Hans Journal of Ophthalmology
Vol.07 No.01(2018), Article ID:24029,7 pages
10.12677/HJO.2018.71004

Advance in Risk Factors and Prevention of Dry Age-Related Macular Degeneration

Qiaosheng Liu, Shuhua Fu

The Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi

Received: Feb. 20th, 2018; accepted: Mar. 7th, 2018; published: Mar. 14th, 2018

ABSTRACT

Age related macular degeneration (AMD) is one of the important causes of blindness. It can be divided into two types: dry (atrophy) and wet (exudative) AMD, there is still no effective treatment for dry AMD. In this article, we will review the research progress of dry AMD from the four risk factors of genetics, aging, oxidative stress and local blood perfusion. It will provide new ideas and methods for early intervention of dry AMD.

Keywords:Dry Age-Related Macular Degeneration, Risk Factor, Nosogenesis

干性老年黄斑变性的危险因素和预防 研究现状

刘桥生,付书华

南昌大学第二附属医院,江西 南昌

收稿日期:2018年2月20日;录用日期:2018年3月7日;发布日期:2018年3月14日

摘 要

年龄相关性黄斑变性(AMD)是重要的致盲眼病之一。临床上分为干性(萎缩型)和湿性(渗出型)两种类型,目前对于干性AMD仍无有效的治疗方法。本文从遗传、衰老、氧化应激及局部血流灌注等四个方面,对干性AMD的致病危险因素进行综述,从而为早期干预AMD提供新的思路和方法。

关键词 :干性年龄相关性黄斑变性,危险因素,发病机制

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

年龄相关性黄斑变性(AMD)是一种迟发性、进行性变性疾病,主要表现为黄斑区非感染性损伤,患者多见于50岁以上,是发达国家老年人主要的致盲眼病之一 [1] 。随着我国人口老龄化及中国人生活饮食习惯的变化,老年性黄斑变性患者也日趋增多 [2] 。干性AMD开始表现进行性的视网膜色素上皮(RPE)和光感受器变性及玻璃膜疣形成,晚期出现黄斑区地图样萎缩 [3] ;脉络膜新生血管生成是湿性AMD的主要特征。根据调查发现:AMD患者中干性占85%~90%,其中地图样萎缩患者占10%~20% [4] 。目前对于干性AMD仍无彻底的治疗方法,本文就干性AMD的发病机制及危险因素进行综述,从而早期干预干性AMD提供新的思路和方法。

2. 遗传因素

干性老年黄斑病变发病呈现出的家族聚集、分离现象及双生子研究均提示遗传因素起重要作用,大量家系研究显示,干性AMD遗传率可达71% [5] [6] ;且有研究表明:与非AMD患者的一级亲属相比,AMD患者的一级亲属患AMD的危险度高达2.4倍,且发病年龄更年轻 [7] 。

基因突变已被证实参与了干性AMD的发病,且可能为多基因变异,包括易感基因和抑制基因共同作用的结果。Fisher等 [8] 采用基因组扫描整合分析技术将世界上6个已发表的研究结果进行归纳,证实与AMD易感性关系最密切的基因位点为染色体10q26、1q、2q、3q、和16。补体因子H(CFH)位于染色体1q上,CFH基因1277位的碱基胸腺嘧啶T突变为胞嘧啶C,导致其密码子402位的组氨酸替代为酪氨酸后形成变异体Y402H,它是全基因组关联分析技术确定的第一个与AMD有显著相关性的等位基因 [9] ,CFH是补体替代激活途径的重要活性调节因子。研究显示:因子B(BF)和补体成分2(C2)基因编码2种补体调节蛋白,其基因的多态性具有1个风险性单元型和2种保护性单元型基因,前者可提高干性AMD风险(OR, 1.32),后者可分别降低干性AMD风险(OR,0.45和0.36) [10] 。Allikmets等 [11] 发现ABCA4基因与干性AMD相关,在出现临床症状的早期发生改变。Zhou等 [12] 发现TLR3基因多态性具有保护作用,能减少干性AMD发生风险,可导致TLR3与双链RNA的结合能力下降50%,从而减少RPE细胞的凋亡,降低干性AMD的发病风险。

