Botanical Research
Vol. 12  No. 03 ( 2023 ), Article ID: 65806 , 8 pages
10.12677/BR.2023.123020

植物根响应机械阻力刺激的研究进展

罗玲,赵滢滢,李均瑶,南文斌*

重庆师范大学生命科学学院,植物环境适应分子生物学重庆市重点实验室,重庆

收稿日期:2023年4月6日;录用日期:2023年5月15日;发布日期:2023年5月24日

摘要

植物在生长发育过程中被动的适应各种环境,其中根对植物的生长发育至关重要,具有调控水分和营养吸收以及固定和支持的作用。植物的根在向下生长时遭受机械阻力刺激,对这些刺激进行响应并改变其生长方式对植物具有重要的意义。本文主要综述了参与调控机械阻力刺激响应的基因、植物激素和信号分子以及细胞骨架蛋白在植物根机械阻力刺激响应发生波动和倾斜生长、螺旋生长和避障行为等的研究进展,旨在为探索机械刺激下根的运动行为提供参考。

关键词

根,运动行为,机械阻力刺激,基因调控

Research Progress on the Response of Plant Roots to Mechanical Resistance Stimulation

Ling Luo, Yingying Zhao, Junyao Li, Wenbin Nan*

Chongqing Key Laboratory of Molecular Adaptations of Plants, College of Life Sciences, Chongqing Normal University, Chongqing

Received: Apr. 6th, 2023; accepted: May 15th, 2023; published: May 24th, 2023

ABSTRACT

Plants are passively adapted to various environments during growth and development, where roots are essential for plant growth and development, with roles in regulating water and nutrient uptake as well as fixation and support. The roots of plants are stimulated by mechanical resistance when they grow downwards. It is of great significance for plants to respond to these stimulation and change their growth patterns. This paper mainly reviews the research progress of genes, plant hormones and signaling molecules as well as cytoskeletal proteins involved in the regulation of mechanical resistance stimulation response in plant roots, such as waving and skewing, nutating growth and obstacle avoidance behavior, in order to provide reference for exploring the root locomotor behavior under mechanical stimulation.

Keywords:Root, Movement Behavior, Mechanical Resistance Stimulation, Gene Regulation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

植物不能通过移动躲避伤害,必须迅速适应不利或不断变化的环境,因此进化产生了能及时感知周围环境变化并迅速做出响应的机制 ‎[1] ,比如含羞草能对机械刺激做出反应,导致组成双复叶的小叶片非常快速的折叠,并且这种刺激可以传递到该叶所有相邻的小叶 ‎[2] 。植物的根在土壤中向下生长并分枝,其响应机械刺激并调整生长方式有助于更好地适应土壤环境的变化 ‎[3] 。当植物在倾斜的不可穿透的琼脂介质表面生长时,与介质表面连续接触产生的机械刺激会改变生长方向,从而导致根弯曲生长。根的波动和倾斜是发生在生长介质表面的两种特定类型的运动,当根生长在周围存在均匀的接触或压力的介质中时,比如嵌入生长介质中或在液体介质中,这种生长就不会出现 ‎[3] 。有研究表明根部波动和倾斜可能是由两种不同机制调控的过程 ‎[4] 。关于根的波动和倾斜生长有两种解释模型:第一个模型认为根的波动和倾斜生长由接触刺激、重力和回旋运动共同作用产生 ‎[5] ,即植物根在倾斜的琼脂培养基表面生长时会受到重力和琼脂培养基表面触力的相互作用,再加上根尖固有的不对称生长倾向,就会导致根的倾斜和波动生长。后来在国际空间站里的航天植物中也观察到了根的倾斜和波动,这说明重力可能不是波动和倾斜运动发生的必需因素 ‎[6] 。第二个模型认为倾斜和波动生长是根尖与生长介质间的物理相互作用,即倾斜的生长介质与生长的根的摩擦作用会阻碍根尖的运动,与此同时根尖伸长区继续生长,导致根部向一个方向发生明显的不对称弯曲偏转直到根部尖端再次受阻,这一过程反复发生从而使根部波动生长,这种模型可能解释了根部的扭曲生长 ‎[7] 。Zhang等 ‎[8] 新提出了一种根部摆动的机械传感模型,该模型认为根波动是由于向重力性在琼指上引起的摩擦及根部的弹性和根毛将根部锚定在琼脂上这两个过程共同作用而形成。

