., et al. (2020) Metformin and Colorectal Cancer: A Systematic Review, Meta-Analysis and Meta-Regression. International Journal of Colorectal Disease, 35, 1501-1512. https://doi.org/10.1007/s00384-020-03676-x

  35. 35. 吕红, 宋晓华. 不同降糖方案对2型糖尿病合并结直肠腺瘤患者行内镜下腺瘤切除术后腺瘤复发的影响研究[J]. 中国全科医学, 2018, 21(20): 2432-2436.

  36. 36. Jung, Y.S., Park, C.H., Eun, C.S., et al. (2017) Metformin Use and the Risk of Colorectal Adenoma: A Systematic Review and Meta-Analysis. Journal of Gastroenterology and Hepatology, 32, 957-965. https://doi.org/10.1111/jgh.13639

  37. 37. Du, L., Wang, M., Kang, Y., et al. (2017) Prognostic Role of Metformin Intake in Diabetic Patients with Colorectal Cancer: An Updated Qualitative Evidence of Cohort Studies. Oncotarget, 8, 26448-26459. https://doi.org/10.18632/oncotarget.14688

  38. 38. Liu, F., Yan, L., Wang, Z., et al. (2017) Metformin Therapy and Risk of Colorectal Adenomas and Colorectal Cancer in Type 2 Diabetes Mellitus Patients: A Systematic Review and Meta-Analysis. Oncotarget, 8, 16017-16026. https://doi.org/10.18632/oncotarget.13762

  39. 39. Deng, M., Lei, S., Huang, D., et al. (2020) Suppressive Effects of Metformin on Colorectal Adenoma Incidence and Malignant Progression. Pathology: Research and Practice, 216, Article ID: 152775. https://doi.org/10.1016/j.prp.2019.152775

  40. 40. Kountouras, J., Polyzos, S.A., Doulberis, M., et al. (2018) Potential Impact of Helicobacter pylori-Related Metabolic Syndrome on Upper and Lower Gastrointestinal Tract Oncogenesis. Metabolism, 87, 18-24. https://doi.org/10.1016/j.metabol.2018.06.008

  41. 41. Hu, K.C., Wu, M.S., Chu, C.H., et al. (2017) Synergistic Effect of Hyperglycemia and Helicobacter pylori Infection Status on Colorectal Adenoma Risk. The Journal of Clinical Endocrinology & Metabolism, 102, 2744-2750. https://doi.org/10.1210/jc.2017-00257

  42. 42. Ko, H.J., Lin, Y.C., Chen, C.C., et al. (2021) Helicobacter Pylori Infection and Increased Diabetes Prevalence Were the Risks of Colorectal Adenoma for Adults: A Systematic Review and Meta-Analysis (PRISMA-Compliant Article). Medicine, 100, e28156. https://doi.org/10.1097/MD.0000000000028156

  43. 43. Lu, L., Koo, S., Mcpherson, S., et al. (2022) Systematic Review and Meta-Analysis: Associations between Metabolic Syndrome and Colorectal Neoplasia Outcomes. Colorectal Disease, 24, 681-694. https://doi.org/10.1111/codi.16092

  44. 44. Trabulo, D., Ribeiro, S., Martins, C., et al. (2015) Metabolic Syndrome and Colorectal Neoplasms: An Ominous Association. World Journal of Gastroenterology, 21, 5320-5327. https://doi.org/10.3748/wjg.v21.i17.5320

  45. 45. Tsugane, S. and Inoue, M. (2010) Insulin Resistance and Cancer: Epidemiological Evidence. Cancer Science, 101, 1073-1079. https://doi.org/10.1111/j.1349-7006.2010.01521.x

  46. 46. Inoue, M. and Tsugane, S. (2012) Insulin Resistance and Cancer: Epidemiological Evidence. Endocrine-Related Cancer, 19, F1-F8. https://doi.org/10.1530/ERC-12-0142

  47. 47. Bowers, L.W., Rossi, E.L., O’flanagan, C.H., et al. (2015) The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Frontiers in Endocrinology, 6, Article 77. https://doi.org/10.3389/fendo.2015.00077