3. 衰老

视网膜色素上皮(RPE)细胞的正常功能对于防止干性AMD发病有非常重要的作用,RPE细胞损伤是AMD病理改变的始动环节 [13] 。正常RPE在视网膜光感受器的营养维持、合成生长因子及调整局部结构和视觉周期等方面起到了重要作用。但随着年龄增长,黄斑区RPE细胞数量减少、功能减退、细胞内脂褐质逐渐积聚及染色体端粒变短。RPE细胞功能减退主要变现在以下方面: ① 色素上皮源性因子(PEDF)是一种内源性非抑制性丝氨酸蛋白酶抑制剂,在维持视网膜正常的生理功能方面具有重要作用 [14] [15] 。RPE细胞是眼内产生PEDF的主要细胞,在胎儿及青年人的RPE细胞中PEDF高表达,但老年人RPE细胞中PEDF表达下调。 ② 随着年龄的增长,RPE细胞吞噬和代谢作用减退。RPE细胞内黑色素颗粒不仅对RPE细胞及视网膜神经细胞都有重要保护作用,而且还能够绑定视网膜内的毒性物质 [16] 。但随着年龄的增长,RPE细胞内黑色素不断减少。

干性AMD会出现脂褐素过度积累 [17] 。脂褐素是由光感受器外节膜盘被RPE细胞吞噬后仅部分被酶消化,残余的部分积累形成 [18] 。RPE细胞内脂褐素的含量的多少则反应了细胞老化的程度。张娟美等 [19] 利用体外培养的老年牛RPE细胞吞噬负荷量的感光细胞外节段后,发现RPE细胞明显凋亡,并且细胞凋亡的数量随剂量的增加和时间的延长而增多。脂褐素含有蛋白、脂性物质,及碳水化合物,其主要成分为N视黄基N视黄乙醇胺(A2E)。

A2E是亲脂性阳离子,对RPE细胞功能的损伤主要体现在4各方面: ① 降低RPE细胞的抗氧化能力。有研究表明体外培养的RPE细胞吞噬脂褐素颗粒后能够降低60%抗氧化物歧化酶和过氧化氢酶的抗氧化能力 [20] 。 ② A2E可诱导RPE细胞损伤及发生凋亡。Sparrow等 [21] 在人RPE细胞的培养基中加入不同浓度的A2E溶液,然后用蓝光(480 nm)照射15 s到60 s,发现凋亡细胞的数量呈现光照时间和A2E浓度依赖方式。 ③ A2E能抑制溶酶体对代谢物质的降解,增加视网膜光化学毒性,降低RPE细胞的吞噬能力。 ④ A2E能够破坏RPE细胞膜结构。A2E是由两分子视黄醛和一份子氨基乙醇合成,分子结构具有2个疏水的尾部和1个亲水的头部,可以像去污剂一样破坏生物膜的完整性 [22] 。

4. 氧化应激

氧化应激是干性AMD发病的重要病理机制。视网膜对氧的消耗量远高于其它组织,且RPE层位于视网膜和脉络膜毛细血管之间,处于极高的氧分压环境中;在可见光下的条件下,RPE细胞吞噬并消化富含多不饱和脂肪酸的光感受器细胞外节,而不饱和脂肪酸在高氧的环境中很容易被氧化,并且引起一连串氧化反应,从而产生大量活性氧(ROS)。

研究发现:在干性AMD的病程中,增加氧化应激损伤的因素能够加重病情,而降低氧化应激损伤的因素能够延缓病情 [23] 。陈丽等 [24] 研究发现,H2O2可以促进基质金属蛋白酶的表达,抑制基质金属蛋白酶抑制剂的表达,从而导致AMD时Bruch膜增厚、玻璃膜疣的形成。在氧化应激状态下,线粒体易发生功能障碍,诱导并促进RPE细胞凋亡。赵颖等 [25] 将体外的人RPE细胞经过氧化氢处理后,发现停留在静止期和合成前期的细胞增多,随过氧化氢作用时间的延长,生长停滞越发明显;在72小时达到高峰;线粒体膜电位降低,随时间延长逐渐降低;凋亡途径中的核心上游因子Cappse-9增加,随时间延长而增加,在24小时达到高峰,72小时略有回落,但仍明显高于正常。提示过氧化氢氧化损伤导致的人RPE细胞生长停滞,细胞衰老的机制可能与线粒体膜电位降低导致的线粒体代谢障碍和Cappse-9介导的线粒体凋亡途径有关。