根系螺旋生长是由于根两侧生长速度不同导致的根不对称生长,向重力性和向倾斜性会影响根的螺旋行为,但有研究证明拟南芥的根在没有重力和机械刺激的情况下仍然可以顺时针方向卷曲生长 ‎[9] 。根回旋运动是螺旋生长的一种特殊形式,其中根以椭圆形方式或者成圈状生长 ‎[10] ‎[11] ‎[12] 。根的螺旋行为也会导致根尖在不可穿透的琼脂层上以波动和倾斜的方式生长 ‎[11] 。植物的根在生长过程中常常会遇到各种障碍,因此植物需要通过复杂的感知机制来识别附近的障碍物,及时的改变自己的生长模式来适应周围环境 ‎[13] 。根感觉到障碍时会出现一种阶梯状的生长模式,即根部平行于障碍物生长而根尖与障碍物保持接触,在此期间根会发生两次弯曲,这两种连续的弯曲反应与根尖伸长区细胞的不对称生长有关 ‎[14] 。根尖的避障生长反应是负向触变性(对接触的反应)和正向重力性的结合 ‎[13] 。

2. 参与调节植物根响应机械阻力的基因

有研究通过差异cDNA文库筛选分离出了在植物中参与接触诱导的TOUCH (TCH)基因,包括TOUCH1、TOUCH2、TOUCH3和TOUCH4,它们在接触响应中表达快速上调 ‎[15] 。拟南芥中的TCH基因分别编码钙调蛋白和钙调蛋白样蛋白、细胞壁修饰酶以及创伤和防御诱导基因 ‎[15] ‎[16] ‎[17] ‎[18] 。研究表明在施加刺激后5到30分钟之间大多数TCH基因被诱导表达 ‎[19] ,这说明TCH基因是在接触刺激的早期反应中发挥作用。拟南芥CrRLK1L家族成员FERONIA (FER)介导的接触反应信号会上调TCH2和TCH4的表达 ‎[20] ,FER编码一种受体样蛋白激酶,其缺失突变体表现出与机械发育受损一致的表型,包括根倾斜、硬琼脂层穿透缺陷和对障碍的异常生长反应等 ‎[20] 。后期的研究发现FER通过调节PIN2和AUX1介导的生长素极性运输使根两侧的生长素不对称分布,从而导致其突变体fer-4在水平培养基上呈现比野生型更为强烈的螺旋生长表型 ‎[10] (见图1)。

拟南芥的WAG1和WAG2基因编码与PINOID密切相关的蛋白质丝氨酸/苏氨酸激酶,wag1/wag2双突变体在倾斜的琼脂平板上表现出比野生型更为明显的波动生长表型 ‎[21] 。HY5基因编码在光诱导信号传导中起转录因子作用的bZIP蛋白,其突变体的根在倾斜培养基上不会出现波动生长 ‎[3] ‎[22] ,这说明HY5基因参与植物根波动生长的调节。CLE40编码一种与CLAVATA3 (CLV3)有较远亲缘关系的小肽,可以通过调节根尖干细胞分化影响根中许多细胞的命运,其突变体在倾斜培养基上具有增强的根波动生长 ‎[23] ‎[24] 。sku1和sku2突变体的根在倾斜平板上呈现明显的向右倾斜生长 ‎[25] ,sku5蛋白定位于质膜和细胞壁,sku5突变体的根稍短,在倾斜的琼脂培养基呈现左手螺旋和倾斜生长 ‎[26] ,而sku6突变体的根则呈现右手螺旋倾斜生长 ‎[27] 。lefty1和lefty2突变体的根呈现左手螺旋生长 ‎[28] 。研究发现G蛋白家族中的XLG3也能调节根的波动和偏斜生长 ‎[29] 。

植物TPX2样蛋白WAVE-DAMPENED2 (WVD2)在拟南芥中被鉴定为一种显性突变,研究发现其突变体的根在倾斜琼脂平板上生长时波纹度降低 ‎[30] ‎[31] 。EB1基因的突变体在垂直或倾斜的平板上根向左倾斜生长 ‎[32] 。研究表明KAI2 (KARRIKIN INSENSITIVE)和MAX2 (一种富含亮氨酸的重复F-box蛋白)可以防止根的过度倾斜 ‎[33] 。有研究分析了拟南芥生态型WS (具有强烈的波动和偏斜)和Col-0 (具有强烈的波动但偏斜不明显)之间转录水平的差异,这项研究确定了11个参与不同细胞过程的基因,包括糖运输、盐信号、细胞壁组织和激素信号 ‎[34] 。比如MIOX4在根毛、中柱和侧根冠中表达并在多糖整合到细胞壁的上游发挥作用;SIS与耐盐性有关,低pH下盐胁迫后在拟南芥根的小柱细胞、根冠和表皮中表达上调 ‎[34] 。大多数极有可能的倾斜候选基因与环境感知(如盐、糖、激素、黑暗)、上游的物理生长差异(如细胞壁重塑、细胞分裂、细胞伸长)直接相关 ‎[34] 。上述关于根的机械阻力刺激响应突变体中出现了不同的缺陷表型,进一步的研究发现这些基因与植物激素、钙调蛋白以及细胞骨架相关,这表明根响应机械阻力刺激过程中这些因素至关重要,它们可能共同调节根对机械阻力刺激的响应。

