﻿ 浅谈高压开关设备触头温升影响因素 Discussion on the Influencing Factors of the Temperature Rise of the Contact of High Voltage Switchgear

Advances in Energy and Power Engineering
Vol.04 No.06(2016), Article ID:19224,7 pages
10.12677/AEPE.2016.46028

Discussion on the Influencing Factors of the Temperature Rise of the Contact of High Voltage Switchgear

Wenwen Zhou1, Weidong Xu1, Jinhe Zeng2, Qingxian Diao2, Jiefeng Long2

1School of Automation, Guangdong University of Technology, Guangzhou Guangdong

2Guangdong Ziguang Electric Co., Ltd., Dongguan Guangdong

Received: Nov. 17th, 2016; accepted: Dec. 12th, 2016; published: Dec. 15th, 2016

ABSTRACT

High voltage switchgear is an important equipment for stable operation of electric power system. Reliable operation of equipment becomes the main task of power equipment operation and maintenance department. For a long time, heat failure has been a prominent problem in the operation and management of power equipment. Based on the understanding of the requirements of temperature rise of high voltage switchgear and the analysis of the influence factors of temperature rise, the influence of contact resistance, current-carrying capacity and contact pressure on the temperature rise and safe operation of the equipment is analyzed in this paper. And providing the relevant calculation methods and solutions. The relationship between the arc current and other influencing factors and the temperature rise is also discussed.

Keywords:High Voltage Switchgear, Contact Temperature Rise, Contact Resistance, Current Carrying Capacity, Contact Pressure

1广东工业大学自动化学院，广东 广州

2广东紫光电气有限公司，广东 东莞

1. 引言

2. 接触电阻对高压开关设备触头的影响

2.1. 电接触理论

2.2. 接触电阻增大的原因及对触头温升的影响分析

Figure 1. Diagram of the current carrying capacity through the contact points

2.3. 小结

3. 载流量对高压开关设备触头的影响

3.1. 载流量对触头温升的理论分析

3.2. 载流量与触头温升的关系

3.3. 小结

Figure 2. Test results of temperature rise under different contact current

4. 触头压接力度对高压开关设备触头温升的影响

4.1. 接触压力

4.2. 触头压力与高压开关设备触头温升的关系

Figure 3. Diagram of the contact position of static and dynamic contact of the switch cabinet

Table 1. Temperature rise data before and after replacing the contact

4.3. 小结

5. 结束语

(1) 触头接触电阻的增大影响触头局部温度升高，当温度超过极限值时会对电器元件性能造成一定影响，降低开关设备使用寿命。因此，有必要通过减小接触电阻使开关设备温升符合允许的标准要求，改善触头材料质量，增加材料硬度，增大接触面积、接触压力，定期维护触头保持一定的清洁度，这些措施都对接触电阻的减少有促进作用。

(2) 本文主要阐述分析了接触电阻、载流量、接触压力对触头温升的影响，实际上，影响触头温升的因素远不止这3种，例如开关柜运行环境的空气温度，海拔高度，电弧电流，散热表面的对流换热系数、动静触头接触点半径、接触点位置以及导电杆的半径都对触头温升有影响。通过对这些因素的综合分析来研究触头的温升更具实际意义。

(3) 由于导致开关柜过热故障的原因较复杂，且一旦温升过高将引起严重后果，因此，考虑各种温升影响因素在内的温升在线监测系统，实时监测开关柜动静触头、母排处的温升也刻不容缓。

Discussion on the Influencing Factors of the Temperature Rise of the Contact of High Voltage Switchgear[J]. 电力与能源进展, 2016, 04(06): 222-228. http://dx.doi.org/10.12677/AEPE.2016.46028

1. 1. Timsit, S. (1998) Electrical Contact Resistance: Properties of Stationary Interfaces. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts, IEEE, 1-19.

2. 2. Malucci, R.D. (1990) Multispot Model of Contacts Based on Surface Features. Electrical Contacts, 1990. Proceedings of the Thirty-Sixth IEEE Holm Conference on... and the Fifteenth International Conference on Electrical Contacts. IEEE, 625-634.

3. 3. Greenwood, J.A. (1966) Constriction Resistance and the Real Area of Contact. British Journal of Applied Physics, 17, 1621. https://doi.org/10.1088/0508-3443/17/12/310

4. 4. Nakamura, M. and Minowa, I. (1989) Film Resistance and Constriction Effect of Current in a Contact Interface. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 12, 109-113. https://doi.org/10.1109/33.19023

5. 5. Nakamura, M. (1993) Constriction Resistance of Conducting Spots by the Boundary Element Method. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 16, 339-343. https://doi.org/10.1109/33.232062

6. 6. 刘帼巾, 李文华, 蒋栋. 电器触点接触电阻测量装置的研究[J]. 电测与仪表, 2001, 38(2): 15-16.

7. 7. 任万滨, 武剑, 陈宇, 等. 电触点材料接触电阻高精密测量技术[J]. 电工技术学报, 2014, 29(1): 31-36.

8. 8. 王秉政, 江健武, 赵灵, 等. 高压开关柜接触发热温度场数值计算[J]. 高压电器, 2013, 49(12): 42-48.

9. 9. 黄艳, 马利军. 低压配电柜温升与接点接触电阻的关系[J]. 海南大学学报: 自然科学版, 1997, 15(1): 24-27.

10. 10. Park, S.W. and Cho, H. (2014) A Practical Study on Electrical Contact Resistance and Temperature Rise at at the Connections of the Copper Busbars in Switchgears. 2014 IEEE 60th Holm Conference on Electrical Contacts (Holm), IEEE, 1-7.

11. 11. Wang, S.J., Hu, F., Su, B.N., et al. (2012) Method for Calculation of Contact Resistance and Finite Element Simulation of Contact Temperature Rise Based on Rough Surface Contact Model. 26th International Conference on Electrical Contacts (ICEC 2012), IET, 317-321.

12. 12. 陈建兵. 万能式断路器温升与工作电流的关系研究[J]. 电器与能效管理技术, 2016(11): 75-78.

13. 13. 范玉军. 一种电缆载流量及温度参数的换算方法[J]. 电线电缆, 2014 (2): 4-5.

14. 14. 邱海锋, 韩荣杰, 汤宵, 等. 配网开关柜桩头温度与载流量关联算法研究[J]. 科技创新与应用, 2016(3): 48-48.

15. 15. 沈聿修. 高压开关触头接触压力的测量[J]. 高压电器, 1996, 32(3): 53-55.

16. 16. 李俊峰, 郑新芳, 苏秀苹, 等. 应用 PVDF 压电薄膜进行触头接触压力动态测试研究[J]. 河北工业大学学报, 2014(4): 7-10.

17. 17. 王白眉. 论触头接触压力与温升关系的计算公式[J]. 高压电器, 1982(4): 46-49.