4.1. 光照损伤

光照损伤是干性AMD的致病因素之一。人眼接受的光照包括紫外光(100~400 nm)和可见光(400~750 nm)。波长小于340 nm的紫外光虽然为高能光波,但由于角膜和晶状体的有效滤过,到达视网膜的不到1%,不易对视网膜造成损伤。而波长在400 nm左右的近蓝光光线因为能量高,且视锥细胞对蓝光最敏感,它的最大吸收光谱是440 nm,因此可以造成较大的视网膜损伤。光照损伤导致AMD是通过造成RPE细胞功能障碍甚至凋亡而最终导致AMD,且损伤程度与光暴露能量成正比 [26] 。1966年Noell等 [27] 用可见光持续照射自由活动的大鼠,发现大鼠光感受器细胞出现明显的选择性凋亡。Boulton [28] 研究发现蓝光可诱导黑色素小体发生光化学反应从而产生ROS。Davies等 [29] 的研究显示:将体外培养的人RPE细胞暴露于390~550 nm波长的可见光下(实验组),而对照组细胞一直保存于黑暗中,6 h后发现实验组细胞线粒体活性相比对照组有所下降。Sparrow等 [30] 发现含有脂褐素的RPE细胞在蓝光照射后可以直接造成DNA损伤,且此损伤与光照持续时间成正比。由此可见,光线尤其是蓝光导致RPE细胞早期的损伤,是干性AMD的重要危险因素。

4.2. 炎症与免疫

干性AMD的临床特点之一为玻璃膜疣的形成,主要有补体成分,树突状细胞突、C反应蛋白、补体调节蛋白、糖基化终末产物、视网膜色素上皮脱落的细胞碎屑、免疫球蛋白、脂褐素、免疫复合物、玻璃体结合蛋白及纤维蛋白等 [31] 。有研究显示C反应蛋白的升高与AMD成正相关 [32] ,提示干性AMD发病过程中有免疫炎症反应的参与。在免疫系统的光毒性反应中,巨噬细胞因受脉络膜血管中树突状细胞的细胞碎片吸引而聚集,引起局部自身免疫反应和慢性炎症 [33] [34] 。但是,抗氧化剂能在局部保护光感受器和RPE不受光毒性损伤 [35] 。由此可见,AMD的慢性炎症与光毒性反应之间有相互联系,其一,光感受器外节的不饱和脂肪酸被光照射后会释放出花生四烯酸,形成前列腺素及白三烯等炎症因子,从而引起巨噬细胞聚集;其二,光毒性反应引起光感受器和RPE细胞凋亡,凋亡小体会引起胶质细胞聚集,并且它们是形成玻璃膜疣的底物,又会激活树突状细胞,吸引巨噬细胞聚集,在视网膜内引起炎症反应的恶性循环。但丛生蛋白也是玻璃膜疣的主要蛋白成分之一,RPE细胞是分泌丛生蛋白的主要细胞,研究发现在异常炎症相关因子聚集的情况下,丛生蛋白能与炎症因子相结合,阻止蛋白的聚集反应,抑制C5b-9膜攻击复合物的形成,从而抑制炎症反应 [36] [37] 。

4.3. 吸烟

有研究表明,与不吸烟者相比,吸烟者发生干性AMD的相对危险度是2.54,且影响其发展 [38] [39] 。Fujihara等 [40] 发现在动物模型中,长期慢性吸烟容易造成RPE细胞膜折叠,细胞内出现空泡结构、视网膜中Bruch膜增厚等超微结构的改变,这些改变和早期AMD中RPE细胞凋亡的特征性病理改变相一致。

Evans [41] 发现吸烟能增加患AMD的风险,但饮食中摄入大量抗氧化剂可以降低AMD患病风险,提示吸烟会通过氧化应激的方式损伤黄斑区的视网膜。香烟中引起氧化应激损伤的物质主要有金属镉、丙烯醛及氢醌。并且这些物质已经被证明参与了RPE细胞损伤的体外或体内模型 [42] [43] 。吸烟者血浆中的烟碱和可铁宁还会激活视网膜磷脂酶A2,从而生成前列腺素及白三烯前体–花生四烯酸等炎性介质。加重视网膜部的慢性炎症,促进AMD的发展。吸烟也会导致脉络膜血流动力学发生改变, ① 香烟可激活α-肾上腺素能受体,引起脉络膜局部血流量减少; ② 慢性烟雾改变了血液凝固动力学和纤维蛋白结构,二者相互作用有助于局部血栓形成 [44] 。