3. 植物激素和信号分子在根机械阻力刺激响应中的作用

生长素的生物合成、极性运输和信号传导在控制植物根的生长和发育中起着至关重要的作用,拟南芥生长素相关的突变体大部分会表现出主根的波动、倾斜和卷曲生长 ‎[35] 。研究证明生长素运输抑制剂能阻止根波动生长的发生 ‎[36] ,WAV5和WAV6基因被鉴定为是生长素内流载体编码基因AUX1和外排编码基因PIN2 ‎[11] ‎[23] ,说明生长素极性运输在植物根的波动生长中具有重要的作用。生长素极性运输导致根两侧生长素的不对称积累使两侧的细胞伸长有所差异,从而促进根的弯曲生长 ‎[37] ‎[38] 。研究发现在根避开障碍过程中生长素极性运输也具有重要的作用,遭遇障碍时PIN介导的生长素极性运输被激活,生长素在弯曲根的凹侧面积累,不对称的生长素分布使根发生弯曲生长 ‎[14] 。除了生长素极性运输外,根的避障行为还依赖生长素信号转导(TIR1/AFB)途径 ‎[14] 。此外,生长素相关基因IAA30、IAA14、GH3sBRU6和DFL1/2在避障反应开始后差异表达 ‎[39] 。以上研究说明生长素在植物根响应机械阻力刺激引起的弯曲生长中具有重要的作用。

研究发现乙烯能调节拟南芥根在倾斜培养基表面的波动和螺旋生长 ‎[4] 。此外乙烯还抑制根部倾斜,并和生长素运输共同促进番茄根系向基质的穿透 ‎[40] 。避障过程中关键的乙烯响应基因EIL2、ERFERF1AERF4等在早期也被上调 ‎[41] 。最近的研究发现水稻HK1和生长素流入载体OsAUX1是水稻中根回旋运动的重要调节基因 ‎[42] (见图1)。其中,HK1正向调节水稻根中乙烯受体下游的乙烯信号 ‎[43] ,这一信号通路被证明限制了根的伸长。为了确定乙烯信号是否调节根的回旋运动,Taylor等 ‎[42] 将产生回旋运动的野生型幼苗的根部用乙烯受体抑制剂1-甲基环丙烯(1-MCP)处理,这种处理导致了根回旋运动迅速停止和伸长速率的突然增加,实验结果与乙烯激活HK1促进根的回旋运动而导致根伸长率降低的模型一致。

据报道细胞分裂素诱导的根生长和卷曲的反应之间存在负相关,这说明细胞分裂素也调节根的波动和卷曲 ‎[44] 。研究发现拟南芥ckrc1突变体表现出根向重力反应缺陷,对细胞分裂素的抗性增强,这些缺陷可以通过外源生长素或吲哚-3-丙酮酸来修复。CKRC1编码参与吲哚-3-乙酸生物合成的吲哚-3-丙酮酸途径的色氨酸转氨酶(TAA1) ‎[45] 。

RNA-seq分析揭示了活性氧、乙烯和生长素这三个可能相互关联的信号通路的显著变化,在活性氧、乙烯信号转导和生长素运输突变体的根尖角度分析和荧光成像研究中发现活性氧和乙烯反应似乎发生得相对较早 ‎[39] 。最近提出了一个模型,该模型认为机械阻抗的早期反应包括与乙烯整合的活性氧信号和调节根生长变化的生长素反应,这些都是机械阻抗反应所必需的 ‎[39] 。在机械阻抗反应期间,乙烯信号传导跟随细胞质Ca2+的瞬时增加 ‎[13] ,活性氧产生响应机械刺激也需要Ca2+信号 ‎[46] ,并且生长素和Ca2+通路高度相关 ‎[47] ,Ca2+信号转导参与了根障碍回避和生长素的分配,PIN蛋白可能受钙信号的调节 ‎[14] ,因此Ca2+可能是避障反应期间这些通路之间的联系 ‎[41] 。Ca2+是机械刺激信号中重要的第二信使 ‎[48] ,后来的研究表明接触反应会诱导Ca2+瞬态的细胞间转导 ‎[49] 。当根弯曲时细胞内Ca2+水平会短暂的增加 ‎[20] ,这说明根弯曲与Ca2+通量密切相关 ‎[46] 。MCA1和MCA2都是机械敏感性钙离子通道蛋白,有研究表明在机械刺激下定位于质膜的MCA1促进Ca2+内流到细胞质,MCA1过表达会导致TCH3基因表达和干扰根生长(见图1),并且MCA1缺陷突变体表现出硬琼脂穿透缺陷 ‎[50] ,这表明MCA1介导的钙通量参与了根的接触反应。MCA2是MCA1的同源基因,有研究发现MCA2蛋白在根的钙吸收中具有明显的作用,并且在植物生长中与MCA1的作用重叠 ‎[51] 。钙信号传导调节根弯曲已被证明,但钙信号传导直接下游的效应蛋白在很大程度上是未知的。