  48. 48. Giouleme, O., Diamantidis, M.D. and Katsaros, M.G. (2011) Is Diabetes a Causal Agent for Colorectal Cancer? Pathophysiological and Molecular Mechanisms. World Journal of Gastroenterology, 17, 444-448. https://doi.org/10.3748/wjg.v17.i4.444

  49. 49. Li, J.Y., Yu, T., Xia, Z.S., et al. (2014) Enhanced Proliferation in Colorectal Epithelium of Patients with Type 2 Diabetes Correlates with β-Catenin Accumulation. Journal of Diabetes and its Complications, 28, 689-697. https://doi.org/10.1016/j.jdiacomp.2014.05.001

  50. 50. Flood, A., Mai, V., Pfeiffer, R., et al. (2007) Elevated Serum Concentrations of Insulin and Glucose Increase Risk of Recurrent Colorectal Adenomas. Gastroenterology, 133, 1423-1429. https://doi.org/10.1053/j.gastro.2007.08.040

  51. 51. Itoh, H., Kaneko, H., Okada, A., et al. (2021) Fasting Plasma Glucose and Incident Colorectal Cancer: Analysis of a Nationwide Epidemiological Database. The Journal of Clinical Endocrinology & Metabolism, 106, e4448-e4458. https://doi.org/10.1210/clinem/dgab466

  52. 52. Lega, I.C. and Lipscombe, L.L. (2020) Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocrine Reviews, 41, 33-52. https://doi.org/10.1210/endrev/bnz014

  53. 53. Chocarro-Calvo, A., García-Martínez, J.M., Ardila-González, S., et al. (2013) Glucose-Induced β-Catenin Acetylation Enhances Wnt Signaling in Cancer. Molecular Cell, 49, 474-486. https://doi.org/10.1016/j.molcel.2012.11.022

  54. 54. Lunt, S.Y. and Vander Heiden, M.G. (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annual Review of Cell and Developmental Biology, 27, 441-464. https://doi.org/10.1146/annurev-cellbio-092910-154237

  55. 55. Azizian-Farsani, F., Abedpoor, N., Hasan Sheikhha, M., et al. (2020) Receptor for Advanced Glycation End Products Acts as a Fuel to Colorectal Cancer Development. Frontiers in Oncology, 10, Article 552283. https://doi.org/10.3389/fonc.2020.552283

  56. 56. Jiao, L., Chen, L., Alsarraj, A., et al. (2012) Plasma Soluble Receptor for Advanced Glycation End-Products and Risk of Colorectal Adenoma. International Journal of Molecular Epidemiology and Genetics, 3, 294-304.

  57. 57. Nie, C., Li, Y., Qian, H., et al. (2022) Advanced Glycation End Products in Food and Their Effects on Intestinal Tract. Critical Reviews in Food Science and Nutrition, 62, 3103-3115. https://doi.org/10.1080/10408398.2020.1863904

  58. 58. Umar, M.I., Hassan, W., Murtaza, G., et al. (2021) The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathology and Oncology Research, 27, Article ID: 1609828. https://doi.org/10.3389/pore.2021.1609828

  59. 59. Joshi, R.K. and Lee, S.A. (2014) Obesity Related Adipokines and Colorectal Cancer: A Review and Meta-Analysis. Asian Pacific Journal of Cancer Prevention, 15, 397-405. https://doi.org/10.7314/APJCP.2014.15.1.397

  60. 60. Jaffe, T. and Schwartz, B. (2008) Leptin Promotes Motility and Invasiveness in Human Colon Cancer Cells by Activating Multiple Signal-Transduction Pathways. International Journal of Cancer, 123, 2543-2556. https://doi.org/10.1002/ijc.23821

  61. 61. Deng, L., Zhao, X., Chen, M., et al. (2020) Plasma Adiponectin, Visfatin, Leptin, and Resistin Levels and the Onset of Colonic Polyps in Patients with Prediabetes. BMC Endocrine Disorders, 20, Article No. 63. https://doi.org/10.1186/s12902-020-0540-7

  62. 62. Ahmadi, A., Mobasheri, M., Hashemi-Nazari, S.S., et al. (2014) Prevalence of Hypertension and Type 2 Diabetes Mellitus in Patients with Colorectal Cancer and Their Median Survival Time: A Cohort Study. Journal of Research in Medical Sciences, 19, 850-854.

期刊菜单