﻿ 超导量子位的量子相干可调谐耦合中的几何相位 Geometric Phase in a Quantum Coherent Tunable Coupling of Superconducting Qubits

Vol.07 No.01(2018), Article ID:23714,5 pages
10.12677/CMP.2018.71004

Geometric Phase in a Quantum Coherent Tunable Coupling of Superconducting Qubits

Yuanxin Qiao, Zhaoxian Yu

Department of Physics, Beijing Information Science and Technology University, Beijing

Received: Jan. 21st, 2018; accepted: Feb. 2nd, 2018; published: Feb. 9th, 2018

ABSTRACT

By using the Lewis-Riesenfeld invariant theory, we have studied the geometric phase in a quantum coherent tunable coupling of superconducting qubits. The geometric phase has nothing to do with the tunnel splitting, but also the dc energy bias and the HF signal. This result has certain significance to the quantum computation.

Keywords:Geometric Phase, Continuous Monitoring of Rabi Oscillations, Josephson Flux Qubit

1. 引言

2. 模板

$\stackrel{^}{H}=-\frac{1}{2}\Delta {\sigma }_{x}-\frac{1}{2}\epsilon {\sigma }_{z}-W\left(t\right){\sigma }_{z},$ (1)

$A=-\frac{1}{2}\Delta ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}B=-\frac{1}{2}\epsilon ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta \left(t\right)=W\left(t\right),$ (2)

$\stackrel{^}{H}=A{\sigma }_{x}+B{\sigma }_{z}+\beta \left(t\right){\sigma }_{z},$ (3)

$\left[{\sigma }_{+},{\sigma }_{-}\right]={\sigma }_{z},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[{\sigma }_{z},{\sigma }_{+}\right]=2{\sigma }_{+}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[{\sigma }_{z},{\sigma }_{-}\right]=-2{\sigma }_{-}.$ (4)

3. 动力学与几何相位

$i\frac{\partial \stackrel{^}{I}\left(t\right)}{\partial t}+\left[\stackrel{^}{I}\left(t\right),\stackrel{^}{H}\left(t\right)\right]=0.$ (5)

$\stackrel{^}{I}\left(t\right)|{\lambda }_{n},t〉={\lambda }_{n}|{\lambda }_{n},t〉,$ (6)

$\frac{\partial {\lambda }_{n}}{\partial t}=0$ 。此系统的与时间有关的薛定谔方程是

$i\frac{\partial {|\psi \left(t\right)〉}_{s}}{\partial t}=\stackrel{^}{H}\left(t\right){|\psi \left(t\right)〉}_{s}$ (7)

${|{\lambda }_{n},t〉}_{s}=\mathrm{exp}\left[i{\delta }_{n}\left(t\right)\right]|{\lambda }_{n},t〉$ (8)

${|\psi \left(t\right)〉}_{s}=\underset{n}{\sum }{C}_{n}\mathrm{exp}\left[i{\delta }_{n}\left(t\right)\right]|{\lambda }_{n},t〉,$ (9)

${\delta }_{n}\left(t\right)={\int }_{0}^{t}\text{d}{t}^{\prime }〈{\lambda }_{n},{t}^{\prime }|i\frac{\partial }{\partial {t}^{\prime }}-\stackrel{^}{H}\left({t}^{\prime }\right)|{\lambda }_{n},{t}^{\prime }〉,$ (10)

${C}_{n}={〈{\lambda }_{n},0|\psi \left(0\right)〉}_{s}.$

$\stackrel{^}{I}\left(t\right)=\alpha \left(t\right){\sigma }_{+}+{\alpha }^{*}\left(t\right){\sigma }_{-}+\beta \left(t\right){\sigma }_{z}$ (11)

$i\stackrel{˙}{\alpha }\left(t\right)+2\left(A\beta -\alpha \beta \right)=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}i\stackrel{˙}{\beta }+A\left(\alpha -{\alpha }^{*}\right)=0.$ (12)

$\beta \mathrm{cos}\left(2|\xi |\right)+\alpha \xi \sqrt{2|\xi |}\left[\mathrm{sin}\sqrt{2|\xi |}+\frac{1}{\sqrt{2|\xi |}}-1\right]=1$ (13)

$\alpha +\frac{\xi |\beta |}{|\xi |}\left[\mathrm{sin}\left(2|\xi |+2|\xi |-1\right)\right]=1,$ (14)