后来的研究表明VIP1和其他I族bZIP蛋白可能是钙信号传导直接下游的效应蛋白 ‎[52] 。VIP1是拟南芥的一个bZIP转录因子 ‎[53] ,也是拟南芥接触反应的调节基因,当细胞被浸泡在低渗溶液中施加机械应力时,VIP1及其同系物在细胞核中短暂积累后再重新定位到细胞质中 ‎[54] ‎[55] 。VIP1被认为通过调节乙烯和/或生长素反应来抑制接触诱导的根弯曲 ‎[54] ,VIP1-SRDX过表达会抑制接触和/或低渗透胁迫响应基因的表达从而改变根冠细胞结构和局部生长素反应,从而导致拟南芥中接触诱导的根弯曲增强和根垂直生长指数(VGI)降低 ‎[52] ‎[53] ‎[54] (见图1)。这些结果说明VIP1参与调节根部接触反应,不过研究表明在根接触反应中VIP1的功能独立于MCA1和MCA2 ‎[54] 。因为TCH2和TCH4的表达不受VIP1-SRDX的影响,所以VIP1介导的信号也不同于FERONIA介导的信号 ‎[54] 。上述结果表明,植物激素在根响应机械阻力刺激中具有重要的作用,其中最常见的调控途径是根细胞中的极性生长素运输,其他激素通过与生长素的相互作用调控根的伸长和弯曲。此外,植物激素还与Ca2+信号通路交织在一起共同调节植物根对机械阻力刺激的响应。

4. 细胞骨架在植物根机械阻力刺激响应中的作用

研究表明微管在打破细胞对称性方面起着重要作用 ‎[56] ,已经证明编码微管相关蛋白基因的突变,比如α-微管蛋白变体lefty1和lefty2 ‎[28] 和SKU6/SPIRAL1突变 ‎ ‎[27] ‎[57] 通常导致根倾斜或卷曲增强,这些情况下皮层微管的沉积一般会发生改变,从横向于根变成倾斜生长,导致形成与根生长方向相反的扭曲表皮细胞 ‎[57] ‎[58] 。除此之外,据报道跨高尔基网络(TGN)定位的驱动蛋白与分离酶结合会影响根的倾斜,并调节拟南芥中依赖微管的细胞极性的建立 ‎[56] 。分离酶与微管相关,其N末端非催化结构域与着丝粒蛋白CENP-E Kinesin7 (Kin7)的三个同源物的C末端尾部结构域结合形成Kin7/分离酶复合体(KISC),有研究表明KISC会控制PIN2的极性定位,表明微管细胞骨架通过影响生长素流出机制的基本组成元件的表达和定位来控制生长素反应的幅度和空间表达 ‎[56] 。在拟南芥中发现了一个跨高尔基网络定位的蛋白TNO1,它是根倾斜的负调节因子,在高尔基体后转运、向重力性、生长素运输、微管动态和TGN的细胞壁成分的运输中承担着重要的作用 ‎[59] 。TNO1是根倾斜和表皮细胞旋转(CFR)形成所必需的,TNO1以一种依赖于微管但与微管阵列取向的破坏无关的机制来调节根的倾斜 ‎[59] 。

微管末端结合蛋白EB1b也被证明在根对接触和重力组合的反应中发挥作用 ‎[32] 。研究发现eb1b-1突变体根对接触的反应比野生型强,表现为增强的偏斜和回旋运动,而转基因突变体中EB1b基因的表达使根在接触反应恢复了野生型的水平,这一结果说明EB1b抑制根对机械信号的反应(见图1)。并且eb1b-1的根对机械刺激水平的增加也非常敏感,这表明可能存在另一种激活反应的竞争过程 ‎[60] 。因此,根对机械信号的反应至少由两个相互竞争的调节过程调节,其中EB1b抑制根对机械信号的反应并增强向重力性,而另一个竞争途径促进接触介导的生长 ‎[60] 。细胞骨架通过整合环境中机械刺激的信号以及通过调节根中的细胞扩张和轴向扭曲来介导根响应机械阻力刺激,同时与微管相关的蛋白质也参与其中,进而与其他细胞通路和激素网络相互作用响应机械阻力刺激。

Figure 1. Plant roots respond to mechanical resistance stimulation to modulate root bending patterns