5. 局部血流灌注

随着年龄的增长,组织学检查见眼部动脉硬化,血管管壁增厚,脉络膜毛细血管区域减少,毛细血管之间的结缔组织变宽,尤其显著的改变是黄斑光反射区下的脉络膜毛细血管床的减少提示AMD可能是因缺血导致。有研究显示AMD早期患者血脂异常升高,血液粘稠 [45] [46] 。血流参数中阻力指数(RI)和搏动指数(PI)反应的是血管内血流阻力的大小,收缩期峰值流速(PSV)能够反应血管充盈程度和血流供应强度,而舒张末期最大血流速度值(EDV)反应的是远端组织的血液灌注状态,RI、PI越大,说明血管内血流阻力越大,PSV越大,说明血管内血流供应充足,EDV明显下降,提示远端组织的血供不足 [47] 。研究显示,AMD患者与健康人相比,视网膜中央动脉(CRA)和睫状后动脉(PCA)血流动力学变化具有显著性差异(P < 0.05),表现为PSV降低、EDA变缓、RI、PI值增加(P < 0.05) [48] 。并且有调查显示:糖尿病患者AMD的发病率是无糖尿病病史的2.5倍,糖尿病患者的持续高血糖状态使得微循环功能较差,在视网膜部表现为血流量减少及速度减低,容易导致黄斑区部分微血管阻塞,造成神经节细胞凋亡,最终导致中心视力的降低 [49] 。

6. 总结

我国干性AMD患者日益增多,但仍无有效治疗手段。因此,研究其发病的危险因素对预防及治疗干性AMD有重要意义。目前,RPE细胞损伤被认为是其始动环节,而光照损伤、炎症反应、脂褐素积累、玻璃膜疣的形成、氧化损伤以及局部血流关注改变均会引起RPE细胞损伤,促进干性AMD形成。但对其相关损伤机制还需要进行更深入的研究,为治疗干性AMD提供更早期的干预和有效的治疗。

基金项目

江西省自然基金(2015BAB205026)、江西省社会发展领域基金(2015BBG70171),南昌大学第二附属医院院级课题(2016YNZJ12001)。

参考文献 (References)

[1] Ali, F.S., Stein, J.D., Blachley, T.S., Ackley, S. and Stewart, J.M. (2017) Incidence of and Risk Factors for Developing Idiopathic Macular Hole Among a Diverse Group of Patients Throughout the United States. JAMA Ophthalmology, 135, 299-305. https://doi.org/10.1001/jamaophthalmol.2016.5870

[2] Cheung, C.M.G., Laude, A., Yeo, I., Tan, S.P., Fan, Q., Mathur, R., et al. (2017) Systemic, Ocular and Genetic Risk Factors for Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Singaporeans. Scientific Reports, 7, Article Number: 41386. https://doi.org/10.1038/srep41386

[3] Holz, F.G., Strauss, E.C., Schmitz-Valckenberg, S. and van Lookeren Campagne, M. (2014) Geographic Atrophy: Clinical Features and Potential Therapeutic Approaches. Ophthalmology, 121, 1079-1091. https://doi.org/10.1016/j.ophtha.2013.11.023

[4] Patel, H.R. and Eichenbaum, D. (2015) Geographic Atrophy: Clinical Impact and Emerging Treatments. Ophthalmic Surgery, Lasers & Imaging Retina, 46, 8-13. https://doi.org/10.3928/23258160-20150101-01

[5] Ersoy, L., Ristau, T., Hahn, M., Karlstetter, M., Langmann, T., Droge, K., et al. (2014) Genetic and Environmental Risk Factors for Age-Related Macular Degeneration in Persons 90 Years and Older. Investigative Ophthalmology & Visual Science, 55, 1842-1847. https://doi.org/10.1167/iovs.13-13420

[6] Yates, J.R. and Moore, A.T. (2000) Genetic Susceptibility to Age-Related Macular Degeneration. Journal of Medical Genetics, 37, 83-87. https://doi.org/10.1136/jmg.37.2.83

[7] Seddon, J.M., Aiani, U.A. and Mitchell, B.D. (1997) Familial Aggregation of Age-Related Maculopathy. American Journal of Ophthalmology, 123, 199-206. https://doi.org/10.1016/S0002-9394(14)71036-0