${\stackrel{^}{I}}_{V}\equiv {\stackrel{^}{V}}^{†}\left(t\right)\stackrel{^}{I}\left(t\right)\stackrel{^}{V}\left(t\right)={\sigma }_{z}.$ (15)

${\stackrel{^}{V}}^{†}\left(t\right)\frac{\partial \stackrel{^}{V}\left(t\right)}{\partial t}=\frac{\partial \stackrel{^}{L}}{\partial t}+\frac{1}{2!}\left[\frac{\partial \stackrel{^}{L}}{\partial t},\stackrel{^}{L}\right]+\frac{1}{3!}\left[\left[\frac{\partial \stackrel{^}{L}}{\partial t},\stackrel{^}{L}\right],\stackrel{^}{L}\right]+\frac{1}{4}\left[\left[\left[\frac{\partial \stackrel{^}{L}}{\partial t},\stackrel{^}{L}\right],\stackrel{^}{L}\right],\stackrel{^}{L}\right]+\cdots ,$ (16)

$A+B+\frac{\beta \xi }{|\xi |}\left[\mathrm{sin}\left(2|\xi |\right)+2|\xi |-1\right]+\frac{2\xi \left(\xi {\stackrel{˙}{\xi }}^{*}-\stackrel{˙}{\xi }{\xi }^{*}\right)}{{\left(2|\xi |\right)}^{3}}\left[\mathrm{sin}\left(2|\xi |\right)-2{|\xi |}^{3}\right]=0,$ (17)

${\stackrel{^}{H}}_{V}\left(t\right)\equiv {\stackrel{^}{V}}^{†}\left(t\right)\stackrel{^}{I}\left(t\right)\stackrel{^}{V}\left(t\right)-i{\stackrel{^}{V}}^{†}\left(t\right)\frac{\partial \stackrel{^}{V}\left(t\right)}{\partial t}=\lambda {\sigma }_{z},$ (18)

$\lambda =i\left[1-\mathrm{cos}\left(2|\xi |\right)\right]\left(\xi {\stackrel{˙}{\xi }}^{*}-\stackrel{˙}{\xi }{\xi }^{*}\right)+A\left[\mathrm{sin}\sqrt{2|\xi |}+\frac{1}{2\sqrt{2|\xi |}}-1\right]\sqrt{2|\xi |}\left[\alpha \xi +{\alpha }^{*}{\xi }^{*}\right]$ (19)

${\stackrel{˙}{\delta }}^{g}\left(t\right)=i\left[1-\mathrm{cos}\left(2|\xi |\right)\right]\left(\xi \stackrel{˙}{\xi }-\stackrel{˙}{\xi }{\xi }^{*}\right).$ (20)

4. 结论

Geometric Phase in a Quantum Coherent Tunable Coupling of Superconducting Qubits[J]. 凝聚态物理学进展, 2018, 07(01): 22-26. http://dx.doi.org/10.12677/CMP.2018.71004

1. 1. Berry, M.V. (1984) Quantal Phase Factors Accompanying Adibatic Changes. Proceedings of the Royal Society of London, 392, 45-57. https://doi.org/10.1098/rspa.1984.0023

2. 2. Aharonov, Y. and Bohm, D. (1959) Sig-nificance of Electromagnetic Potentials in the Quantum Theory. Physical Review, 115, 485-491. https://doi.org/10.1103/PhysRev.115.485

3. 3. Aharonov, Y. and Anandan, J. (1987) Phase Change during a Cyclic Quantum Evolution. Physical Review Letters, 58, 1953. https://doi.org/10.1103/PhysRevLett.58.1593

4. 4. Samuel, J. and Bhandari, R. (1988) General Setting for Berry’s Phase. Physical Review Letters, 60, 2339. https://doi.org/10.1103/PhysRevLett.60.2339

5. 5. Yu, Z.X. and Zhang, D.X. (1995) Phase Factor for Quan-tum Systems with Time-Bound Condition. Journal of Qingdao University, 8, 49.