图1. 植物根响应机械阻力刺激调控根的弯曲模式图

5. 展望

根复杂且多样的运动行为一直是研究的热点内容,本文主要综述了在机械刺激中根不同行为的发生机制和调控过程(见图1)。根对机械刺激的反应主要与植物激素特别是生长素有关,其他植物激素通过与生长素的相互作用调控根的伸长和弯曲。第二信使Ca2+参与了根的大部分运动并被证明能调节根的弯曲,细胞骨架的排列与沉积也影响根的生长和卷曲。植物激素特别是生长素途径与Ca2+信号转导通路和细胞骨架网络交织在一起共同调节植物根对机械阻力刺激的响应。尽管对根响应机械刺激阻力的研究比较多,但其过程调控机制比较复杂,与根的向重力性和向水性等相比,根响应机械刺激阻力的研究还不够深入,对根运动行为发生机制的很多细节了解还不够充分。比如接触反应中调节I组bZIP蛋白功能的钙信号的因素还不明确,钙信号传导直接下游的效应蛋白在很大程度上也是未知的。除此之外,在根响应机械刺激阻力的研究中使用的实验方法与系统不统一,并且在不同的研究中关注的重点也不相同。根响应机械刺激是一个快速的过程,因此未来的研究可能会用更先进的实验系统探究根如何快速地响应机械阻力刺激。比如应用新技术单细胞测序研究根响应机械刺激时单个细胞的基因表达情况。对植物根响应机械刺激阻力的探索能更近一步了解根的运动行为以及其对植物生长发育的贡献。在根快速、单向伸长和多维度探索之间似乎存在平衡,研究根的各种运动行为能为探索根生长提供更多的见解。

基金项目

本文得到了重庆市教委科学技术研究项目(KJQN202000527)的资助。

文章引用

罗 玲,赵滢滢,李均瑶,南文斌. 植物根响应机械阻力刺激的研究进展
Research Progress on the Response of Plant Roots to Mechanical Resistance Stimulation[J]. 植物学研究, 2023, 12(03): 147-154. https://doi.org/10.12677/BR.2023.123020

参考文献

  1. 1. Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K. and Swarup, R. (2015) New Insights into Root Gravitropic Signalling. Journal of Experimental Botany, 66, 2155-2165. https://doi.org/10.1093/jxb/eru515

  2. 2. Malone, M. (1994) Wound-Induced Hydraulic Signals and Stimulus Transmission in Mimosa pudica L. The New Phytologist, 128, 49-56. https://doi.org/10.1111/j.1469-8137.1994.tb03985.x

  3. 3. Roy, R. and Bassham, D.C. (2014) Root Growth Movements: Waving and Skewing. Plant Science, 221-222, 42-47. https://doi.org/10.1016/j.plantsci.2014.01.007

  4. 4. Buer, C.S., Wasteneys, G.O. and Masle, J. (2003) Ethylene Modulates Root-Wave Responses in Arabidopsis. Plant Physiology, 132, 1085-1096. https://doi.org/10.1104/pp.102.019182

  5. 5. Migliaccio, F. and Piconese, S. (2001) Spiralizations and Tropisms in Arabidopsis Roots. Trends in Plant Science, 6, 561-565. https://doi.org/10.1016/S1360-1385(01)02152-5

  6. 6. Paul, A.-L., Amalfitano, C.E. and Ferl, R.J. (2012) Plant Growth Strategies Are Remodeled by Spaceflight. BMC Plant Biology, 12, Article No. 232. https://doi.org/10.1186/1471-2229-12-232

  7. 7. Thompson, M.V. and Holbrook, N.M. (2004) Root-Gel Interactions and the Root Waving Behavior of Arabidopsis. Plant Physiology, 135, 1822-1837. https://doi.org/10.1104/pp.104.040881

  8. 8. Zhang, Z., van Ophem, D., Chelakkot, R., et al. (2022) A Mechano-Sensing Mechanism for Waving in Plant Roots. Scientific Reports, 12, Article No. 9635. https://doi.org/10.1038/s41598-022-14093-1

  9. 9. Piconese, S., Tronelli, G., Pippia, P., et al. (2003) Chiral and Non-Chiral Nutations in Arabidopsis Roots Grown on the Random Positioning Machine. Journal of Experimental Botany, 54, 1909-1918. https://doi.org/10.1093/jxb/erg206

  10. 10. Li, E., Wang, G., Zhang, Y.-L., Kong, Z. and Li, S. (2020) FERONIA Mediates Root Nutating Growth. The Plant Journal, 104, 1105-1116. https://doi.org/10.1111/tpj.14984

  11. 11. Migliaccio, F., Tassone, P. and Fortunati, A. (2013) Circumnutation as an Autonomous Root Movement in Plants. American Journal of Botany, 100, 4-13. https://doi.org/10.3732/ajb.1200314

  12. 12. Migliaccio, F., Fortunati, A. and Tassone, P. (2009) Arabidopsis Root Growth Movements and Their Symmetry: Progress and Problems Arising from Recent Work. Plant Signaling & Behavior, 4, 183-190. https://doi.org/10.4161/psb.4.3.7959