[8] Fisher, S.A., Abecasis, G.R., Yashar, B.M., Zareparsi, S., Swaroop, A., Iyengar, S.K., et al. (2005) Meta-Analysis of Genome Scans of Age-Related Macular Degeneration. Human Molecular Genetics, 14, 2257-2264. https://doi.org/10.1093/hmg/ddi230

[9] Deangelis, M.M., Silveira, A.C., Carr, E.A., et al. (2011) Genetics of Age-Related Macular Degeneration: Current Concepts, Future Directions. Seminars in Ophthalmology, 26, 77-93. https://doi.org/10.3109/08820538.2011.577129

[10] Gold, B., Merriam, J.E., Zemant, J., Hancox, L.S., Taiber, A.J., Gehrs, K., et al. (2006) Variation in Factor B (BF) and Complement Component 2(C2)Genes Is Associated with Age-Related Macular Degeneration. Nature Genetics, 38, 458-462. https://doi.org/10.1038/ng1750

[11] Alikmets, R., Shroyer, N.F., Singh, N., Seddon, J.M., Lewis, R.A., Bernstein, P.S., et al. (1997) Mutation of the Stargardt Disease Gene (ABCR) in Age-Related Macular Degeneration. Science, 277, l805-l807. https://doi.org/10.1126/science.277.5333.1805

[12] Zhou, P., Fan, L., Yu, K.D., et al. (2011) Toll-Like Receptor 3 C 1234T May Protect against Geographic Atrophic through Decreased dsRNA Binding Capacity. FASEB Journal, 25, 3489-3495. https://doi.org/10.1096/fj.11-189258

[13] Sparrow, J.R. and Boulton, M. (2005) RPE Lipofuscin and Its Role in Retinal Pathobiology. Experimental Eye Research, 80, 595-606. https://doi.org/10.1016/j.exer.2005.01.007

[14] Aymerich, M.S., Alberdi, E.M., Martinez, A. and Becerra, S.P. (2001) Evidence for Pigment Epithelium-Derived Factor Receptors in the Neural Retina. Investigative Ophthalmology & Visual Science, 42, 3287-3293.

[15] Alberdi, E., Aymerich, M.S. and Becerra, S.P. (1999) Binding of Pigment Epithelium-Derived Factor (PEDF) to Retinoblastoma Cells and Cerebellar Granule Neurons. Evidence for a PEDF Receptor. Journal of Biological Chemistry, 274, 31605-31612.

[16] Seagle, B.L., Rezai, K.A., Gasyna, E.M., Kobori, Y., Rezaei, K.A. and Norris, J.R. (2005) Time-Resolved Detection of Melanin Free Radicals Quenching Reactive Oxygen Species. Journal of the American Chemical Society, 127, 11220-11221. https://doi.org/10.1021/ja052773z

[17] Kaamiranta, K., Salminen, A., Eskelinen, E.L. and Kopitz, J. (2009) Heat Shock Proteins as Gatekeepers of Proteolytic Pathways-Implications for Age-Related Macular Degeneration (AMD). Ageing Research Reviews, 8, 128-139.

[18] Feeney-Burns, L., Hilderbrand, E.S. and Eldridge, S. (1984) Aging Human RPE: Morphometric Analysis of Macular, Equatorial, and Peripheral Cells. Investigative Ophthalmology & Visual Science, 25, 195-200.

[19] 张娟美, 吴建峰, 毕宏生. 吞噬负荷量的感光细胞外节段对老年牛RPE细胞凋亡的诱导[J]. 国际眼科杂志, 2014, 11(11): 1935-1938.

[20] Shamsi, F.A. and Boulton, M. (2001) Inhibition of RPE Lysosomal and Antioxidant Activity by the Age Pigment Lipofuscin. Investigative Ophthalmology & Visual Science, 42, 3041-3046.

[21] Sparrow, J.R., et al. (2005) A2E, a Fluorophore of RPE Lipofuscin: Can It Cause RPE Degeneration. Advances in Experimental Medicine and Biology, 533, 205-211.

[22] Sparrow, J.R., Parish, C.A., Hashimoto, M. and Nakanishi, K. (1999) A2E, a Lipofuscin Fluorophore, in Hunman Retinal Pigmented Epithelial Cells in Culture. Investigative Ophthalmology & Visual Science, 40, 2988-2995.

