﻿ 基于可变模糊综合评判法的山洪灾害脆弱性分析 Vulnerability Assessment of Torrent Flood Disasters Based on Variable Fuzzy Comprehensive Evaluation Method

Journal of Water Resources Research
Vol.06 No.04(2017), Article ID:21345,8 pages
10.12677/JWRR.2017.64040

Vulnerability Assessment of Torrent Flood Disasters Based on Variable Fuzzy Comprehensive Evaluation Method

Huimin Liu, Kuan Liu, Wenchuan Wang*, Dongmei Xu

College of Water Conservancy, North China University of Water Resourses and Electric Power, Zhengzhou Henan

Received: Jun. 22nd, 2017; accepted: Jul. 4th, 2017; published: Jul. 12th, 2017

ABSTRACT

The vulnerability of mountain torrents refers to the ability of people to resist and cope with floods and the ability to recover from adverse effects after suffering from floods. In this paper, the variable fuzzy comprehensive evaluation model is established by comprehensively considering the hydrological indicators and economic development of Harbin. The comprehensive evaluation of the vulnerability of mountain flood disaster of 12 counties (cities, district) are carried out by selecting 12 disaster vulnerability indicators, and using the analytic hierarchy process to determine the index weights. The variable fuzzy comprehensive evaluation method takes into account the influence of the evaluation standard interval value on the evaluation results and carries out the comprehensive evaluation under the four combinations of parameters to improve the credibility and reliability of the vulnerability assessment results, which has practical significance.

Keywords:Vulnerability Assessment, Analytic Hierarchy Process, Variable Fuzzy Comprehensive Evaluation, Disaster Mitigation

1. 引言

2. 指标体系构建及权重确定

2.1. 构建指标体系

(1)

Table1. Judgment matrix and weight distribution of vulnerability index in Harbin County

2.2. 权重确定

3. 基于可变模糊综合评判的山洪灾害脆弱性评价模型

(1) 洪水灾害脆弱性评价涉及多个级别，其标准值用区间数表示。已知待评价对象有n个，每个评价对象有m个评价指标，xij为第j个待评价对象的第i个指标(其中)。将评价指标i划分为k个

(2) 根据(1)中求得的k个危险等级的标准区间矩阵，构造变动区间的范围值矩阵(d、c分别为指标i第h级别的上、下边界)。

(3) 根据标准区间矩阵及各级别的物理分析与实际情况，确定山洪灾害评价指标i级别h的点值矩阵。本文采用的点值通用模型进行计算。

(4) 利用层次分析法及表1给出的指标判断矩阵数据计算指标权重确定脆弱性权重向量

(5) 根据相对差异函数模型公式计算相对隶属度矩阵。

(2)

(3)

(6) 利用下面的公式分别计算q、p四种不同组合情况下，研究对象j对于各级别的综合相对隶属度向量

(4)

(7) 对综合相对隶属度向量进行归一化处理，可得归一化综合相对隶属度向量，其中。级别特征值公式为(H为待评价单元的脆弱等级特征值)。

4. 实例应用

Table 2. Analysis and evaluation criteria of vulnerability of torrent flood disaster in Harbin

Table 3. Analysis and evaluation of vulnerability of torrent flood disaster in Harbin

Table 4. Variable fuzzy analysis and evaluation results of vulnerability of torrent flood disaster in Harbin

Figure 1. Variable fuzzy analysis and evaluation results of vulnerability of torrent flood disaster in Harbin County

5. 结语

Vulnerability Assessment of Torrent Flood Disasters Based on Variable Fuzzy Comprehensive Evaluation Method[J]. 水资源研究, 2017, 06(04): 332-339. http://dx.doi.org/10.12677/JWRR.2017.64040

1. 1. 刘兰芳, 邹君, 刘湘南. 农业洪涝灾害脆弱性成因分析及评估一以湖南省衡阳市为例[J]. 长江流域资源与环境, 2002, 11(3): 291-295. LIU Lanfang, ZOU Jun, LIU Xiangnan. Assessment and analysis of the vulnerability of agricultural flood-waterlogging disas-ter—A study of Hengyang, Hunan. Resources and Environment in the Yangtze Basin, 2002, 11(3): 291-295. (in Chinese)