  13. 13. Massa, G.D. and Gilroy, S. (2003) Touch Modulates Gravity Sensing to Regulate the Growth of Primary Roots of Arabidopsis thaliana. The Plant Journal, 33, 435-445. https://doi.org/10.1046/j.1365-313X.2003.01637.x

  14. 14. Lee, H.-J., Kim, H.-S., Park, J.M., Cho, H.S. and Jeon, J.H. (2020) PIN-Mediated Polar Auxin Transport Facilitates Root-Obstacle Avoidance. The New Phytologist, 225, 1285-1296. https://doi.org/10.1111/nph.16076

  15. 15. Braam, J. and Davis, R.W. (1990) Rain-, Wind-, and Touch-Induced Expression of Calmodulin and Calmodulin-Related Genes in Arabidopsis. Cell, 60, 357-364. https://doi.org/10.1016/0092-8674(90)90587-5

  16. 16. Lee, D., Polisensky, D.H. and Braam, J. (2005) Genome-Wide Identification of Touch- and Darkness-Regulated Arabidopsis Genes: A Focus on Calmodulin-Like and XTH Genes. The New Phytologist, 165, 429-444. https://doi.org/10.1111/j.1469-8137.2004.01238.x

  17. 17. Ling, V., Perera, I. and Zielinski, R.E. (1991) Primary Structures of Arabidopsis Calmodulin Isoforms Deduced from the Sequences of cDNA Clones. Plant Physiology, 96, 1196-1202. https://doi.org/10.1104/pp.96.4.1196

  18. 18. Perera, I.Y. and Zielinski, R.E. (1992) Structure and Expression of the Arabidopsis CaM-3 Calmodulin Gene. Plant Molecular Biology, 19, 649-664. https://doi.org/10.1007/BF00026791

  19. 19. Jensen, G.S., Fal, K., Hamant, O. and Haswell, E.S. (2017) The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses. Journal of Experimental Botany, 68, 499-511. https://doi.org/10.1093/jxb/erw439

  20. 20. Shih, H.-W., Miller, N.D., Dai, C., Spalding, E.P. and Monshausen, G.B. (2014) The Receptor-Like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings. Current Biology, 24, 1887-1892. https://doi.org/10.1016/j.cub.2014.06.064

  21. 21. Santner, A.A. and Watson, J.C. (2006) The WAG1 and WAG2 Protein Kinases Negatively Regulate Root Waving in Arabidopsis. The Plant Journal, 45, 752-764. https://doi.org/10.1111/j.1365-313X.2005.02641.x

  22. 22. Oyama, T., Shimura, Y. and Okada, K. (1997) The Arabidopsis HY5 Gene Encodes a bZIP Protein That Regulates Stimulus-Induced Development of Root and Hypocotyl. Genes & Development, 11, 2983-2995. https://doi.org/10.1101/gad.11.22.2983

  23. 23. Oliva, M. and Dunand, C. (2007) Waving and Skewing: How Gravity and the Surface of Growth Media Affect Root Development in Arabidopsis. The New Phytologist, 176, 37-43. https://doi.org/10.1111/j.1469-8137.2007.02184.x

  24. 24. Hobe, M., Müller, R., Grünewald, M., Brand, U. and Simon, R. (2003) Loss of CLE40, a Protein Functionally Equivalent to the Stem Cell Restricting Signal CLV3, Enhances Root Waving in Arabidopsis. Development Genes and Evolution, 213, 371-381. https://doi.org/10.1007/s00427-003-0329-5

  25. 25. Rutherford, R. and Masson, P.H. (1996) Arabidopsis thaliana skumutant Seedlings Show Exaggerated Surface-Dependent Alteration in Root Growth Vector. Plant Physiology, 111, 987-998. https://doi.org/10.1104/pp.111.4.987

  26. 26. Sedbrook, J.C., Carroll, K.L., Hung, K.F., Masson, P.H. and Somerville, C.R. (2002) The Arabidopsis SKU5 Gene Encodes an Extracellular Glycosyl Phosphatidylinositol-Anchored Glycoprotein Involved in Directional Root Growth. Plant Cell, 14, 1635-1648. https://doi.org/10.1105/tpc.002360

  27. 27. Sedbrook, J.C., Ehrhardt, D.W., Fisher, S.E., Scheible, W.-R. and Somerville, C.R. (2004) The Arabidopsis SKU6/ SPIRAL1 Gene Encodes a Plus End-Localized Microtubule-Interacting Protein Involved in Directional Cell Expansion. Plant Cell, 16, 1506-1520. https://doi.org/10.1105/tpc.020644