[23] Ferrington, D.A., Ebeling, M.C., Kapphahn, R.J., Terluk, M.R., Fisher, C.R., Polanco, J.R., Roehrich, H., Leary, M.M., Geng, Z., Dutton, J.R. and Montezuma, S.R. (2017) Altered Bioenergetics and Enhanced Resistance to Oxidative Stress in Human Retinal Pigment Epithelial Cells from Donors with Age-Related Macular Degeneration. Redox Biology, 1, 255-265. https://doi.org/10.1016/j.redox.2017.05.015

[24] 陈丽, 刘明, 刘勇. 骨形态发生蛋白-6对氧化应激状态下的视网膜色素上皮细胞基质金属蛋白酶及其抑制剂的影响[J]. 眼科新进展, 2015, 35(11): 1017-1020.

[25] 赵颖, 牛膺筠, 周占宇. 过氧化氢诱导人视网膜色素上皮细胞衰老及其机制探讨[J]. 眼科新进展, 2011, 31(9): 804-806.

[26] Nagar, S., Noveral, S.M., Trudler, D., Lopez, K.M., McKercher, S.R., Han, X., Yates, J.R., Piña-Crespo, J.C., Nakanishi, N., Satoh, T., Okamoto, S.I. and Lipton, S.A. (2017) MEF2D Haploinsufficiency Downregulates the NRF2 Pathway and Renders Photoreceptors Susceptible to Light-Induced Oxidative Stress. Proceedings of the National Academy of Sciences, 114, E4048-E4056. https://doi.org/10.1073/pnas.1613067114

[27] Noell, W.K., Walker, V.S., Kang, B.S. and Bernlan, S. (1966) Retinal Damage by Light in Rats. Investigative Ophthalmology, 5, 450-473.

[28] Boulton, M.E. (2014) Studying Melanin and Lipofusein in RPE Cell Culture Models. Experimental Eye Research, 126, 61-67. https://doi.org/10.1016/j.exer.2014.01.016

[29] Daries, S., Elliott, M.H., Floor, E., Truscott, T.G., Zareba, M., Sarna, T., et al. (2001) Phototoxicity of Lipofuscin in Human Retinal Pigment Epithelial Cells. Free Radical Biology & Medicine, 31, 256-265. https://doi.org/10.1016/S0891-5849(01)00582-2

[30] Sparrow, J.R., Zhou, J., Ben Shabat, S., et al. (2002) Involvement of Oxidative Mechanisms in Blue Light-Induced Damage to A2E-laden RPE. Investigative Ophthalmology & Visual Science, 43, 1222-1227.

[31] Merry, G.F., Munk, M.R., Dotson, R.S., Walker, M.G. and Devenyi, R.G. (2017) Photobiomodulation Reduces Drusen Volume and Improves Visual Acuity and Contrast Sensitivity in Dry Age-Related Macular Degeneration. Acta Ophthalmologica, 95, e270-e277. https://doi.org/10.1111/aos.13354

[32] Mitta, V.P., Christen, W.G., Glynn, R.J., Semba, R.D., Ridker, P.M., Rimm, E.B., Hankinson, S.E. and Schaumberg, D.A. (2013) C-Reactive Protein and the Incidence of Macular Degeneration: Pooled Analysis of 5 Cohorts. JAMA Ophthalmology, 131, 507-513. https://doi.org/10.1001/jamaophthalmol.2013.2303

[33] Shaw, P.X., Stiles, T., Douglas, C., Ho, D., Fan, W., Du, H. and Xiao, X. (2016) Oxidative Stress, Innate Immunity, and Age-Related Macular Degeneration. AIMS Molecular Science, 3, 196-221. https://doi.org/10.3934/molsci.2016.2.196

[34] Kauppinen, A., Paterno, J.J., Blasiak, J., Salminen, A. and Kaarniranta, K. (2016) Inflammation and Its Role in Age-Related Macular Degeneration. Cellular and Molecular Life Sciences, 73, 1765-1786. https://doi.org/10.1007/s00018-016-2147-8

[35] Davies, N.P. and Morland, A.B. (2004) Macular Pigments: Their Characteristics and Putative Role. Progress in Retinal and Eye Research, 23, 533-559. https://doi.org/10.1016/j.preteyeres.2004.05.004