6. 6. Pati, A.K. (1995) Geometric Aspects of Noncyclic Quantum Evolution. Physical Review A, 52, 2576-2584. https://doi.org/10.1103/PhysRevA.52.2576

7. 7. Uhlmann, A. (1986) Parallel Transport and Quantum Ho-lonomy along Density Operators. Reports on Mathematical Physics, 24, 229-240. https://doi.org/10.1016/0034-4877(86)90055-8

8. 8. Sjoqvist, E., et al. (2000) Geometric Phases for Mixed States in Interferometry. Physical Review Letters, 85, 2845-2849. https://doi.org/10.1103/PhysRevLett.85.2845

9. 9. Gao, X.C., Xu, J.B. and Qian, T.Z. (1991) Geometric Phase and the Generalized Invariant Formulation. Physical Review A, 44, 7016. https://doi.org/10.1103/PhysRevA.44.7016

10. 10. Lewis, H.R. and Riesenfeld, W.B. (1969) An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. Journal of Mathematical Physics, 10, 1458. https://doi.org/10.1063/1.1664991

11. 11. Gao, X.C., et al. (1996) Quantum-Invariant Theory and the Evolution of a Quantum Scalar Field in Robertson-Walker Flat Spacetimes. Physical Review D Particles & Fields, 53, 4374. https://doi.org/10.1103/PhysRevD.53.4374

12. 12. Hou, Y.Z., Yu, Z.X. and Liu, Y.H. (1994) Using Quan-tum-Positive Transformations to Cause the Scalability of Topological Items to Obtain the Perturbation of Perturbation on the Contribution of Berry Phase factors. Journal of Xinyan Teachers College, 7, 37.

13. 13. Liang, J.Q. and Ding, X. (1991) Broken Gauge Equivalence of Hamiltonians Due to Time-Evolution and the Berry Phase. Physics Letters A, 153, 273-278. https://doi.org/10.1016/0375-9601(91)90942-2

14. 14. Sun, C.P. and Ge, M.L. (1990) General-izing Born-Oppenheimer Approximations and Observable Effects of an Induced Gauge Field. Physical Review D Part Fields, 41, 1349-1352. https://doi.org/10.1103/PhysRevD.41.1349

15. 15. Sun, C.P. (1993) Quantum Dy-namical Model for Wave-Function Reduction in Classical and Macroscopic Limits. Physical Review A, 48, 898. https://doi.org/10.1103/PhysRevA.48.898

16. 16. Sun, C.P. (1988) Analytic Treatment of High-Order Adiabatic Approximations of 2-Neutrino Oscillations in Matter. Physical Review D Particles & Fields, 38, 2908-2910. https://doi.org/10.1103/PhysRevD.38.2908

17. 17. Sun, C.P. et al. (1988) High-Order Quantum Adiabatic Ap-proximation and Berry’s Phase Factor. Journal of Physics A General Physics, 21, 1595. https://doi.org/10.1088/0305-4470/21/7/023

18. 18. Chen, J.Q., Li, J. and Liang, Q. (2006) Critical Property of the Geometric Phase in the Dicke Model. Physical Review A, 74, 150. https://doi.org/10.1103/PhysRevA.74.054101

19. 19. Fan, H.Y. and Ruan, T.N. (1984) Some New Applications of Coherent States. China Science, 42, 27.

20. 20. Tsui, D.C., et al. (1982) Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Physical Review Letters, 48, 1559-1562. https://doi.org/10.1103/PhysRevLett.48.1559

21. 21. Semenoff, G.W., et al. (1986) Non-Abelian Adiabatic Phases and the Fractional Quantum Hall Effect. Physical Review Letters, 57, 1195-1198. https://doi.org/10.1103/PhysRevLett.57.1195

22. 22. Chen, C.M., et al. (1991) Quantum Hall Effect and Bery Phase Factor Physics. Acta Physica Sinica, 40, 345.

23. 23. Fan, H.Y. and Li, L.S. (1996) Supersymmetric Unitary Operator for Some Generalized Jaynes-Cummings Models Communications in Theoretical Physics, 25, 105. https://doi.org/10.1088/0253-6102/25/1/105

24. 24. Wu, Y. and Yang, X. (1997) Jaynes-Cummings Model for a Trapped Ion in Any Position of a Standing Wave. Physical Review Letters, 78, 3086-3088. https://doi.org/10.1103/PhysRevLett.78.3086

25. 25. Niskanen, A.O., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S. and Tsai, J.S. (2007) Quantum Coherent Tunable Coupling of Superconducting Qubits. Science, 316, 724. https://doi.org/10.1126/science.1141324

26. 26. Wei, J. and Norman, E. (1963) Lie Algebraic Solution of Linear Differential Equations. Journal of Mathematical Physics, 4, 575. https://doi.org/10.1063/1.1703993