  28. 28. Abe, T., Thitamadee, S. and Hashimoto, T. (2004) Microtubule Defects and Cell Morphogenesis in the lefty1lefty2 Tubulin Mutant of Arabidopsis Thaliana. Plant and Cell Physiology, 45, 211-220. https://doi.org/10.1093/pcp/pch026

  29. 29. Pandey, S., Monshausen, G.B., Ding, L. and Assmann, S.M. (2008) Regulation of Root-Wave Response by Extra Large and Conventional G Proteins in Arabidopsis thaliana. The Plant Journal, 55, 311-322. https://doi.org/10.1111/j.1365-313X.2008.03506.x

  30. 30. Yuen, C.Y., Pearlman, R.S., Silo-Suh, L., et al. (2003) WVD2 and WDL1 Modulate Helical Organ Growth and Anisotropic Cell Expansion in Arabidopsis. Plant Physiology, 131, 493-506. https://doi.org/10.1104/pp.015966

  31. 31. Smertenko, A., Clare, S.J., Effertz, K., et al. (2021) A Guide to Plant TPX2-Like and WAVE-DAMPENED2-Like Proteins. Journal of Experimental Botany, 72, 1034-1045. https://doi.org/10.1093/jxb/eraa513

  32. 32. Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T. and Kropf, D.L. (2008) The Microtubule plus-End Binding Protein EB1 Functions in Root Responses to Touch and Gravity Signals in Arabidopsis. Plant Cell, 20, 396-410. https://doi.org/10.1105/tpc.107.056846

  33. 33. Swarbreck, S.M., Guerringue, Y., Matthus, E., Jamieson, F.J.C. and Davies, J.M. (2019) Impairment in Karrikin but Not Strigolactone Sensing Enhances Root Skewing in Arabidopsis thaliana. The Plant Journal, 98, 607-621. https://doi.org/10.1111/tpj.14233

  34. 34. Schultz, E.R., Zupanska, A.K., Sng, N.J., Paul, A.-L. and Ferl, R.J. (2017) Skewing in Arabidopsis Roots Involves Disparate Environmental Signaling Pathways. BMC Plant Biology, 17, Article No. 31. https://doi.org/10.1186/s12870-017-0975-9

  35. 35. Saini, S., Sharma, I., Kaur, N. and Pati, P.K. (2013) Auxin: A Master Regulator in Plant Root Development. Plant Cell Reports, 32, 741-757. https://doi.org/10.1007/s00299-013-1430-5

  36. 36. Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J. and Muday, G.K. (2000) Basipetal Auxin Transport Is Required for Gravitropism in Roots of Arabidopsis. Plant Physiology, 122, 481-490. https://doi.org/10.1104/pp.122.2.481

  37. 37. Vanneste, S. and Friml, J. (2009) Auxin: A Trigger for Change in Plant Development. Cell, 136, 1005-1016. https://doi.org/10.1016/j.cell.2009.03.001

  38. 38. Kleine-Vehn, J. and Friml, J. (2008) Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development. Annual Review of Cell and Developmental Biology, 24, 447-473. https://doi.org/10.1146/annurev.cellbio.24.110707.175254

  39. 39. Jacobsen, A.G.R., Jervis, G., Xu, J., Topping, J.F. and Lindsey, K. (2021) Root Growth Responses to Mechanical Impedance Are Regulated by a Network of ROS, Ethylene and Auxin Signalling in Arabidopsis. The New Phytologist, 231, 225-242. https://doi.org/10.1111/nph.17180

  40. 40. Santisree, P., Nongmaithem, S., Sreelakshmi, Y., Ivanchenko, M. and Sharma, R. (2012) The Root as a Drill: An Ethylene-Auxin Interaction Facilitates Root Penetration in Soil. Plant Signaling & Behavior, 7, 151-156. https://doi.org/10.4161/psb.18936

  41. 41. Del Bianco, M. and Kepinski, S. (2021) How Plants Get Round Problems: New Insights into the Root Obstacle Avoidance Response. The New Phytologist, 231, 8-10. https://doi.org/10.1111/nph.17419

  42. 42. Taylor, I., Lehner, K., McCaskey, E., et al. (2021) Mechanism and Function of Root Circumnutation. Proceedings of the National Academy of Sciences of the United States of America, 118, e2018940118. https://doi.org/10.1073/pnas.2018940118

  43. 43. Zhao, H., Duan, K.-X., Ma, B., et al. (2020) Histidine Kinase MHZ1/OsHK1 Interacts with Ethylene Receptors to Regulate Root Growth in Rice. Nature Communications, 11, Article No. 518. https://doi.org/10.1038/s41467-020-14313-0

  44. 44. Kushwah, S., Jones, A.M. and Laxmi, A. (2011) Cytokinin Interplay with Ethylene, Auxin, and Glucose Signaling Controls Arabidopsis Seedling Root Directional Growth. Plant Physiology, 156, 1851-1866. https://doi.org/10.1104/pp.111.175794