[36] Johnson, L.V., Forest, D.L., Banna, C.D., Radeke, C.M., Maloney, M.A., Hu, J., et al. (2011) Cell Culture Model That Mimics Drusen Formation and Triggers Complement Activation Associated with Age-Related Macular Degeneration. Proceedings of the National Academy of Sciences, 108, 18277-18282. https://doi.org/10.1073/pnas.1109703108

[37] Cabrera, A.P., Bhaskaran, A., Xu, J., Yang, X., Scott, H.A., Mohideen, U. and Ghosh, K. (2016) Senescence Increases Choroidal Endothelial Stiffness and Susceptibility to Complement Injury: Implications for Choriocapillaris Loss in AMD. Investigative Ophthalmology & Visual Science, 57, 5910-5918.

[38] Merl-Pham, J., Gruhn, F. and Hauck, S.M. (2016) Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells. Advances in Experimental Medicine and Biology, 854, 785-791. https://doi.org/10.1007/978-3-319-17121-0_105

[39] Lim, L.S., Mitchell, P., Seddon, J.M., Holz, F.G. and Wong, T.Y. (2012) Age-Related Macular Degeneration. The Lancet, 379, 1728-1738. https://doi.org/10.1016/S0140-6736(12)60282-7

[40] Fujihara, M., Nagai, N., Sussan, T.E., et al. (2008) Chronic Cigarette Smoke Causes Oxidative Damage and Apoptosis to Retinal Pigmented Epithelial Cells in Mice. PLoS ONE, 3, e3119. https://doi.org/10.1371/journal.pone.0003119

[41] Evans, J. (2008) Antioxidant Supplements to Prevent or Slow Down the Progression of AMD: A Systematic Review and Meta-Analysis. Eye, 22, 751-760. https://doi.org/10.1038/eye.2008.100

[42] Wang, A.L. and Neufeld, A.H. (2010) Smoking Mice: A Potential Model for Studying Accumulation of Drusen-Like Material on Bruch’s Membrane. Vision Research, 50, 638-642.

[43] Pons, M. and Marin-Castano, M.E. (2011) Cigarette Smoke-Related Hydroquinone Dysregulates MCP-1, VEGF and PEDF Expression in Retinal Pigment Epithelium in Vitro and in Vivo. PLoS ONE, 6, e16722. https://doi.org/10.1371/journal.pone.0016722

[44] Barua, R.S., Sy, F., Srikanth, S., et al. (2010) Effects of Cigarette Smoke Exposure on Clot Dynamics and Fibrin Structure: An ex Vivo Investigation. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 75-79. https://doi.org/10.1161/ATVBAHA.109.195024

[45] Tao, Y., Jiang, P., Wei, Y., Wang, P., Sun, X. and Wang, H. (2016) α-Lipoic Acid Treatment Improves Vision-Related Quality of Life in Patients with Dry Age-Related Macular Degeneration. The Tohoku Journal of Experimental Medicine, 240, 209-214. https://doi.org/10.1620/tjem.240.209

[46] AnandBabu, K., Bharathidevi, S.R., Sripriya, S., Sen, P., Prakash, V.J., Bindu, A., Viswanathan, N. and Angayarkanni, N. (2016) Serum Paraoxonase Activity in Relation to Lipid Profile in Age-Related Macular Degeneration Patients. Experimental Eye Research, 152, 100-112. https://doi.org/10.1016/j.exer.2016.09.009

[47] 李子平, 叶秀容, 赵红地, 等. 彩色多普勒超声检测老年人眼动脉和视网膜中央动脉血流[J]. 中华超声影像杂志, 1999, 8(1): 31-32.

[48] Toto, L., Borrelli, E., Mastropasqua, R., Di Antonio, L., Mattei, P.A., Carpineto, P. and Mastropasqua, L. (2017) Adult-Onset Foveomacular Vitelliform Dystrophy Evaluated by Means of Optical Coherence Tomography Angiography: A Comparison with Dry Age-Related Macular Degeneration and Healthy Eyes. Retina.

[49] Moshetova, L.K., Vorob’eva, I.V., Alekseev, I.B. and Mikhaleva, L.G. (2015) Results of the Use of Antioxidant and Angioprotective Agents in Type 2 Diabetes Patients with Diabetic Retinopathy and Age-Related Macular Degeneration. Vestnik Oftalmologii, 131, 34-44. https://doi.org/10.17116/oftalma2015131334-44

期刊菜单