2. 2. 汪朝辉, 王克林, 熊鹰, 等. 湖南省洪涝灾害脆弱性评估和减灾对策研究[J]. 长江流域资源与环境, 2003(6): 586-592. WANG Zhaohui, WANG Kelin, XIONG Ying, et al. Assessment of the vulnerability of flood-waterlogging disaster and coun-termeasures of disaster reductction in Hunan province. Resources and Environment in the Yangtze Basin, 2003(6): 586-592. (in Chinese)

3. 3. 葛怡, 史培军, 刘婧, 等. 中国水灾社会脆弱性评估方法的改进与应用——以长沙地区为例[J]. 自然灾害学报, 2005, 14(6): 54-58. GE Yi, SHI Peijun, LIU Jing, et al. Improvement and application of vulnerability assessment methodology for flood hazards in China: Using Changsha Prefecture as a case study. Journal of Natural Disasters, 2005, 14(6): 54-58. (in Chinese)

4. 4. 刘毅, 黄建毅, 马丽. 基于DEA模型的我国自然灾害区域脆弱性评价[J]. 地理研究, 2010, 29(7): 1153-1162. LIU Yi, HUANG Jianyi, MA Li. The assessment of regional vulnerability to natural disasters in China based on DEA model. Geographical Research, 2010, 29(7): 1153-1162. (in Chinese)

5. 5. 何亚伯, 汪洋, 李袆琛, 等. 基于改进DEA交叉效率模型的洪水灾害区域性评价[J]. 中国安全生产科学技术, 2016, 12(5): 86-90. HE Yabo, WANG Yang, LI Yichen, et al. Evaluation on regional vulnerability of flood disaster based on improved DEA over-lapping efficiency model. Journal of Safety Science and Technology, 2016, 12(5): 86-90. (in Chinese)

6. 6. 陈守煜. 可变模糊集合理论与可变模型集[J]. 数学的实践与认识, 2008, 38(18): 146-153. CHEN Shouyu. Theory of variable fuzzy sets and variable model sets. Mathematics in Practice and Theory, 2008, 38(18): 146-153. (in Chinese)

7. 7. 王梅. 矿区生态脆弱性评价及土壤、植被特征分析——以六道沟流域为例[D]: [硕士学位论文]. 杨凌: 西北农林科技大学, 2012. WANG Mei. Evalauation on the eco-environmental vuluerability in the mining area and character analysis of the soil and veg-etation—A case syudy of Liudaogou watershed. Yangling: Northwest Agricultural and Forestry Science and Technology Uni-versity, 2012. (in Chinese)

8. 8. 秦旭芝, 黎宁, 温中海, 等. 基于广西河池市胁迫风险的土壤环境脆弱性评价[J]. 中国环境监测, 2015(6): 71-76. QIN Xuzhi, LI Ning, WEN Zhonghai, et al. The evaluation of soil environmental vulnerability by the stress risks in Hechi City, Guangxi. Environmental Monitoring in China, 2015(6): 71-76. (in Chinese)

9. 9. 樊运晓, 罗云, 陈庆寿. 区域承灾体脆弱性综合评价指标权重的确定[J]. 灾害学, 2001(1): 86-88. FAN Yunxiao, LUO Yun, CHEN Qingshou. Establishment of weight about vulnerability indexes of hazard bearing body. Journal of Catastrophology, 2001(1): 86-88. (in Chinese)

10. 10. 张珍华. 基于可变模糊集理论的洛阳县域暴雨洪涝灾害脆弱性评价[D]: [硕士学位论文]. 开封: 河南大学, 2013. ZHANG Zhenhua. Vulneability assessment of storm flood disaters in Luoyang county based on variable fuzzy set theory. Henan: Henan University, 2013. (in Chinese)

11. 11. 陈守煜, 胡吉敏. 可变模糊评价法及在水资源承载能力评价中的应用[J]. 水利学报, 2006, 37(3): 264-271. CHEN Shouyu, HU Jimin. Variable fuzzy assessment method and its application in assessing water resources carrying capacity. Journal of Hydraulic Engineering, 2006, 37(3): 264-271. (in Chinese)

12. 12. 陈守煜. 工程模糊集理论与应用[M]. 北京: 国防工业出版社, 1998. CHEN Shouyu. Theory and application of engineering fuzzy sets. Beijing: National Defense Industry Press, 1998. (in Chinese)