  45. 45. Zhou, Z.-Y., Zhang, C.-G., Wu, L., et al. (2011) Functional Characterization of the CKRC1/TAA1 Gene and Dissection of Hormonal Actions in the Arabidopsis Root. The Plant Journal, 66, 516-527. https://doi.org/10.1111/j.1365-313X.2011.04509.x

  46. 46. Monshausen, G.B., Bibikova, T.N., Weisenseel, M.H. and Gilroy, S. (2009) Ca2+ Regulates Reactive Oxygen Species Production and pH during Mechanosensing in Arabidopsis Roots. Plant Cell, 21, 2341-2356. https://doi.org/10.1105/tpc.109.068395

  47. 47. Vanneste, S. and Friml, J. (2013) Calcium: The Missing Link in Auxin Action. Plants, 2, 650-675. https://doi.org/10.3390/plants2040650

  48. 48. Gillespie, P.G. and Walker, R.G. (2001) Molecular Basis of Mechanosensory Transduction. Nature, 413, 194-202. https://doi.org/10.1038/35093011

  49. 49. Legué, V., Blancaflor, E., Wymer, C., et al. (1997) Cytoplasmic Free Ca2+ in Arabidopsis Roots Changes in Response to Touch but Not Gravity. Plant Physiology, 114, 789-800. https://doi.org/10.1104/pp.114.3.789

  50. 50. Nakagawa, Y., Katagiri, T., Shinozaki, K., et al. (2007) Arabidopsis Plasma Membrane Protein Crucial for Ca2+ Influx and Touch Sensing in Roots. Proceedings of the National Academy of Sciences of the United States of America, 104, 3639-3644. https://doi.org/10.1073/pnas.0607703104

  51. 51. Yamanaka, T., Nakagawa, Y., Mori, K., et al. (2010) MCA1 and MCA2 That Mediate Ca2+ Uptake Have Distinct and Overlapping Roles in Arabidopsis. Plant Physiology, 152, 1284-1296. https://doi.org/10.1104/pp.109.147371

  52. 52. Tsugama, D., Liu, S., Fujino, K. and Takano, T. (2018) Calcium Signalling Regulates the Functions of the bZIP Protein VIP1 in Touch Responses in Arabidopsis thaliana. Annals of Botany, 122, 1219-1229. https://doi.org/10.1093/aob/mcy125

  53. 53. Tsugama, D., Liu, S. and Takano, T. (2016) VIP1 Is Very Important/Interesting Protein 1 Regulating Touch Responses of Arabidopsis. Plant Signaling &Behavior, 11, e1187358. https://doi.org/10.1080/15592324.2016.1187358

  54. 54. Tsugama, D., Liu, S. and Takano, T. (2016) The bZIP Protein VIP1 Is Involved in Touch Responses in Arabidopsis Roots. Plant Physiology, 171, 1355-1365. https://doi.org/10.1104/pp.16.00256

  55. 55. Tsugama, D., Liu, S. and Takano, T. (2014) Analysis of Functions of VIP1 and Its Close Homologs in Osmosensory Responses of Arabidopsis thaliana. PLOS ONE, 9, e103930. https://doi.org/10.1371/journal.pone.0103930

  56. 56. Moschou, P.N., Gutierrez-Beltran, E., Bozhkov, P.V. and Smertenko, A. (2016) Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7. Developmental Cell, 37, 350-361. https://doi.org/10.1016/j.devcel.2016.04.015

  57. 57. Galva, C., Kirik, V., Lindeboom, J.J., et al. (2014) The Microtubule plus-End Tracking Proteins SPR1 and EB1b Interact to Maintain Polar Cell Elongation and Directional Organ Growth in Arabidopsis. Plant Cell, 26, 4409-4425. https://doi.org/10.1105/tpc.114.131482

  58. 58. Ishida, T., Kaneko, Y., Iwano, M. and Hashimoto, T. (2007) Helical Microtubule Arrays in a Collection of Twisting Tubulin Mutants of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 8544-8549. https://doi.org/10.1073/pnas.0701224104

  59. 59. Roy, R. and Bassham, D.C. (2017) TNO1, a TGN-Localized SNARE-Interacting Protein, Modulates Root Skewing in Arabidopsis thaliana. BMC Plant Biology, 17, Article No. 73. https://doi.org/10.1186/s12870-017-1024-4

  60. 60. Gleeson, L., Squires, S. and Bisgrove, S.R. (2012) The Microtubule Associated Protein END BINDING 1 Represses Root Responses to Mechanical Cues. Plant Science, 187, 1-9. https://doi.org/10.1016/j.plantsci.2012.01.010

  61. NOTES

    *通讯作者。

期刊菜单