﻿ 氢化钾晶体结构与储氢性能的理论计算 Crystal Structure and Hydrogen Storage Properties of Kalium Hydride from Theoretical Calculations

Journal of Advances in Physical Chemistry
Vol.07 No.03(2018), Article ID:26632,5 pages
10.12677/JAPC.2018.73018

Crystal Structure and Hydrogen Storage Properties of Kalium Hydride from Theoretical Calculations

Guanghui Lin, Qian Zhao, Yun Liu, Jiehong Lei*

Physics and Space Science of Institute, West China Normal University, Nanchong Sichuan

Received: Aug. 9th, 2018; accepted: Aug. 22nd, 2018; published: Aug. 29th, 2018

ABSTRACT

The physical properties of potassium hydride isotope compounds (KHxD1−x, KHxT1−x, KDxT1−x; x = 0, 0.25, 0.5, 0.75, 1.0) were calculated by the density functional theory method using plane wave pseudopotential combined with generalized gradient approximation, including lattice constant, density, and density of H(D)T. The calculation results show that the lattice constant and density of KH(D,T) are very close to the experimental values; as the value of x increases, the lattice constant hardly changes and the density decreases. The calculated DT density in KD0.25T0.75 is about 0.13 g/cm3, which shows good hydrogen storage performance.

Keywords:Density Functional Theory, Crystal Structure, Hydrogen Storage Properties, Kalium Hydride

1. 引言

2. 理论方法

3. 结果与讨论

$\rho =\frac{M}{V}$ (1)

Table 1. Comparison of lattice constants, densities and experimental values of KH (KD, KT)

Table 2. Lattice constants and density values of three potassium hydride isotopes with different x values

Figure 1. The relationship between the density value of three potassium hydride isotope compounds and the x value

Figure 2. H(D)T density under different x values

4. 结论

Crystal Structure and Hydrogen Storage Properties of Kalium Hydride from Theoretical Calculations[J]. 物理化学进展, 2018, 07(03): 147-151. https://doi.org/10.12677/JAPC.2018.73018

1. 1. Sakintuna, B., Lamari-Darkrim, F. and Hirscher, M. (2007) Metal Hydride Materials for Solid Hydrogen Storage: A Revies. Interna-tional Journal of Hydrogen Energy, 32, 1121-1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

2. 2. Orimo, S., Nakamori, Y., Eliseo, J.R., et al. (2007) Complex Hydride for Hydrogen Storage. Chemical Reviews, 107, 4111-4132. https://doi.org/10.1021/cr0501846

3. 3. Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G. (2007) The US Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catalysis Today, 120, 246-256. https://doi.org/10.1016/j.cattod.2006.09.022

4. 4. Lohstroh, W., Fichtner, M. and Breitung, W. (2009) Complex Hydrides as Solid Storage Materials: First Safety Tests. International Journal of Hydrogen Energy, 34, 5981-5985. https://doi.org/10.1016/j.ijhydene.2009.01.030

5. 5. Graetz, J. (2009) New Approaches to Hydrogen Storage. Chemical Society Reviews, 38, 73-82. https://doi.org/10.1039/B718842K

6. 6. Schlapbach, L. and Zuttel, A. (2001) Hydrogen-Storage Materials for Mobile Applica-tions. Nature, 414, 353-358. https://doi.org/10.1038/35104634

7. 7. Bloch, J. and Mintz, M.H. (1997) Kinetics and Mechanisms of Metal Hydrides For-mation—A Review. Journal of Alloys and Compounds, 253, 529-541. https://doi.org/10.1016/S0925-8388(96)03070-8

8. 8. Van den berg, A.W.C. and Areán, C.C. (2008) Material for Hydrogen Storage: Current Research Trends and Perspectives. Chemical Com-munications, 6, 668-681. https://doi.org/10.1039/B712576N

9. 9. George, L. and Saxena, S.K. (2010) Structural Stability of Met-al Hydrides, Alanates and Borohydrides of Alkali and Alkali-Earth Elements: A Review. International Journal of Hydrogen Energy, 35, 5454-5470. https://doi.org/10.1016/j.ijhydene.2010.03.078

10. 10. Pandey, J.D. (1978) Properties of Isotopic Lithium Hydride in Crystalline State. Journal of Inorganic and Nuclear Chemistry, 40, 1184-1185. https://doi.org/10.1016/0022-1902(78)80537-5

11. 11. Lei, J.H., Duan, H. and Xing, P.F. (2010) Calculation of the Physical Properties of an Isotopic Compound of Ternary Lithium Hydride. Physica Scripta, 82, 5607-5610.

12. 12. Magg, U. and Jones, H. (1988) The Ground-State Infrared Spectrum of Sodium Hydride. Chemical Physics Letters, 146, 415-418. https://doi.org/10.1016/0009-2614(88)87469-4

13. 13. Smithson, H., Marianetti, C.A., Morganm, D., et al. (2002) First-Principles Study of the Stability and Electronic Structure of Metal Hydrides. Physical Review B, 66, 4107-4116. https://doi.org/10.1103/PhysRevB.66.144107

14. 14. Maki, A.G. and Olson, W.B. (1989) Infrared Spectrum of Sodium Hydride. The Journal of Chemical Physics, 90, 6887-6892. https://doi.org/10.1063/1.456263

15. 15. Bowman, R.C. (1973) Thermal Expan-sion Coefficients of Lithium Hydride. Journal of Physics and Chemistry of Solids, 34, 1754-1756. https://doi.org/10.1016/S0022-3697(73)80143-X

16. 16. Payne, M.C., Teter, M.P., Allen, D.C., Arias, T.A. and Joannopoulos, J.D. (1992) Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Re-views of Modern Physics, 64, 1045-1077. https://doi.org/10.1103/RevModPhys.64.1045

17. 17. Guo, Y.D., Cheng, X.L., Zhou, L.P., et al. (2006) First-Principles Calculation of Elastic and Thermodynamic MgO and SrO under High Pressure. Physica B, 373, 334-340. https://doi.org/10.1016/j.physb.2005.12.244

18. 18. Hammer, B., Hansen, L.B. and Norskov, J.K. (1999) Improved Ad-sorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerh of Functionals. Physical Review B, 59, 7413-7421. https://doi.org/10.1103/PhysRevB.59.7413

19. 19. Vanderbilt, D. (1990) Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892

20. 20. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

21. NOTES

*通讯作者。